/usr/include/capnp/capability.h is in libcapnp-dev 0.5.3-2ubuntu1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef CAPNP_CAPABILITY_H_
#define CAPNP_CAPABILITY_H_
#if defined(__GNUC__) && !CAPNP_HEADER_WARNINGS
#pragma GCC system_header
#endif
#if CAPNP_LITE
#error "RPC APIs, including this header, are not available in lite mode."
#endif
#include <kj/async.h>
#include "any.h"
#include "pointer-helpers.h"
namespace capnp {
template <typename Results>
class Response;
template <typename T>
class RemotePromise: public kj::Promise<Response<T>>, public T::Pipeline {
// A Promise which supports pipelined calls. T is typically a struct type. T must declare
// an inner "mix-in" type "Pipeline" which implements pipelining; RemotePromise simply
// multiply-inherits that type along with Promise<Response<T>>. T::Pipeline must be movable,
// but does not need to be copyable (i.e. just like Promise<T>).
//
// The promise is for an owned pointer so that the RPC system can allocate the MessageReader
// itself.
public:
inline RemotePromise(kj::Promise<Response<T>>&& promise, typename T::Pipeline&& pipeline)
: kj::Promise<Response<T>>(kj::mv(promise)),
T::Pipeline(kj::mv(pipeline)) {}
inline RemotePromise(decltype(nullptr))
: kj::Promise<Response<T>>(nullptr),
T::Pipeline(nullptr) {}
KJ_DISALLOW_COPY(RemotePromise);
RemotePromise(RemotePromise&& other) = default;
RemotePromise& operator=(RemotePromise&& other) = default;
};
namespace _ { // private
struct RawSchema;
struct RawBrandedSchema;
extern const RawSchema NULL_INTERFACE_SCHEMA; // defined in schema.c++
} // namespace _ (private)
struct Capability {
// A capability without type-safe methods. Typed capability clients wrap `Client` and typed
// capability servers subclass `Server` to dispatch to the regular, typed methods.
class Client;
class Server;
struct _capnpPrivate {
struct IsInterface;
static constexpr uint64_t typeId = 0x3;
static constexpr Kind kind = Kind::INTERFACE;
static constexpr _::RawSchema const* schema = &_::NULL_INTERFACE_SCHEMA;
static const _::RawBrandedSchema* const brand;
// Can't quite declare this one inline without including generated-header-support.h. Avoiding
// for now by declaring out-of-line.
// TODO(cleanup): Split RawSchema stuff into its own header that can be included here, or
// something.
};
};
// =======================================================================================
class RequestHook;
class ResponseHook;
class PipelineHook;
class ClientHook;
template <typename Params, typename Results>
class Request: public Params::Builder {
// A call that hasn't been sent yet. This class extends a Builder for the call's "Params"
// structure with a method send() that actually sends it.
//
// Given a Cap'n Proto method `foo(a :A, b :B): C`, the generated client interface will have
// a method `Request<FooParams, C> startFoo()` (as well as a convenience method
// `RemotePromise<C> foo(A::Reader a, B::Reader b)`).
public:
inline Request(typename Params::Builder builder, kj::Own<RequestHook>&& hook)
: Params::Builder(builder), hook(kj::mv(hook)) {}
RemotePromise<Results> send();
// Send the call and return a promise for the results.
private:
kj::Own<RequestHook> hook;
friend class Capability::Client;
friend struct DynamicCapability;
template <typename, typename>
friend class CallContext;
friend class RequestHook;
};
template <typename Results>
class Response: public Results::Reader {
// A completed call. This class extends a Reader for the call's answer structure. The Response
// is move-only -- once it goes out-of-scope, the underlying message will be freed.
public:
inline Response(typename Results::Reader reader, kj::Own<ResponseHook>&& hook)
: Results::Reader(reader), hook(kj::mv(hook)) {}
private:
kj::Own<ResponseHook> hook;
template <typename, typename>
friend class Request;
};
class Capability::Client {
// Base type for capability clients.
