/usr/lib/llvm-4.0/include/polly/ScopInfo.h is in libclang-common-4.0-dev 1:4.0-1ubuntu1~16.04.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 | //===------ polly/ScopInfo.h -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Store the polyhedral model representation of a static control flow region,
// also called SCoP (Static Control Part).
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. CLooG, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCOP_INFO_H
#define POLLY_SCOP_INFO_H
#include "polly/ScopDetection.h"
#include "polly/Support/SCEVAffinator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/RegionPass.h"
#include "isl/aff.h"
#include "isl/ctx.h"
#include "isl/set.h"
#include <deque>
#include <forward_list>
using namespace llvm;
namespace llvm {
class Loop;
class LoopInfo;
class PHINode;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class Type;
} // namespace llvm
struct isl_ctx;
struct isl_map;
struct isl_basic_map;
struct isl_id;
struct isl_set;
struct isl_union_set;
struct isl_union_map;
struct isl_space;
struct isl_ast_build;
struct isl_constraint;
struct isl_pw_aff;
struct isl_pw_multi_aff;
struct isl_schedule;
namespace polly {
class MemoryAccess;
class Scop;
class ScopStmt;
class ScopBuilder;
//===---------------------------------------------------------------------===//
/// Enumeration of assumptions Polly can take.
enum AssumptionKind {
ALIASING,
INBOUNDS,
WRAPPING,
UNSIGNED,
PROFITABLE,
ERRORBLOCK,
COMPLEXITY,
INFINITELOOP,
INVARIANTLOAD,
DELINEARIZATION,
};
/// Enum to distinguish between assumptions and restrictions.
enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };
/// Maps from a loop to the affine function expressing its backedge taken count.
/// The backedge taken count already enough to express iteration domain as we
/// only allow loops with canonical induction variable.
/// A canonical induction variable is:
/// an integer recurrence that starts at 0 and increments by one each time
/// through the loop.
typedef std::map<const Loop *, const SCEV *> LoopBoundMapType;
typedef std::vector<std::unique_ptr<MemoryAccess>> AccFuncVector;
/// A class to store information about arrays in the SCoP.
///
/// Objects are accessible via the ScoP, MemoryAccess or the id associated with
/// the MemoryAccess access function.
///
class ScopArrayInfo {
public:
/// The kind of a ScopArrayInfo memory object.
///
/// We distinguish between arrays and various scalar memory objects. We use
/// the term ``array'' to describe memory objects that consist of a set of
/// individual data elements arranged in a multi-dimensional grid. A scalar
/// memory object describes an individual data element and is used to model
/// the definition and uses of llvm::Values.
///
/// The polyhedral model does traditionally not reason about SSA values. To
/// reason about llvm::Values we model them "as if" they were zero-dimensional
/// memory objects, even though they were not actually allocated in (main)
/// memory. Memory for such objects is only alloca[ed] at CodeGeneration
/// time. To relate the memory slots used during code generation with the
/// llvm::Values they belong to the new names for these corresponding stack
/// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
/// to the name of the original llvm::Value. To describe how def/uses are
/// modeled exactly we use these suffixes here as well.
///
/// There are currently four different kinds of memory objects:
enum MemoryKind {
/// MK_Array: Models a one or multi-dimensional array
///
/// A memory object that can be described by a multi-dimensional array.
/// Memory objects of this type are used to model actual multi-dimensional
/// arrays as they exist in LLVM-IR, but they are also used to describe
/// other objects:
/// - A single data element allocated on the stack using 'alloca' is
/// modeled as a one-dimensional, single-element array.
/// - A single data element allocated as a global variable is modeled as
/// one-dimensional, single-element array.
/// - Certain multi-dimensional arrays with variable size, which in
/// LLVM-IR are commonly expressed as a single-dimensional access with a
/// complicated access function, are modeled as multi-dimensional
/// memory objects (grep for "delinearization").
