This file is indexed.

/usr/share/Yap/lists.yap is in yap 6.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
% This file has been included as an YAP library by Vitor Santos Costa, 1999

%
% This file includes code from Bob Welham, Lawrence Byrd, and R. A. O'Keefe.
%
:- module(lists,
	  [
	   append/3,
	   append/2,
	   delete/3,
	   intersection/3,
	   flatten/2,
	   last/2,
	   list_concat/2,
	   max_list/2,	 
	   member/2,
	   memberchk/2,
	   min_list/2,
	   nextto/3,
	   nth/3,
	   nth/4,
	   nth0/3,
	   nth0/4,
	   nth1/3,
	   nth1/4,
	   numlist/3,
	   permutation/2,
	   prefix/2,
	   remove_duplicates/2,
	   reverse/2,
	   same_length/2,
	   select/3,
	   selectchk/3,
	   sublist/2,
	   substitute/4,
	   subtract/3,
	   suffix/2,
	   sum_list/2,
	   sum_list/3,
	   sumlist/2
	  ]).

:- use_module(library(error),
		 [must_be/2]).


%%	append(+ListOfLists, ?List)
%
%	Concatenate a list of lists.  Is  true   if  Lists  is a list of
%	lists, and List is the concatenation of these lists.
%	
%	@param	ListOfLists must be a list of -possibly- partial lists

append(ListOfLists, List) :-
%	must_be(list, ListOfLists),
	append_(ListOfLists, List).

append_([], []).
append_([L|Ls], As) :-
	append(L, Ws, As),
	append_(Ls, Ws).


%   delete(List, Elem, Residue)
%   is true when List is a list, in which Elem may or may not occur, and
%   Residue is a copy of List with all elements identical to Elem deleted.

delete([], _, []).
delete([Head|List], Elem, Residue) :-
	Head == Elem, !,
	delete(List, Elem, Residue).
delete([Head|List], Elem, [Head|Residue]) :-
	delete(List, Elem, Residue).


%   last(List, Last)
%   is true when List is a List and Last is identical to its last element.
%   This could be defined as last(L, X) :- append(_, [X], L).

last([H|List], Last) :-
	last(List, H, Last).

last([], Last, Last).
last([H|List], _, Last) :-
	last(List, H, Last).

%   nextto(X, Y, List)
%   is true when X and Y appear side-by-side in List.  It could be written as
%	nextto(X, Y, List) :- append(_, [X,Y,_], List).
%   It may be used to enumerate successive pairs from the list.

nextto(X,Y, [X,Y|_]).
nextto(X,Y, [_|List]) :-
	nextto(X,Y, List).

%   nth0(?N, +List, ?Elem) is true when Elem is the Nth member of List,
%   counting the first as element 0.  (That is, throw away the first
%   N elements and unify Elem with the next.)  It can only be used to
%   select a particular element given the list and index.  For that
%   task it is more efficient than nmember.
%   nth(+N, +List, ?Elem) is the same as nth0, except that it counts from
%   1, that is nth(1, [H|_], H).

nth0(V, In, Element) :- var(V), !,
	generate_nth(0, V, In, Element).
nth0(0, [Head|_], Head) :- !.
nth0(N, [_|Tail], Elem) :-
	M is N-1,
	find_nth0(M, Tail, Elem).

find_nth0(0, [Head|_], Head) :- !.
find_nth0(N, [_|Tail], Elem) :-
	M is N-1,
	find_nth0(M, Tail, Elem).


nth1(V, In, Element) :- var(V), !,
	generate_nth(1, V, In, Element).
nth1(1, [Head|_], Head) :- !.
nth1(N, [_|Tail], Elem) :-
	nonvar(N), !,
	M is N-1,			% should be succ(M, N)
	find_nth(M, Tail, Elem).

nth(V, In, Element) :- var(V), !,
	generate_nth(1, V, In, Element).
nth(1, [Head|_], Head) :- !.
nth(N, [_|Tail], Elem) :-
	nonvar(N), !,
	M is N-1,			% should be succ(M, N)
	find_nth(M, Tail, Elem).

find_nth(1, [Head|_], Head) :- !.
find_nth(N, [_|Tail], Elem) :-
	M is N-1,
	find_nth(M, Tail, Elem).


generate_nth(I, I, [Head|_], Head).
generate_nth(I, IN, [_|List], El) :-
	I1 is I+1,
	generate_nth(I1, IN, List, El).



