/usr/share/yacas/random.rep/code.ys is in yacas 1.3.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | /*
Random number generators implemented in an object-oriented manner.
Old interface (still works):
RandomSeed(123);
Random(); Random();
It provides only one global RNG with a globally assigned seed.
New interface allows creating many RNG objects:
r1:=RngCreate(); // create a default RNG object, assign structure to r1
r2:=RngCreate(12345); // create RNG object with given seed
r3:=RngCreate(seed==0, engine==advanced, dist==gauss); // extended options: specify seed, type of RNG engine and the type of statistical distribution
Rng(r1); Rng(r1); Rng(r2); // generate some floating-point numbers
RngSeed(r1, 12345); // r1 is re-initialized with given seed, r2 is unaffected
More "RNG engines" and "RNG distribution adaptors" can be defined later (at run time).
RngCreate() will return an object of the following structure:
{SomeDist, SomeEngine, state }
here SomeEngine is a function atom that describes the RNG engine,
SomeDist is a function atom that specifies the distribution adaptor,
and state is a "RNG state object", e.g. a list of all numbers that specify the current RNG state (seeds, temporaries, etc.).
RngSeed(r1, seed) expects an integer seed.
It will re-initialize the RNG object r1 with the given seed.
The "RNG engine API": calling RngCreate with engine==SomeEngine expects that:
SomeEngine(seed_IsInteger) will create and initialize a state object with given seed and return the new state object (a list). SomeEngine can assume that "seed" is a positive integer.
SomeEngine(state1_IsList) will update the RNG state object state1 and return the pair {new state object, new number}.
The "RNG distribution adaptor API": calling RngCreate with distribution==SomeDist expects that:
SomeDist(r1) will update the RNG object r1 and return the pair {new state object, new number}. r1 is a full RNG object, not just a state object.
*/
//////////////////////////////////////////////////
/// lists of defined RNG entities
//////////////////////////////////////////////////
/// The idea is that options must be easy to type, but procedure names could be long.
LocalSymbols(knownRNGEngines, knownRNGDists) [
knownRNGEngines :=
{
{ "default", "RNGEngine'LCG'2"},
{ "advanced", "RNGEngine'L'Ecuyer"},
};
knownRNGDists :=
{
{"default", "FlatRNGDist"},
{"flat", "FlatRNGDist"},
// {"uniform", "FlatRNGDist"}, // we probably don't need this alias...
{"gauss", "GaussianRNGDist"},
};
KnownRNGDists() := knownRNGDists;
KnownRNGEngines() := knownRNGEngines;
];
//////////////////////////////////////////////////
/// RNG object API
//////////////////////////////////////////////////
Function() RngCreate();
Function() RngCreate(seed, ...);
HoldArg("RngCreate", seed); // this is needed to prevent evaluation of = and also to prevent substitution of variables, e.g. if "seed" is defined
//UnFence("RngCreate", 0);
//UnFence("RngCreate", 1);
Function() RngSeed(r, seed);
//UnFence("RngSeed", 2);
/// accessor for RNG objects
Function() Rng(r);
//UnFence("Rng", 1);
RngCreate() <-- RngCreate(0);
10 # RngCreate(a'seed_IsInteger) <-- (RngCreate @ {Atom("seed") == a'seed});
// a single option given: convert explicitly to a list
20 # RngCreate(_key == _value) <-- (RngCreate @ {{key == value}});
20 # RngCreate(_key = _value) <-- (RngCreate @ {{key == value}});
// expect a list of options
30 # RngCreate(options_IsList) <--
[
options := ListToHash @ {options};
// check options and assign defaults
If(
options["seed"] = Empty Or options["seed"] <= 0,
options["seed"] := 76544321 // some default seed out of the blue sky
);
If(
options["engine"] = Empty Or Not (Assert("warning", {"RngCreate: invalid engine", options["engine"]}) KnownRNGEngines()[options["engine"] ] != Empty),
options["engine"] := "default"
);
If(
options["dist"] = Empty Or Not (Assert("warning", {"RngCreate: invalid distribution", options["dist"]}) KnownRNGDists()[options["dist"] ] != Empty),
options["dist"] := "default"
);
// construct a new RNG object
// a RNG object has the form {"SomeDist", "SomeEngine", {state}}
{
KnownRNGDists()[options["dist"] ], KnownRNGEngines()[options["engine"] ],
// initialize object with given seed using "SomeEngine"(seed)
KnownRNGEngines()[options["engine"] ] @ { options["seed"] }
};
];
/// accessor function: will call SomeDist(r) and update r
Rng(_r) <--
[
Local(state, result);
{state, result} := (r[1] @ {r}); // this calls SomeDist(r)
DestructiveReplace(r, 3, state); // update RNG object
result; // return floating-point number
];
/// set seed: will call SomeEngine(r, seed) and update r
RngSeed(_r, seed_IsInteger) <--
[
Local(state);
(Assert("warning", {"RngSeed: seed must be positive", seed}) seed > 0
) Or (seed:=76544321);
state := (r[2] @ {seed}); // this calls SomeEngine(r)
DestructiveReplace(r, 3, state); // update object
True;
];
//////////////////////////////////////////////////
/// RNG distribution adaptors
//////////////////////////////////////////////////
/// trivial distribution adaptor: flat distribution, simply calls SomeEngine(r)
/* we have to return whole objects; we can't use references b/c the core
function ApplyPure will not work properly on references, i.e. if r = {"", "", {1}} so that
r[3] = {1}, then LCG'2(r[3]) modifies r[3], but LCG'2 @ r[3] or
ApplyPure("LCG'2", {r[3]}) do not actually modify r[3].