MK_Array,
/// MK_Value: Models an llvm::Value
///
/// Memory objects of type MK_Value are used to model the data flow
/// induced by llvm::Values. For each llvm::Value that is used across
/// BasicBocks one ScopArrayInfo object is created. A single memory WRITE
/// stores the llvm::Value at its definition into the memory object and at
/// each use of the llvm::Value (ignoring trivial intra-block uses) a
/// corresponding READ is added. For instance, the use/def chain of a
/// llvm::Value %V depicted below
/// ______________________
/// |DefBB: |
/// | %V = float op ... |
/// ----------------------
/// | |
/// _________________ _________________
/// |UseBB1: | |UseBB2: |
/// | use float %V | | use float %V |
/// ----------------- -----------------
///
/// is modeled as if the following memory accesses occured:
///
/// __________________________
/// |entry: |
/// | %V.s2a = alloca float |
/// --------------------------
/// |
/// ___________________________________
/// |DefBB: |
/// | store %float %V, float* %V.s2a |
/// -----------------------------------
/// | |
/// ____________________________________ ___________________________________
/// |UseBB1: | |UseBB2: |
/// | %V.reload1 = load float* %V.s2a | | %V.reload2 = load float* %V.s2a|
/// | use float %V.reload1 | | use float %V.reload2 |
/// ------------------------------------ -----------------------------------
///
MK_Value,
/// MK_PHI: Models PHI nodes within the SCoP
///
/// Besides the MK_Value memory object used to model the normal
/// llvm::Value dependences described above, PHI nodes require an additional
/// memory object of type MK_PHI to describe the forwarding of values to
/// the PHI node.
///
/// As an example, a PHIInst instructions
///
/// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
///
/// is modeled as if the accesses occured this way:
///
/// _______________________________
/// |entry: |
/// | %PHI.phiops = alloca float |
/// -------------------------------
/// | |
/// __________________________________ __________________________________
/// |IncomingBlock1: | |IncomingBlock2: |
/// | ... | | ... |
/// | store float %Val1 %PHI.phiops | | store float %Val2 %PHI.phiops |
/// | br label % JoinBlock | | br label %JoinBlock |
/// ---------------------------------- ----------------------------------
/// \ /
/// \ /
/// _________________________________________
/// |JoinBlock: |
/// | %PHI = load float, float* PHI.phiops |
/// -----------------------------------------
///
/// Note that there can also be a scalar write access for %PHI if used in a
/// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
/// well as a memory object %PHI.s2a.
MK_PHI,
/// MK_ExitPHI: Models PHI nodes in the SCoP's exit block
///
/// For PHI nodes in the Scop's exit block a special memory object kind is
/// used. The modeling used is identical to MK_PHI, with the exception
/// that there are no READs from these memory objects. The PHINode's
/// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
/// write directly to the escaping value's ".s2a" alloca.
MK_ExitPHI
};
/// Construct a ScopArrayInfo object.
///
/// @param BasePtr The array base pointer.
/// @param ElementType The type of the elements stored in the array.
/// @param IslCtx The isl context used to create the base pointer id.
/// @param DimensionSizes A vector containing the size of each dimension.
/// @param Kind The kind of the array object.
/// @param DL The data layout of the module.
/// @param S The scop this array object belongs to.
/// @param BaseName The optional name of this memory reference.
ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *IslCtx,
ArrayRef<const SCEV *> DimensionSizes, enum MemoryKind Kind,
const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
/// Update the element type of the ScopArrayInfo object.
///
/// Memory accesses referencing this ScopArrayInfo object may use
/// different element sizes. This function ensures the canonical element type
/// stored is small enough to model accesses to the current element type as
/// well as to @p NewElementType.
///
/// @param NewElementType An element type that is used to access this array.
void updateElementType(Type *NewElementType);
/// Update the sizes of the ScopArrayInfo object.
///
/// A ScopArrayInfo object may be created without all outer dimensions being
/// available. This function is called when new memory accesses are added for
/// this ScopArrayInfo object. It verifies that sizes are compatible and adds
/// additional outer array dimensions, if needed.
///
/// @param Sizes A vector of array sizes where the rightmost array
/// sizes need to match the innermost array sizes already
/// defined in SAI.
/// @param CheckConsistency Update sizes, even if new sizes are inconsistent
/// with old sizes
bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
/// Destructor to free the isl id of the base pointer.
~ScopArrayInfo();
/// Set the base pointer to @p BP.
void setBasePtr(Value *BP) { BasePtr = BP; }
/// Return the base pointer.