%   nth0(+N, ?List, ?Elem, ?Rest) unifies Elem with the Nth element of List,
%   counting from 0, and Rest with the other elements.  It can be used
%   to select the Nth element of List (yielding Elem and Rest), or to 
%   insert Elem before the Nth (counting from 1) element of Rest, when
%   it yields List, e.g. nth0(2, List, c, [a,b,d,e]) unifies List with
%   [a,b,c,d,e].  nth is the same except that it counts from 1.  nth
%   can be used to insert Elem after the Nth element of Rest.

nth0(V, In, Element, Tail) :- var(V), !,
	generate_nth(0, V, In, Element, Tail).
nth0(0, [Head|Tail], Head, Tail) :- !.
nth0(N, [Head|Tail], Elem, [Head|Rest]) :-
	M is N-1,
	nth0(M, Tail, Elem, Rest).

find_nth0(0, [Head|Tail], Head, Tail) :- !.
find_nth0(N, [Head|Tail], Elem, [Head|Rest]) :-
	M is N-1,
	find_nth0(M, Tail, Elem, Rest).



nth1(V, In, Element, Tail) :- var(V), !,
	generate_nth(1, V, In, Element, Tail).
nth1(1, [Head|Tail], Head, Tail) :- !.
nth1(N, [Head|Tail], Elem, [Head|Rest]) :-
	M is N-1,
	nth1(M, Tail, Elem, Rest).

nth(V, In, Element, Tail) :- var(V), !,
	generate_nth(1, V, In, Element, Tail).
nth(1, [Head|Tail], Head, Tail) :- !.
nth(N, [Head|Tail], Elem, [Head|Rest]) :-
	M is N-1,
	nth(M, Tail, Elem, Rest).

find_nth(1, [Head|Tail], Head, Tail) :- !.
find_nth(N, [Head|Tail], Elem, [Head|Rest]) :-
	M is N-1,
	find_nth(M, Tail, Elem, Rest).


generate_nth(I, I, [Head|Tail], Head, Tail).
generate_nth(I, IN, [E|List], El, [E|Tail]) :-
	I1 is I+1,
	generate_nth(I1, IN, List, El, Tail).



%   permutation(List, Perm)
%   is true when List and Perm are permutations of each other.  Of course,
%   if you just want to test that, the best way is to keysort/2 the two
%   lists and see if the results are the same.  Or you could use list_to_bag
%   (from BagUtl.Pl) to see if they convert to the same bag.  The point of
%   perm is to generate permutations.  The arguments may be either way round,
%   the only effect will be the order in which the permutations are tried.
%   Be careful: this is quite efficient, but the number of permutations of an
%   N-element list is N!, even for a 7-element list that is 5040.

permutation([], []).
permutation(List, [First|Perm]) :-
	select(First, List, Rest),	%  tries each List element in turn
	permutation(Rest, Perm).


% prefix(Part, Whole) iff Part is a leading substring of Whole

prefix([], _).
prefix([Elem | Rest_of_part], [Elem | Rest_of_whole]) :- 
  prefix(Rest_of_part, Rest_of_whole).

%   remove_duplicates(List, Pruned)
%   removes duplicated elements from List.  Beware: if the List has
%   non-ground elements, the result may surprise you.

remove_duplicates([], []).
remove_duplicates([Elem|L], [Elem|NL]) :-
	delete(L, Elem, Temp),
	remove_duplicates(Temp, NL).

%   reverse(List, Reversed)
%   is true when List and Reversed are lists with the same elements
%   but in opposite orders.  rev/2 is a synonym for reverse/2.

reverse(List, Reversed) :-
	reverse(List, [], Reversed).

reverse([], Reversed, Reversed).
reverse([Head|Tail], Sofar, Reversed) :-
	reverse(Tail, [Head|Sofar], Reversed).


%   same_length(?List1, ?List2)
%   is true when List1 and List2 are both lists and have the same number
%   of elements.  No relation between the values of their elements is
%   implied.
%   Modes same_length(-,+) and same_length(+,-) generate either list given
%   the other; mode same_length(-,-) generates two lists of the same length,
%   in which case the arguments will be bound to lists of length 0, 1, 2, ...

same_length([], []).
same_length([_|List1], [_|List2]) :-
	same_length(List1, List2).

%%      selectchk(+Elem, +List, -Rest) is semidet.
%
%       Semi-deterministic removal of first element in List that unifies
%       Elem.

selectchk(Elem, List, Rest) :-
        select(Elem, List, Rest0), !,
        Rest = Rest0.


%   select(?Element, ?Set, ?Residue)
%   is true when Set is a list, Element occurs in Set, and Residue is
%   everything in Set except Element (things stay in the same order).

select(Element, [Element|Rest], Rest).
select(Element, [Head|Tail], [Head|Rest]) :-
	select(Element, Tail, Rest).