public:
Client(decltype(nullptr));
// If you need to declare a Client before you have anything to assign to it (perhaps because
// the assignment is going to occur in an if/else scope), you can start by initializing it to
// `nullptr`. The resulting client is not meant to be called and throws exceptions from all
// methods.
template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Capability::Server*>()>>
Client(kj::Own<T>&& server);
// Make a client capability that wraps the given server capability. The server's methods will
// only be executed in the given EventLoop, regardless of what thread calls the client's methods.
template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Client*>()>>
Client(kj::Promise<T>&& promise);
// Make a client from a promise for a future client. The resulting client queues calls until the
// promise resolves.
Client(kj::Exception&& exception);
// Make a broken client that throws the given exception from all calls.
Client(Client& other);
Client& operator=(Client& other);
// Copies by reference counting. Warning: This refcounting is not thread-safe. All copies of
// the client must remain in one thread.
Client(Client&&) = default;
Client& operator=(Client&&) = default;
// Move constructor avoids reference counting.
explicit Client(kj::Own<ClientHook>&& hook);
// For use by the RPC implementation: Wrap a ClientHook.
template <typename T>
typename T::Client castAs();
// Reinterpret the capability as implementing the given interface. Note that no error will occur
// here if the capability does not actually implement this interface, but later method calls will
// fail. It's up to the application to decide how indicate that additional interfaces are
// supported.
//
// TODO(perf): GCC 4.8 / Clang 3.3: rvalue-qualified version for better performance.
template <typename T>
typename T::Client castAs(InterfaceSchema schema);
// Dynamic version. `T` must be `DynamicCapability`, and you must `#include <capnp/dynamic.h>`.
kj::Promise<void> whenResolved();
// If the capability is actually only a promise, the returned promise resolves once the
// capability itself has resolved to its final destination (or propagates the exception if
// the capability promise is rejected). This is mainly useful for error-checking in the case
// where no calls are being made. There is no reason to wait for this before making calls; if
// the capability does not resolve, the call results will propagate the error.
Request<AnyPointer, AnyPointer> typelessRequest(
uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint);
// Make a request without knowing the types of the params or results. You specify the type ID
// and method number manually.
// TODO(someday): method(s) for Join
protected:
Client() = default;
template <typename Params, typename Results>
Request<Params, Results> newCall(uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint);
private:
kj::Own<ClientHook> hook;
static kj::Own<ClientHook> makeLocalClient(kj::Own<Capability::Server>&& server);
template <typename, Kind>
friend struct _::PointerHelpers;
friend struct DynamicCapability;
friend class Orphanage;
friend struct DynamicStruct;
friend struct DynamicList;
template <typename, Kind>
friend struct List;
};
// =======================================================================================
// Local capabilities
class CallContextHook;
template <typename Params, typename Results>
class CallContext: public kj::DisallowConstCopy {
// Wrapper around CallContextHook with a specific return type.
//
// Methods of this class may only be called from within the server's event loop, not from other
// threads.
//
// The CallContext becomes invalid as soon as the call reports completion.
public:
explicit CallContext(CallContextHook& hook);
typename Params::Reader getParams();
// Get the params payload.
void releaseParams();
// Release the params payload. getParams() will throw an exception after this is called.
// Releasing the params may allow the RPC system to free up buffer space to handle other
// requests. Long-running asynchronous methods should try to call this as early as is
// convenient.
typename Results::Builder getResults(kj::Maybe<MessageSize> sizeHint = nullptr);
typename Results::Builder initResults(kj::Maybe<MessageSize> sizeHint = nullptr);
void setResults(typename Results::Reader value);
void adoptResults(Orphan<Results>&& value);
Orphanage getResultsOrphanage(kj::Maybe<MessageSize> sizeHint = nullptr);
// Manipulate the results payload. The "Return" message (part of the RPC protocol) will
// typically be allocated the first time one of these is called. Some RPC systems may
// allocate these messages in a limited space (such as a shared memory segment), therefore the
// application should delay calling these as long as is convenient to do so (but don't delay
// if doing so would require extra copies later).