Value *getBasePtr() const { return BasePtr; }
/// For indirect accesses return the origin SAI of the BP, else null.
const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
/// The set of derived indirect SAIs for this origin SAI.
const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
return DerivedSAIs;
}
/// Return the number of dimensions.
unsigned getNumberOfDimensions() const {
if (Kind == MK_PHI || Kind == MK_ExitPHI || Kind == MK_Value)
return 0;
return DimensionSizes.size();
}
/// Return the size of dimension @p dim as SCEV*.
//
// Scalars do not have array dimensions and the first dimension of
// a (possibly multi-dimensional) array also does not carry any size
// information, in case the array is not newly created.
const SCEV *getDimensionSize(unsigned Dim) const {
assert(Dim < getNumberOfDimensions() && "Invalid dimension");
return DimensionSizes[Dim];
}
/// Return the size of dimension @p dim as isl_pw_aff.
//
// Scalars do not have array dimensions and the first dimension of
// a (possibly multi-dimensional) array also does not carry any size
// information, in case the array is not newly created.
__isl_give isl_pw_aff *getDimensionSizePw(unsigned Dim) const {
assert(Dim < getNumberOfDimensions() && "Invalid dimension");
return isl_pw_aff_copy(DimensionSizesPw[Dim]);
}
/// Get the canonical element type of this array.
///
/// @returns The canonical element type of this array.
Type *getElementType() const { return ElementType; }
/// Get element size in bytes.
int getElemSizeInBytes() const;
/// Get the name of this memory reference.
std::string getName() const;
/// Return the isl id for the base pointer.
__isl_give isl_id *getBasePtrId() const;
/// Return what kind of memory this represents.
enum MemoryKind getKind() const { return Kind; }
/// Is this array info modeling an llvm::Value?
bool isValueKind() const { return Kind == MK_Value; }
/// Is this array info modeling special PHI node memory?
///
/// During code generation of PHI nodes, there is a need for two kinds of
/// virtual storage. The normal one as it is used for all scalar dependences,
/// where the result of the PHI node is stored and later loaded from as well
/// as a second one where the incoming values of the PHI nodes are stored
/// into and reloaded when the PHI is executed. As both memories use the
/// original PHI node as virtual base pointer, we have this additional
/// attribute to distinguish the PHI node specific array modeling from the
/// normal scalar array modeling.
bool isPHIKind() const { return Kind == MK_PHI; }
/// Is this array info modeling an MK_ExitPHI?
bool isExitPHIKind() const { return Kind == MK_ExitPHI; }
/// Is this array info modeling an array?
bool isArrayKind() const { return Kind == MK_Array; }
/// Dump a readable representation to stderr.
void dump() const;
/// Print a readable representation to @p OS.
///
/// @param SizeAsPwAff Print the size as isl_pw_aff
void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
/// Access the ScopArrayInfo associated with an access function.
static const ScopArrayInfo *
getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA);
/// Access the ScopArrayInfo associated with an isl Id.
static const ScopArrayInfo *getFromId(__isl_take isl_id *Id);
/// Get the space of this array access.
__isl_give isl_space *getSpace() const;
/// If the array is read only
bool isReadOnly();
private:
void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
DerivedSAIs.insert(DerivedSAI);
}
/// For indirect accesses this is the SAI of the BP origin.
const ScopArrayInfo *BasePtrOriginSAI;
/// For origin SAIs the set of derived indirect SAIs.
SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
/// The base pointer.
AssertingVH<Value> BasePtr;
/// The canonical element type of this array.
///
/// The canonical element type describes the minimal accessible element in
/// this array. Not all elements accessed, need to be of the very same type,
/// but the allocation size of the type of the elements loaded/stored from/to
/// this array needs to be a multiple of the allocation size of the canonical
/// type.
Type *ElementType;
/// The isl id for the base pointer.
isl_id *Id;
/// The sizes of each dimension as SCEV*.
SmallVector<const SCEV *, 4> DimensionSizes;
/// The sizes of each dimension as isl_pw_aff.
SmallVector<isl_pw_aff *, 4> DimensionSizesPw;
/// The type of this scop array info object.
