This file is indexed.

/usr/share/yacas/random.rep/code.ys is in yacas 1.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
Random number generators implemented in an object-oriented manner.

Old interface (still works):

	RandomSeed(123);
	Random(); Random();

It provides only one global RNG with a globally assigned seed.

New interface allows creating many RNG objects:

	r1:=RngCreate();	// create a default RNG object, assign structure to r1
	r2:=RngCreate(12345);	// create RNG object with given seed
	r3:=RngCreate(seed==0, engine==advanced, dist==gauss); 	// extended options: specify seed, type of RNG engine and the type of statistical distribution
	Rng(r1); Rng(r1); Rng(r2);	// generate some floating-point numbers
	RngSeed(r1, 12345);	// r1 is re-initialized with given seed, r2 is unaffected

More "RNG engines" and "RNG distribution adaptors" can be defined later (at run time).

RngCreate() will return an object of the following structure:
	{SomeDist, SomeEngine, state }

here SomeEngine is a function atom that describes the RNG engine,
SomeDist is a function atom that specifies the distribution adaptor,
and state is a "RNG state object", e.g. a list of all numbers that specify the current RNG state (seeds, temporaries, etc.).

RngSeed(r1, seed) expects an integer seed.
It will re-initialize the RNG object r1 with the given seed.

The "RNG engine API": calling RngCreate with engine==SomeEngine expects that:
	SomeEngine(seed_IsInteger) will create and initialize a state object with given seed and return the new state object (a list). SomeEngine can assume that "seed" is a positive integer.
	SomeEngine(state1_IsList) will update the RNG state object state1 and return the pair {new state object, new number}.

The "RNG distribution adaptor API": calling RngCreate with distribution==SomeDist expects that:
	SomeDist(r1) will update the RNG object r1 and return the pair {new state object, new number}. r1 is a full RNG object, not just a state object.


*/

//////////////////////////////////////////////////
/// lists of defined RNG entities
//////////////////////////////////////////////////

/// The idea is that options must be easy to type, but procedure names could be long.

LocalSymbols(knownRNGEngines, knownRNGDists) [
  knownRNGEngines :=
  {
    { "default", "RNGEngine'LCG'2"},
    { "advanced", "RNGEngine'L'Ecuyer"},
  };

  knownRNGDists :=
  {
    {"default", "FlatRNGDist"},
    {"flat", "FlatRNGDist"},
  //	{"uniform", "FlatRNGDist"},	// we probably don't need this alias...
    {"gauss", "GaussianRNGDist"},
  };

  KnownRNGDists() := knownRNGDists;
  KnownRNGEngines() := knownRNGEngines;
];


//////////////////////////////////////////////////
/// RNG object API
//////////////////////////////////////////////////

Function() RngCreate();
Function() RngCreate(seed, ...);
HoldArg("RngCreate", seed);	// this is needed to prevent evaluation of = and also to prevent substitution of variables, e.g. if "seed" is defined
//UnFence("RngCreate", 0);
//UnFence("RngCreate", 1);
Function() RngSeed(r, seed);
//UnFence("RngSeed", 2);
/// accessor for RNG objects
Function() Rng(r);
//UnFence("Rng", 1);


RngCreate() <-- RngCreate(0);

10 # RngCreate(a'seed_IsInteger) <-- (RngCreate @ {Atom("seed") == a'seed});

// a single option given: convert explicitly to a list
20 # RngCreate(_key == _value) <-- (RngCreate @ {{key == value}});
20 # RngCreate(_key = _value) <-- (RngCreate @ {{key == value}});

// expect a list of options
30 # RngCreate(options_IsList) <--
[
	options := ListToHash @ {options};
	// check options and assign defaults
	If(
		options["seed"] = Empty Or options["seed"] <= 0,
		options["seed"] := 76544321	// some default seed out of the blue sky
	);
	If(
		options["engine"] = Empty Or Not (Assert("warning", {"RngCreate: invalid engine", options["engine"]}) KnownRNGEngines()[options["engine"] ] != Empty),
		options["engine"] := "default"
	);
	If(
		options["dist"] = Empty Or Not (Assert("warning", {"RngCreate: invalid distribution", options["dist"]}) KnownRNGDists()[options["dist"] ] != Empty),
		options["dist"] := "default"
	);
	
	// construct a new RNG object
	// a RNG object has the form {"SomeDist", "SomeEngine", {state}}
	{
		KnownRNGDists()[options["dist"] ], KnownRNGEngines()[options["engine"] ], 
		// initialize object with given seed using "SomeEngine"(seed)
		KnownRNGEngines()[options["engine"] ] @ { options["seed"] }
	};
];

/// accessor function: will call SomeDist(r) and update r
Rng(_r) <--
[
	Local(state, result);
	{state, result} := (r[1] @ {r});	// this calls SomeDist(r)
	DestructiveReplace(r, 3, state);	// update RNG object 
	result;	// return floating-point number
];

/// set seed: will call SomeEngine(r, seed) and update r
RngSeed(_r, seed_IsInteger) <--
[
	Local(state);
	(Assert("warning", {"RngSeed: seed must be positive", seed}) seed > 0
	) Or (seed:=76544321);
	state := (r[2] @ {seed});	// this calls SomeEngine(r)
	DestructiveReplace(r, 3, state);	// update object 
	True;
];

//////////////////////////////////////////////////
/// RNG distribution adaptors
//////////////////////////////////////////////////

/// trivial distribution adaptor: flat distribution, simply calls SomeEngine(r)
/* we have to return whole objects; we can't use references b/c the core
function ApplyPure will not work properly on references, i.e. if r = {"", "", {1}} so that
r[3] = {1}, then LCG'2(r[3]) modifies r[3], but LCG'2 @ r[3] or
ApplyPure("LCG'2", {r[3]}) do not actually modify r[3].
*/