*/
// return pair {state, number}
FlatRNGDist(_r) <-- (r[2] @ {r[3]}); // this calls SomeEngine(state)
/// Gaussian distribution adaptor, returns a complex number with normal distribution with unit variance, i.e. Re and Im are independent and both have unit variance
/* Gaussian random number, Using the Box-Muller transform, from Knuth,
"The Art of Computer Programming",
Volume 2 (Seminumerical algorithms, third edition), section 3.4.1
*/
GaussianRNGDist(_rng) <--
[
// a Gaussian distributed complex number p + I*q is made up of two uniformly distributed numbers x,y according to the formula:
// a:=2*x-1, b:=2*y-1, m:=a^2+b^2; p = a*Sqrt(-2*Ln(m)/m); q:=b*Sqrt(-2*Ln(m)/m);
// here we need to make sure that m is nonzero and strictly less than 1.
Local(a,b,m, new'state, rnumber);
new'state := rng[3]; // this will be updated at the end
m:=0;
While(m=0 Or m>=1) // repeat generating new x,y - should not take more than one iteration really
[
{new'state, rnumber} := (rng[2] @ {new'state});
a:=2*rnumber-1;
{new'state, rnumber} := (rng[2] @ {new'state});
b:=2*rnumber-1;
m:=a*a+b*b;
];
{new'state, (a+I*b)*MathSqrt(-2*MathDivide(Internal'LnNum(m),m))};
];
//////////////////////////////////////////////////
/// RNG engines
//////////////////////////////////////////////////
/// default RNG engine: the LCG generator
// first method: initialize a state object with given seed
RNGEngine'LCG'1(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'1(state_IsList) <-- LCG'1(state);
// first method: initialize a state object with given seed
RNGEngine'LCG'2(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'2(state_IsList) <-- LCG'2(state);
// first method: initialize a state object with given seed
RNGEngine'LCG'3(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'3(state_IsList) <-- LCG'3(state);
// first method: initialize a state object with given seed
RNGEngine'LCG'4(seed_IsInteger) <-- {seed};
// second method: update state object and return new number
RNGEngine'LCG'4(state_IsList) <-- LCG'4(state);
/// parameters from P. Hellekalek, 1994; see G. S. Fishman, Math. Comp. vol. 54, 331 (1990)
LCG'1(state) := RandomLCG(state, 2147483647,950706376,0);
LCG'2(state) := RandomLCG(state, 4294967296,1099087573,0);
LCG'3(state) := RandomLCG(state, 281474976710656,68909602460261,0);
LCG'4(state) := RandomLCG(state, 18014398509481984,2783377640906189,0);
/// Linear congruential generator engine: backend
// state is a list with one element
RandomLCG(_state, _im, _ia, _ic) <--
{
DestructiveReplace(state,1, MathMod(state[1]*ia+ic,im)),
MathDivide(state[1], im) // division should never give 1
};
/// Advanced RNG engine due to L'Ecuyer et al.
/// RNG from P. L'ecuyer et al (2000). Period approximately 2^191
// state information: 6 32-bit integers, corresponding to {x3,x2,x1,y3,y2,y1}
// first method: initialize a state object with given seed
RNGEngine'L'Ecuyer(a'seed_IsInteger) <--
[
// use LCG'2 as auxiliary RNG to fill the seeds
Local(rng'aux, result);
rng'aux := (RngCreate @ {a'seed});
// this will be the state vector
result:=ZeroVector(6);
// fill the state object with random numbers
Local(i);
For(i:=1, i<=6, i++)
[
Rng(rng'aux);
result[i] := rng'aux[3][1]; // hack to get the integer part
];
// return the state object
result;
];
// second method: update state object and return a new random number (floating-point)
RNGEngine'L'Ecuyer(state_IsList) <--
[
Local(new'state, result);
new'state := {
Mod(1403580*state[2]-810728*state[3], 4294967087), state[1], state[2],
Mod(527612*state[4]-1370589*state[6], 4294944433), state[4], state[5]
};
result:=Mod(state[1]-state[4], 4294967087);
{
new'state,
MathDivide(If(result=0, 4294967087, result), 4294967088)
};
];
//////////////////////////////////////////////////
/// old interface: using one global RNG object
//////////////////////////////////////////////////
/* this is a little slower but entirely equivalent to the code below
GlobalRNG := RngCreate(76544321);
Random() := Rng(GlobalRNG);
RandomSeed(seed) := RngSeed(GlobalRNG, seed);
*/
LocalSymbols(RandSeed) [
// initial seed should be nonzero
RandSeed:=76544321;
/// assign random seed
Function("RandomSeed", {seed}) Set(RandSeed, seed);
/// Linear congruential generator
RandomLCG(_im, _ia, _ic) <--
[
RandSeed:=MathMod(RandSeed*ia+ic,im);
MathDivide(RandSeed,im); // should never give 1
];
]; // LocalSymbols(RandSeed)
Function("Random1",{}) RandomLCG(4294967296,1103515245,12345);
Function("Random6",{}) RandomLCG(1771875,2416,374441);
/// parameters from P. Hellekalek, 1994; see G. S. Fishman, Math. Comp. vol. 54, 331 (1990)
Function("Random2",{}) RandomLCG(2147483647,950706376,0);
Function("Random3",{}) RandomLCG(4294967296,1099087573,0);
Function("Random4",{}) RandomLCG(281474976710656,68909602460261,0);
Function("Random5",{}) RandomLCG(18014398509481984,2783377640906189,0);
// select one of them
Function("Random",{}) Random3();
|