//
// `sizeHint` indicates a guess at the message size. This will usually be used to decide how
// much space to allocate for the first message segment (don't worry: only space that is actually
// used will be sent on the wire). If omitted, the system decides. The message root pointer
// should not be included in the size. So, if you are simply going to copy some existing message
// directly into the results, just call `.totalSize()` and pass that in.
template <typename SubParams>
kj::Promise<void> tailCall(Request<SubParams, Results>&& tailRequest);
// Resolve the call by making a tail call. `tailRequest` is a request that has been filled in
// but not yet sent. The context will send the call, then fill in the results with the result
// of the call. If tailCall() is used, {get,init,set,adopt}Results (above) *must not* be called.
//
// The RPC implementation may be able to optimize a tail call to another machine such that the
// results never actually pass through this machine. Even if no such optimization is possible,
// `tailCall()` may allow pipelined calls to be forwarded optimistically to the new call site.
//
// In general, this should be the last thing a method implementation calls, and the promise
// returned from `tailCall()` should then be returned by the method implementation.
void allowCancellation();
// Indicate that it is OK for the RPC system to discard its Promise for this call's result if
// the caller cancels the call, thereby transitively canceling any asynchronous operations the
// call implementation was performing. This is not done by default because it could represent a
// security risk: applications must be carefully written to ensure that they do not end up in
// a bad state if an operation is canceled at an arbitrary point. However, for long-running
// method calls that hold significant resources, prompt cancellation is often useful.
//
// Keep in mind that asynchronous cancellation cannot occur while the method is synchronously
// executing on a local thread. The method must perform an asynchronous operation or call
// `EventLoop::current().runLater()` to yield control.
//
// Note: You might think that we should offer `onCancel()` and/or `isCanceled()` methods that
// provide notification when the caller cancels the request without forcefully killing off the
// promise chain. Unfortunately, this composes poorly with promise forking: the canceled
// path may be just one branch of a fork of the result promise. The other branches still want
// the call to continue. Promise forking is used within the Cap'n Proto implementation -- in
// particular each pipelined call forks the result promise. So, if a caller made a pipelined
// call and then dropped the original object, the call should not be canceled, but it would be
// excessively complicated for the framework to avoid notififying of cancellation as long as
// pipelined calls still exist.
private:
CallContextHook* hook;
friend class Capability::Server;
friend struct DynamicCapability;
};
class Capability::Server {
// Objects implementing a Cap'n Proto interface must subclass this. Typically, such objects
// will instead subclass a typed Server interface which will take care of implementing
// dispatchCall().
public:
virtual kj::Promise<void> dispatchCall(uint64_t interfaceId, uint16_t methodId,
CallContext<AnyPointer, AnyPointer> context) = 0;
// Call the given method. `params` is the input struct, and should be released as soon as it
// is no longer needed. `context` may be used to allocate the output struct and deal with
// cancellation.
// TODO(someday): Method which can optionally be overridden to implement Join when the object is
// a proxy.
protected:
template <typename Params, typename Results>
CallContext<Params, Results> internalGetTypedContext(
CallContext<AnyPointer, AnyPointer> typeless);
kj::Promise<void> internalUnimplemented(const char* actualInterfaceName,
uint64_t requestedTypeId);
kj::Promise<void> internalUnimplemented(const char* interfaceName,
uint64_t typeId, uint16_t methodId);
kj::Promise<void> internalUnimplemented(const char* interfaceName, const char* methodName,
uint64_t typeId, uint16_t methodId);
};
// =======================================================================================
// Hook interfaces which must be implemented by the RPC system. Applications never call these
// directly; the RPC system implements them and the types defined earlier in this file wrap them.