%   sublist(Sublist, List)
%   is true when both append(_,Sublist,S) and append(S,_,List) hold.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%	sublist(?Sub, +List) is nondet.
%
%	True if all elements of Sub appear in List in the same order.

sublist(L, L).
sublist(Sub, [H|T]) :-
	'$sublist1'(T, H, Sub).

'$sublist1'(Sub, _, Sub).
'$sublist1'([H|T], _, Sub) :-
	'$sublist1'(T, H, Sub).
'$sublist1'([H|T], X, [X|Sub]) :-
	'$sublist1'(T, H, Sub).

%   substitute(X, XList, Y, YList)
%   is true when XList and YList only differ in that the elements X in XList
%   are replaced by elements Y in the YList.
substitute(X, XList, Y, YList) :-
	substitute2(XList, X, Y, YList).

substitute2([], _, _, []).
substitute2([X0|XList], X, Y, [Y|YList]) :-
	X == X0, !,
	substitute2(XList, X, Y, YList).
substitute2([X0|XList], X, Y, [X0|YList]) :-
	substitute2(XList, X, Y, YList).

%   suffix(Suffix, List)
%   holds when append(_,Suffix,List) holds. 
suffix(Suffix, Suffix).
suffix(Suffix, [_|List]) :-
	suffix(Suffix,List).

%   sumlist(Numbers, Total)
%   is true when Numbers is a list of integers, and Total is their sum.

sumlist(Numbers, Total) :-
	sumlist(Numbers, 0, Total).

sum_list(Numbers, SoFar, Total) :-
	sumlist(Numbers, SoFar, Total).

sum_list(Numbers, Total) :-
	sumlist(Numbers, 0, Total).

sumlist([], Total, Total).
sumlist([Head|Tail], Sofar, Total) :-
	Next is Sofar+Head,
	sumlist(Tail, Next, Total).


%   list_concat(Lists, List)
%   is true when Lists is a list of lists, and List is the
%   concatenation of these lists.

list_concat([], []).
list_concat([H|T], L) :-
	list_concat(H, L, Li),
	list_concat(T, Li).

list_concat([], L, L).
list_concat([H|T], [H|Lf], Li) :-
	list_concat(T, Lf, Li).



%
% flatten a list
%
flatten(X,Y) :- flatten_list(X,Y,[]).
 
flatten_list(V) --> {var(V)}, !, [V].
flatten_list([]) --> !.
flatten_list([H|T]) --> !, flatten_list(H),flatten_list(T).
flatten_list(H) --> [H].
 
max_list([H|L],Max) :-
	max_list(L,H,Max).

max_list([],Max,Max).
max_list([H|L],Max0,Max) :-
	(
	  H > Max0 
	->
	  max_list(L,H,Max)
	;
	  max_list(L,Max0,Max)
	).

min_list([H|L],Max) :-
	min_list(L,H,Max).

min_list([],Max,Max).
min_list([H|L],Max0,Max) :-
	(
	  H < Max0 
	->
	  min_list(L, H, Max)
	;
	  min_list(L, Max0, Max)
	).

%%      numlist(+Low, +High, -List) is semidet.
%                                                                               
%       List is a list [Low, Low+1, ... High].  Fails if High < Low.%
%
%       @error type_error(integer, Low)                                         
%       @error type_error(integer, High)

numlist(L, U, Ns) :-
        must_be(integer, L),
        must_be(integer, U),
        L =< U,
        numlist_(L, U, Ns).

numlist_(U, U, OUT) :- !, OUT = [U].
numlist_(L, U, [L|Ns]) :-
        succ(L, L2),
        numlist_(L2, U, Ns).


% copied from SWI lists library.
intersection([], _, []) :- !.
intersection([X|T], L, Intersect) :-
	memberchk(X, L), !, 
	Intersect = [X|R], 
	intersection(T, L, R).
intersection([_|T], L, R) :-
	intersection(T, L, R).

%%	subtract(+Set, +Delete, -Result) is det.
%
%	Delete all elements from `Set' that   occur  in `Delete' (a set)
%	and unify the  result  with  `Result'.   Deletion  is  based  on
%	unification using memberchk/2. The complexity is |Delete|*|Set|.
%
%	@see ord_subtract/3.

subtract([], _, []) :- !.
subtract([E|T], D, R) :-
	memberchk(E, D), !,
	subtract(T, D, R).
subtract([H|T], D, [H|R]) :-
	subtract(T, D, R).