///
/// We distinguish between SCALAR, PHI and ARRAY objects.
enum MemoryKind Kind;
/// The data layout of the module.
const DataLayout &DL;
/// The scop this SAI object belongs to.
Scop &S;
};
/// Represent memory accesses in statements.
class MemoryAccess {
friend class Scop;
friend class ScopStmt;
public:
/// The access type of a memory access
///
/// There are three kind of access types:
///
/// * A read access
///
/// A certain set of memory locations are read and may be used for internal
/// calculations.
///
/// * A must-write access
///
/// A certain set of memory locations is definitely written. The old value is
/// replaced by a newly calculated value. The old value is not read or used at
/// all.
///
/// * A may-write access
///
/// A certain set of memory locations may be written. The memory location may
/// contain a new value if there is actually a write or the old value may
/// remain, if no write happens.
enum AccessType {
READ = 0x1,
MUST_WRITE = 0x2,
MAY_WRITE = 0x3,
};
/// Reduction access type
///
/// Commutative and associative binary operations suitable for reductions
enum ReductionType {
RT_NONE, ///< Indicate no reduction at all
RT_ADD, ///< Addition
RT_MUL, ///< Multiplication
RT_BOR, ///< Bitwise Or
RT_BXOR, ///< Bitwise XOr
RT_BAND, ///< Bitwise And
};
private:
MemoryAccess(const MemoryAccess &) = delete;
const MemoryAccess &operator=(const MemoryAccess &) = delete;
/// A unique identifier for this memory access.
///
/// The identifier is unique between all memory accesses belonging to the same
/// scop statement.
isl_id *Id;
/// What is modeled by this MemoryAccess.
/// @see ScopArrayInfo::MemoryKind
ScopArrayInfo::MemoryKind Kind;
/// Whether it a reading or writing access, and if writing, whether it
/// is conditional (MAY_WRITE).
enum AccessType AccType;
/// Reduction type for reduction like accesses, RT_NONE otherwise
///
/// An access is reduction like if it is part of a load-store chain in which
/// both access the same memory location (use the same LLVM-IR value
/// as pointer reference). Furthermore, between the load and the store there
/// is exactly one binary operator which is known to be associative and
/// commutative.
///
/// TODO:
///
/// We can later lift the constraint that the same LLVM-IR value defines the
/// memory location to handle scops such as the following:
///
/// for i
/// for j
/// sum[i+j] = sum[i] + 3;
///
/// Here not all iterations access the same memory location, but iterations
/// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
/// subsequent transformations do not only need check if a statement is
/// reduction like, but they also need to verify that that the reduction
/// property is only exploited for statement instances that load from and
/// store to the same data location. Doing so at dependence analysis time
/// could allow us to handle the above example.
ReductionType RedType = RT_NONE;
/// Parent ScopStmt of this access.
ScopStmt *Statement;
/// The domain under which this access is not modeled precisely.
///
/// The invalid domain for an access describes all parameter combinations
/// under which the statement looks to be executed but is in fact not because
/// some assumption/restriction makes the access invalid.
isl_set *InvalidDomain;
// Properties describing the accessed array.
// TODO: It might be possible to move them to ScopArrayInfo.
// @{
/// The base address (e.g., A for A[i+j]).
///
/// The #BaseAddr of a memory access of kind MK_Array is the base pointer
/// of the memory access.
/// The #BaseAddr of a memory access of kind MK_PHI or MK_ExitPHI is the
/// PHI node itself.
/// The #BaseAddr of a memory access of kind MK_Value is the instruction
/// defining the value.
AssertingVH<Value> BaseAddr;
/// An unique name of the accessed array.
std::string BaseName;
/// Type a single array element wrt. this access.
Type *ElementType;
/// Size of each dimension of the accessed array.
SmallVector<const SCEV *, 4> Sizes;
// @}
// Properties describing the accessed element.
// @{
/// The access instruction of this memory access.
///
/// For memory accesses of kind MK_Array the access instruction is the
/// Load or Store instruction performing the access.
///
/// For memory accesses of kind MK_PHI or MK_ExitPHI the access
/// instruction of a load access is the PHI instruction. The access
/// instruction of a PHI-store is the incoming's block's terminator
/// instruction.