class RequestHook {
// Hook interface implemented by RPC system representing a request being built.
public:
virtual RemotePromise<AnyPointer> send() = 0;
// Send the call and return a promise for the result.
virtual const void* getBrand() = 0;
// Returns a void* that identifies who made this request. This can be used by an RPC adapter to
// discover when tail call is going to be sent over its own connection and therefore can be
// optimized into a remote tail call.
template <typename T, typename U>
inline static kj::Own<RequestHook> from(Request<T, U>&& request) {
return kj::mv(request.hook);
}
};
class ResponseHook {
// Hook interface implemented by RPC system representing a response.
//
// At present this class has no methods. It exists only for garbage collection -- when the
// ResponseHook is destroyed, the results can be freed.
public:
virtual ~ResponseHook() noexcept(false);
// Just here to make sure the type is dynamic.
};
// class PipelineHook is declared in any.h because it is needed there.
class ClientHook {
public:
ClientHook();
virtual Request<AnyPointer, AnyPointer> newCall(
uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) = 0;
// Start a new call, allowing the client to allocate request/response objects as it sees fit.
// This version is used when calls are made from application code in the local process.
struct VoidPromiseAndPipeline {
kj::Promise<void> promise;
kj::Own<PipelineHook> pipeline;
};
virtual VoidPromiseAndPipeline call(uint64_t interfaceId, uint16_t methodId,
kj::Own<CallContextHook>&& context) = 0;
// Call the object, but the caller controls allocation of the request/response objects. If the
// callee insists on allocating these objects itself, it must make a copy. This version is used
// when calls come in over the network via an RPC system. During the call, the context object
// may be used from any thread so long as it is only used from one thread at a time. Note that
// even if the returned `Promise<void>` is discarded, the call may continue executing if any
// pipelined calls are waiting for it; the call is only truly done when the CallContextHook is
// destroyed.
//
// Since the caller of this method chooses the CallContext implementation, it is the caller's
// responsibility to ensure that the returned promise is not canceled unless allowed via
// the context's `allowCancellation()`.
//
// The call must not begin synchronously, as the caller may hold arbitrary mutexes.
virtual kj::Maybe<ClientHook&> getResolved() = 0;
// If this ClientHook is a promise that has already resolved, returns the inner, resolved version
// of the capability. The caller may permanently replace this client with the resolved one if
// desired. Returns null if the client isn't a promise or hasn't resolved yet -- use
// `whenMoreResolved()` to distinguish between them.
virtual kj::Maybe<kj::Promise<kj::Own<ClientHook>>> whenMoreResolved() = 0;
// If this client is a settled reference (not a promise), return nullptr. Otherwise, return a
// promise that eventually resolves to a new client that is closer to being the final, settled
// client (i.e. the value eventually returned by `getResolved()`). Calling this repeatedly
// should eventually produce a settled client.
kj::Promise<void> whenResolved();
// Repeatedly calls whenMoreResolved() until it returns nullptr.
virtual kj::Own<ClientHook> addRef() = 0;
// Return a new reference to the same capability.
virtual const void* getBrand() = 0;
// Returns a void* that identifies who made this client. This can be used by an RPC adapter to
// discover when a capability it needs to marshal is one that it created in the first place, and
// therefore it can transfer the capability without proxying.
};
class CallContextHook {
// Hook interface implemented by RPC system to manage a call on the server side. See
// CallContext<T>.
public:
virtual AnyPointer::Reader getParams() = 0;
virtual void releaseParams() = 0;
virtual AnyPointer::Builder getResults(kj::Maybe<MessageSize> sizeHint) = 0;
virtual kj::Promise<void> tailCall(kj::Own<RequestHook>&& request) = 0;
virtual void allowCancellation() = 0;
virtual kj::Promise<AnyPointer::Pipeline> onTailCall() = 0;
// If `tailCall()` is called, resolves to the PipelineHook from the tail call. An
// implementation of `ClientHook::call()` is allowed to call this at most once.
virtual ClientHook::VoidPromiseAndPipeline directTailCall(kj::Own<RequestHook>&& request) = 0;
// Call this when you would otherwise call onTailCall() immediately followed by tailCall().
