/usr/include/wcslib-4.20/sph.h is in wcslib-dev 4.20-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | /*============================================================================
WCSLIB 4.20 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2013, Mark Calabretta
This file is part of WCSLIB.
WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.
Direct correspondence concerning WCSLIB to mark@calabretta.id.au
Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: sph.h,v 4.20 2013/12/18 05:42:49 mcalabre Exp $
*=============================================================================
*
* WCSLIB 4.20 - C routines that implement the spherical coordinate
* transformations used by the FITS World Coordinate System (WCS) standard.
* Refer to
*
* "Representations of world coordinates in FITS",
* Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (Paper I)
*
* "Representations of celestial coordinates in FITS",
* Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (Paper II)
*
* Refer to the README file provided with WCSLIB for an overview of the
* library.
*
*
* Summary of the sph routines
* ---------------------------
* The WCS spherical coordinate transformations are implemented via separate
* functions, sphx2s() and sphs2x(), for the transformation in each direction.
*
* A utility function, sphdpa(), computes the angular distances and position
* angles from a given point on the sky to a number of other points. sphpad()
* does the complementary operation - computes the coordinates of points offset
* by the given angular distances and position angles from a given point on the
* sky.
*
*
* sphx2s() - Rotation in the pixel-to-world direction
* ---------------------------------------------------
* sphx2s() transforms native coordinates of a projection to celestial
* coordinates.
*
* Given:
* eul const double[5]
* Euler angles for the transformation:
* 0: Celestial longitude of the native pole [deg].
* 1: Celestial colatitude of the native pole, or
* native colatitude of the celestial pole [deg].
* 2: Native longitude of the celestial pole [deg].
* 3: cos(eul[1])
* 4: sin(eul[1])
*
* nphi,
* ntheta int Vector lengths.
*
* spt,sxy int Vector strides.
*
* phi,theta const double[]
* Longitude and latitude in the native coordinate
* system of the projection [deg].
*
* Returned:
* lng,lat double[] Celestial longitude and latitude [deg]. These may
* refer to the same storage as phi and theta
* respectively.
*
* Function return value:
* int Status return value:
* 0: Success.
*
*
* sphs2x() - Rotation in the world-to-pixel direction
* ---------------------------------------------------
* sphs2x() transforms celestial coordinates to the native coordinates of a
* projection.
*
* Given:
* eul const double[5]
* Euler angles for the transformation:
* 0: Celestial longitude of the native pole [deg].
* 1: Celestial colatitude of the native pole, or
* native colatitude of the celestial pole [deg].
* 2: Native longitude of the celestial pole [deg].
* 3: cos(eul[1])
* 4: sin(eul[1])
*
* nlng,nlat int Vector lengths.
*
* sll,spt int Vector strides.
*
* lng,lat const double[]
* Celestial longitude and latitude [deg].
*
* Returned:
* phi,theta double[] Longitude and latitude in the native coordinate system
* of the projection [deg]. These may refer to the same
* storage as lng and lat respectively.
*
* Function return value:
* int Status return value:
* 0: Success.
*
*
* sphdpa() - Compute angular distance and position angle
* ------------------------------------------------------
* sphdpa() computes the angular distance and generalized position angle (see
* notes) from a "reference" point to a number of "field" points on the sphere.
* The points must be specified consistently in any spherical coordinate
* system.
*
* sphdpa() is complementary to sphpad().
*
* Given:
* nfield int The number of field points.
*
* lng0,lat0 double Spherical coordinates of the reference point [deg].
*
* lng,lat const double[]
* Spherical coordinates of the field points [deg].
*
* Returned:
* dist,pa double[] Angular distances and position angles [deg]. These
* may refer to the same storage as lng and lat
* respectively.
*
* Function return value:
* int Status return value:
* 0: Success.
*
* Notes:
* sphdpa() uses sphs2x() to rotate coordinates so that the reference point
* is at the north pole of the new system with the north pole of the old
* system at zero longitude in the new. The Euler angles required by
* sphs2x() for this rotation are
*
= eul[0] = lng0;
= eul[1] = 90.0 - lat0;
= eul[2] = 0.0;
*
* The angular distance and generalized position angle are readily obtained
* from the longitude and latitude of the field point in the new system.
* This applies even if the reference point is at one of the poles, in which
* case the "position angle" returned is as would be computed for a reference
* point at (lng0,+90-epsilon) or (lng0,-90+epsilon), in the limit as epsilon
* goes to zero.
*
* It is evident that the coordinate system in which the two points are
* expressed is irrelevant to the determination of the angular separation
* between the points. However, this is not true of the generalized position
* angle.
*
* The generalized position angle is here defined as the angle of
* intersection of the great circle containing the reference and field points
* with that containing the reference point and the pole. It has its normal
* meaning when the the reference and field points are specified in
* equatorial coordinates (right ascension and declination).
*
* Interchanging the reference and field points changes the position angle in
* a non-intuitive way (because the sum of the angles of a spherical triangle
* normally exceeds 180 degrees).
*
* The position angle is undefined if the reference and field points are
* coincident or antipodal. This may be detected by checking for a distance
* of 0 or 180 degrees (within rounding tolerance). sphdpa() will return an
* arbitrary position angle in such circumstances.
*
*
* sphpad() - Compute field points offset from a given point
* ---------------------------------------------------------
* sphpad() computes the coordinates of a set of points that are offset by the
* specified angular distances and position angles from a given "reference"
* point on the sky. The distances and position angles must be specified
* consistently in any spherical coordinate system.
*
* sphpad() is complementary to sphdpa().
*
* Given:
* nfield int The number of field points.
*
* lng0,lat0 double Spherical coordinates of the reference point [deg].
*
* dist,pa const double[]
* Angular distances and position angles [deg].
*
* Returned:
* lng,lat double[] Spherical coordinates of the field points [deg].
* These may refer to the same storage as dist and pa
* respectively.
*
* Function return value:
* int Status return value:
* 0: Success.
*
* Notes:
* sphpad() is implemented analogously to sphdpa() although using sphx2s()
* for the inverse transformation. In particular, when the reference point
* is at one of the poles, "position angle" is interpreted as though the
* reference point was at (lng0,+90-epsilon) or (lng0,-90+epsilon), in the
* limit as epsilon goes to zero.
*
* Applying sphpad() with the distances and position angles computed by
* sphdpa() should return the original field points.
*
*===========================================================================*/
#ifndef WCSLIB_SPH
#define WCSLIB_SPH
#ifdef __cplusplus
extern "C" {
#endif
int sphx2s(const double eul[5], int nphi, int ntheta, int spt, int sxy,
const double phi[], const double theta[],
double lng[], double lat[]);
int sphs2x(const double eul[5], int nlng, int nlat, int sll , int spt,
const double lng[], const double lat[],
double phi[], double theta[]);
int sphdpa(int nfield, double lng0, double lat0,
const double lng[], const double lat[],
double dist[], double pa[]);
int sphpad(int nfield, double lng0, double lat0,
const double dist[], const double pa[],
double lng[], double lat[]);
#ifdef __cplusplus
}
#endif
#endif /* WCSLIB_SPH */
|