// return pair {state, number}
FlatRNGDist(_r) <-- (r[2] @ {r[3]});	// this calls SomeEngine(state)

/// Gaussian distribution adaptor, returns a complex number with normal distribution with unit variance, i.e. Re and Im are independent and both have unit variance
/* Gaussian random number, Using the Box-Muller transform, from Knuth, 
   "The Art of Computer Programming", 
   Volume 2 (Seminumerical algorithms, third edition), section 3.4.1 
 */
GaussianRNGDist(_rng) <--
[
	// a Gaussian distributed complex number p + I*q is made up of two uniformly distributed numbers x,y according to the formula:
	// a:=2*x-1, b:=2*y-1, m:=a^2+b^2; p = a*Sqrt(-2*Ln(m)/m); q:=b*Sqrt(-2*Ln(m)/m);
	// here we need to make sure that m is nonzero and strictly less than 1.
	Local(a,b,m, new'state, rnumber);
	new'state := rng[3];	// this will be updated at the end
	m:=0;
	While(m=0 Or m>=1)	// repeat generating new x,y  - should not take more than one iteration really
	[
		{new'state, rnumber} := (rng[2] @ {new'state});
		a:=2*rnumber-1;
		{new'state, rnumber} := (rng[2] @ {new'state});
		b:=2*rnumber-1;
		m:=a*a+b*b;	
	];
	{new'state, (a+I*b)*MathSqrt(-2*MathDivide(Internal'LnNum(m),m))};
];


//////////////////////////////////////////////////
/// RNG engines
//////////////////////////////////////////////////

/// default RNG engine: the LCG generator

// first method: initialize a state object with given seed
RNGEngine'LCG'1(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'1(state_IsList) <-- LCG'1(state);

// first method: initialize a state object with given seed
RNGEngine'LCG'2(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'2(state_IsList) <-- LCG'2(state);

// first method: initialize a state object with given seed
RNGEngine'LCG'3(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'3(state_IsList) <-- LCG'3(state);

// first method: initialize a state object with given seed
RNGEngine'LCG'4(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'4(state_IsList) <-- LCG'4(state);

/// parameters from P. Hellekalek, 1994; see G. S. Fishman, Math. Comp. vol. 54, 331 (1990)
LCG'1(state) := RandomLCG(state, 2147483647,950706376,0);
LCG'2(state) := RandomLCG(state, 4294967296,1099087573,0);
LCG'3(state) := RandomLCG(state, 281474976710656,68909602460261,0);
LCG'4(state) := RandomLCG(state, 18014398509481984,2783377640906189,0);

/// Linear congruential generator engine: backend
// state is a list with one element
RandomLCG(_state, _im, _ia, _ic) <--
{
	DestructiveReplace(state,1, MathMod(state[1]*ia+ic,im)),
	MathDivide(state[1], im)	// division should never give 1
};

/// Advanced RNG engine due to L'Ecuyer et al.
/// RNG from P. L'ecuyer et al (2000). Period approximately 2^191
// state information: 6 32-bit integers, corresponding to {x3,x2,x1,y3,y2,y1}

// first method: initialize a state object with given seed
RNGEngine'L'Ecuyer(a'seed_IsInteger) <--
[
	// use LCG'2 as auxiliary RNG to fill the seeds
	Local(rng'aux, result);
	rng'aux := (RngCreate @ {a'seed});
	// this will be the state vector
	result:=ZeroVector(6);
	// fill the state object with random numbers
	Local(i);
	For(i:=1, i<=6, i++)
	[
		Rng(rng'aux);
		result[i] := rng'aux[3][1];	// hack to get the integer part
	];
	// return the state object
	result;
];

// second method: update state object and return a new random number (floating-point)
RNGEngine'L'Ecuyer(state_IsList) <--
[
	Local(new'state, result);
	new'state := {
		Mod(1403580*state[2]-810728*state[3], 4294967087), state[1], state[2],
		Mod(527612*state[4]-1370589*state[6], 4294944433), state[4], state[5]
	};
	result:=Mod(state[1]-state[4], 4294967087);
	{
		new'state,
		MathDivide(If(result=0, 4294967087, result), 4294967088)
	};
];

//////////////////////////////////////////////////
/// old interface: using one global RNG object
//////////////////////////////////////////////////
/* this is a little slower but entirely equivalent to the code below
GlobalRNG := RngCreate(76544321);
Random() := Rng(GlobalRNG);
RandomSeed(seed) := RngSeed(GlobalRNG, seed);
*/

LocalSymbols(RandSeed) [
  // initial seed should be nonzero
  RandSeed:=76544321;

  /// assign random seed
  Function("RandomSeed", {seed}) Set(RandSeed, seed);

  /// Linear congruential generator
  RandomLCG(_im, _ia, _ic) <--
  [
    RandSeed:=MathMod(RandSeed*ia+ic,im);
    MathDivide(RandSeed,im);	// should never give 1
  ];
]; // LocalSymbols(RandSeed)


Function("Random1",{}) RandomLCG(4294967296,1103515245,12345);
Function("Random6",{}) RandomLCG(1771875,2416,374441);
/// parameters from P. Hellekalek, 1994; see G. S. Fishman, Math. Comp. vol. 54, 331 (1990)
Function("Random2",{}) RandomLCG(2147483647,950706376,0);
Function("Random3",{}) RandomLCG(4294967296,1099087573,0);
Function("Random4",{}) RandomLCG(281474976710656,68909602460261,0);
Function("Random5",{}) RandomLCG(18014398509481984,2783377640906189,0);

// select one of them
Function("Random",{}) Random3();