///
/// For memory accesses of kind MK_Value the access instruction of a load
/// access is nullptr because generally there can be multiple instructions in
/// the statement using the same llvm::Value. The access instruction of a
/// write access is the instruction that defines the llvm::Value.
Instruction *AccessInstruction;
/// Incoming block and value of a PHINode.
SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
/// The value associated with this memory access.
///
/// - For array memory accesses (MK_Array) it is the loaded result or the
/// stored value. If the access instruction is a memory intrinsic it
/// the access value is also the memory intrinsic.
/// - For accesses of kind MK_Value it is the access instruction itself.
/// - For accesses of kind MK_PHI or MK_ExitPHI it is the PHI node itself
/// (for both, READ and WRITE accesses).
///
AssertingVH<Value> AccessValue;
/// Are all the subscripts affine expression?
bool IsAffine;
/// Subscript expression for each dimension.
SmallVector<const SCEV *, 4> Subscripts;
/// Relation from statement instances to the accessed array elements.
///
/// In the common case this relation is a function that maps a set of loop
/// indices to the memory address from which a value is loaded/stored:
///
/// for i
/// for j
/// S: A[i + 3 j] = ...
///
/// => { S[i,j] -> A[i + 3j] }
///
/// In case the exact access function is not known, the access relation may
/// also be a one to all mapping { S[i,j] -> A[o] } describing that any
/// element accessible through A might be accessed.
///
/// In case of an access to a larger element belonging to an array that also
/// contains smaller elements, the access relation models the larger access
/// with multiple smaller accesses of the size of the minimal array element
/// type:
///
/// short *A;
///
/// for i
/// S: A[i] = *((double*)&A[4 * i]);
///
/// => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
isl_map *AccessRelation;
/// Updated access relation read from JSCOP file.
isl_map *NewAccessRelation;
// @}
__isl_give isl_basic_map *createBasicAccessMap(ScopStmt *Statement);
void assumeNoOutOfBound();
/// Compute bounds on an over approximated access relation.
///
/// @param ElementSize The size of one element accessed.
void computeBoundsOnAccessRelation(unsigned ElementSize);
/// Get the original access function as read from IR.
__isl_give isl_map *getOriginalAccessRelation() const;
/// Return the space in which the access relation lives in.
__isl_give isl_space *getOriginalAccessRelationSpace() const;
/// Get the new access function imported or set by a pass
__isl_give isl_map *getNewAccessRelation() const;
/// Fold the memory access to consider parameteric offsets
///
/// To recover memory accesses with array size parameters in the subscript
/// expression we post-process the delinearization results.
///
/// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
/// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
/// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
/// range of exp1(i) - may be preferrable. Specifically, for cases where we
/// know exp1(i) is negative, we want to choose the latter expression.
///
/// As we commonly do not have any information about the range of exp1(i),
/// we do not choose one of the two options, but instead create a piecewise
/// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
/// negative. For a 2D array such an access function is created by applying
/// the piecewise map:
///
/// [i,j] -> [i, j] : j >= 0
/// [i,j] -> [i-1, j+N] : j < 0
///
/// We can generalize this mapping to arbitrary dimensions by applying this
/// piecewise mapping pairwise from the rightmost to the leftmost access
/// dimension. It would also be possible to cover a wider range by introducing
/// more cases and adding multiple of Ns to these cases. However, this has
/// not yet been necessary.
/// The introduction of different cases necessarily complicates the memory
/// access function, but cases that can be statically proven to not happen
/// will be eliminated later on.
void foldAccessRelation();
/// Create the access relation for the underlying memory intrinsic.
void buildMemIntrinsicAccessRelation();
/// Assemble the access relation from all available information.
///
/// In particular, used the information passes in the constructor and the
/// parent ScopStmt set by setStatment().
///
/// @param SAI Info object for the accessed array.
void buildAccessRelation(const ScopArrayInfo *SAI);
/// Carry index overflows of dimensions with constant size to the next higher
/// dimension.
///
/// For dimensions that have constant size, modulo the index by the size and
/// add up the carry (floored division) to the next higher dimension. This is
/// how overflow is defined in row-major order.