// Implementations of tailCall() should typically call directTailCall() and then fulfill the
// promise fulfiller for onTailCall() with the returned pipeline.
virtual kj::Own<CallContextHook> addRef() = 0;
};
kj::Own<ClientHook> newLocalPromiseClient(kj::Promise<kj::Own<ClientHook>>&& promise);
// Returns a ClientHook that queues up calls until `promise` resolves, then forwards them to
// the new client. This hook's `getResolved()` and `whenMoreResolved()` methods will reflect the
// redirection to the eventual replacement client.
kj::Own<ClientHook> newBrokenCap(kj::StringPtr reason);
kj::Own<ClientHook> newBrokenCap(kj::Exception&& reason);
// Helper function that creates a capability which simply throws exceptions when called.
kj::Own<PipelineHook> newBrokenPipeline(kj::Exception&& reason);
// Helper function that creates a pipeline which simply throws exceptions when called.
Request<AnyPointer, AnyPointer> newBrokenRequest(
kj::Exception&& reason, kj::Maybe<MessageSize> sizeHint);
// Helper function that creates a Request object that simply throws exceptions when sent.
// =======================================================================================
// Extend PointerHelpers for interfaces
namespace _ { // private
template <typename T>
struct PointerHelpers<T, Kind::INTERFACE> {
static inline typename T::Client get(PointerReader reader) {
return typename T::Client(reader.getCapability());
}
static inline typename T::Client get(PointerBuilder builder) {
return typename T::Client(builder.getCapability());
}
static inline void set(PointerBuilder builder, typename T::Client&& value) {
builder.setCapability(kj::mv(value.Capability::Client::hook));
}
static inline void set(PointerBuilder builder, typename T::Client& value) {
builder.setCapability(value.Capability::Client::hook->addRef());
}
static inline void adopt(PointerBuilder builder, Orphan<T>&& value) {
builder.adopt(kj::mv(value.builder));
}
static inline Orphan<T> disown(PointerBuilder builder) {
return Orphan<T>(builder.disown());
}
};
} // namespace _ (private)
// =======================================================================================
// Extend List for interfaces
template <typename T>
struct List<T, Kind::INTERFACE> {
List() = delete;
class Reader {
public:
typedef List<T> Reads;
Reader() = default;
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return reader.size() / ELEMENTS; }
inline typename T::Client operator[](uint index) const {
KJ_IREQUIRE(index < size());
return typename T::Client(reader.getPointerElement(index * ELEMENTS).getCapability());
}
typedef _::IndexingIterator<const Reader, typename T::Client> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<T> Builds;
Builder() = delete;
inline Builder(decltype(nullptr)) {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() { return Reader(builder.asReader()); }
inline Reader asReader() { return Reader(builder.asReader()); }
inline uint size() const { return builder.size() / ELEMENTS; }
inline typename T::Client operator[](uint index) {
KJ_IREQUIRE(index < size());
return typename T::Client(builder.getPointerElement(index * ELEMENTS).getCapability());
}
inline void set(uint index, typename T::Client value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(index * ELEMENTS).setCapability(kj::mv(value.hook));
}
inline void adopt(uint index, Orphan<T>&& value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(index * ELEMENTS).adopt(kj::mv(value));
}
inline Orphan<T> disown(uint index) {
KJ_IREQUIRE(index < size());
return Orphan<T>(builder.getPointerElement(index * ELEMENTS).disown());
}
typedef _::IndexingIterator<Builder, typename T::Client> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initList(ElementSize::POINTER, size * ELEMENTS);
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getList(ElementSize::POINTER, defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(ElementSize::POINTER, defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
// =======================================================================================
// Inline implementation details
template <typename Params, typename Results>
RemotePromise<Results> Request<Params, Results>::send() {
auto typelessPromise = hook->send();
// Convert the Promise to return the correct response type.
// Explicitly upcast to kj::Promise to make clear that calling .then() doesn't invalidate the
// Pipeline part of the RemotePromise.
auto typedPromise = kj::implicitCast<kj::Promise<Response<AnyPointer>>&>(typelessPromise)
.then([](Response<AnyPointer>&& response) -> Response<Results> {
return Response<Results>(response.getAs<Results>(), kj::mv(response.hook));
});
// Wrap the typeless pipeline in a typed wrapper.
typename Results::Pipeline typedPipeline(
kj::mv(kj::implicitCast<AnyPointer::Pipeline&>(typelessPromise)));
return RemotePromise<Results>(kj::mv(typedPromise), kj::mv(typedPipeline));
}
inline Capability::Client::Client(kj::Own<ClientHook>&& hook): hook(kj::mv(hook)) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Own<T>&& server)
: hook(makeLocalClient(kj::mv(server))) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Promise<T>&& promise)
: hook(newLocalPromiseClient(promise.then([](T&& t) { return kj::mv(t.hook); }))) {}
inline Capability::Client::Client(Client& other): hook(other.hook->addRef()) {}
inline Capability::Client& Capability::Client::operator=(Client& other) {
hook = other.hook->addRef();
return *this;
}
template <typename T>
inline typename T::Client Capability::Client::castAs() {
return typename T::Client(hook->addRef());
}
inline kj::Promise<void> Capability::Client::whenResolved() {
return hook->whenResolved();
}
inline Request<AnyPointer, AnyPointer> Capability::Client::typelessRequest(
uint64_t interfaceId, uint16_t methodId,
kj::Maybe<MessageSize> sizeHint) {
return newCall<AnyPointer, AnyPointer>(interfaceId, methodId, sizeHint);
}
template <typename Params, typename Results>
inline Request<Params, Results> Capability::Client::newCall(
uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) {
auto typeless = hook->newCall(interfaceId, methodId, sizeHint);
return Request<Params, Results>(typeless.template getAs<Params>(), kj::mv(typeless.hook));
}
template <typename Params, typename Results>
inline CallContext<Params, Results>::CallContext(CallContextHook& hook): hook(&hook) {}
template <typename Params, typename Results>
inline typename Params::Reader CallContext<Params, Results>::getParams() {
return hook->getParams().template getAs<Params>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::releaseParams() {
hook->releaseParams();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::getResults(
kj::Maybe<MessageSize> sizeHint) {
// `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
return hook->getResults(sizeHint).template getAs<Results>();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::initResults(
kj::Maybe<MessageSize> sizeHint) {
// `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
return hook->getResults(sizeHint).template initAs<Results>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::setResults(typename Results::Reader value) {
hook->getResults(value.totalSize()).template setAs<Results>(value);
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::adoptResults(Orphan<Results>&& value) {
hook->getResults(nullptr).adopt(kj::mv(value));
}
template <typename Params, typename Results>
inline Orphanage CallContext<Params, Results>::getResultsOrphanage(
kj::Maybe<MessageSize> sizeHint) {
return Orphanage::getForMessageContaining(hook->getResults(sizeHint));
}
template <typename Params, typename Results>
template <typename SubParams>
inline kj::Promise<void> CallContext<Params, Results>::tailCall(
Request<SubParams, Results>&& tailRequest) {
return hook->tailCall(kj::mv(tailRequest.hook));
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::allowCancellation() {
hook->allowCancellation();
}
template <typename Params, typename Results>
CallContext<Params, Results> Capability::Server::internalGetTypedContext(
CallContext<AnyPointer, AnyPointer> typeless) {
return CallContext<Params, Results>(*typeless.hook);
}
} // namespace capnp
#endif // CAPNP_CAPABILITY_H_
|