/// It happens e.g. when ScalarEvolution computes the offset to the base
/// pointer and would algebraically sum up all lower dimensions' indices of
/// constant size.
///
/// Example:
/// float (*A)[4];
/// A[1][6] -> A[2][2]
void wrapConstantDimensions();
public:
/// Create a new MemoryAccess.
///
/// @param Stmt The parent statement.
/// @param AccessInst The instruction doing the access.
/// @param BaseAddr The accessed array's address.
/// @param ElemType The type of the accessed array elements.
/// @param AccType Whether read or write access.
/// @param IsAffine Whether the subscripts are affine expressions.
/// @param Kind The kind of memory accessed.
/// @param Subscripts Subscipt expressions
/// @param Sizes Dimension lengths of the accessed array.
/// @param BaseName Name of the acessed array.
MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
Value *BaseAddress, Type *ElemType, bool Affine,
ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
Value *AccessValue, ScopArrayInfo::MemoryKind Kind,
StringRef BaseName);
/// Create a new MemoryAccess that corresponds to @p AccRel.
///
/// Along with @p Stmt and @p AccType it uses information about dimension
/// lengths of the accessed array, the type of the accessed array elements,
/// the name of the accessed array that is derived from the object accessible
/// via @p AccRel.
///
/// @param Stmt The parent statement.
/// @param AccType Whether read or write access.
/// @param AccRel The access relation that describes the memory access.
MemoryAccess(ScopStmt *Stmt, AccessType AccType, __isl_take isl_map *AccRel);
~MemoryAccess();
/// Add a new incoming block/value pairs for this PHI/ExitPHI access.
///
/// @param IncomingBlock The PHI's incoming block.
/// @param IncomingValue The value when reacing the PHI from the @p
/// IncomingBlock.
void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
assert(!isRead());
assert(isAnyPHIKind());
Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
}
/// Return the list of possible PHI/ExitPHI values.
///
/// After code generation moves some PHIs around during region simplification,
/// we cannot reliably locate the original PHI node and its incoming values
/// anymore. For this reason we remember these explicitly for all PHI-kind
/// accesses.
ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
assert(isAnyPHIKind());
return Incoming;
}
/// Get the type of a memory access.
enum AccessType getType() { return AccType; }
/// Is this a reduction like access?
bool isReductionLike() const { return RedType != RT_NONE; }
/// Is this a read memory access?
bool isRead() const { return AccType == MemoryAccess::READ; }
/// Is this a must-write memory access?
bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
/// Is this a may-write memory access?
bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
/// Is this a write memory access?
bool isWrite() const { return isMustWrite() || isMayWrite(); }
/// Is this a memory intrinsic access (memcpy, memset, memmove)?
bool isMemoryIntrinsic() const {
return isa<MemIntrinsic>(getAccessInstruction());
}
/// Check if a new access relation was imported or set by a pass.
bool hasNewAccessRelation() const { return NewAccessRelation; }
/// Return the newest access relation of this access.
///
/// There are two possibilities:
/// 1) The original access relation read from the LLVM-IR.
/// 2) A new access relation imported from a json file or set by another
/// pass (e.g., for privatization).
///
/// As 2) is by construction "newer" than 1) we return the new access
/// relation if present.
///
__isl_give isl_map *getLatestAccessRelation() const {
return hasNewAccessRelation() ? getNewAccessRelation()
: getOriginalAccessRelation();
}
/// Old name of getLatestAccessRelation().
__isl_give isl_map *getAccessRelation() const {
return getLatestAccessRelation();
}
/// Get an isl map describing the memory address accessed.
///
/// In most cases the memory address accessed is well described by the access
/// relation obtained with getAccessRelation. However, in case of arrays
/// accessed with types of different size the access relation maps one access
/// to multiple smaller address locations. This method returns an isl map that
/// relates each dynamic statement instance to the unique memory location
/// that is loaded from / stored to.
///
/// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
/// will return the address function { S[i] -> A[4i] }.
///
/// @returns The address function for this memory access.
__isl_give isl_map *getAddressFunction() const;
/// Return the access relation after the schedule was applied.
__isl_give isl_pw_multi_aff *
applyScheduleToAccessRelation(__isl_take isl_union_map *Schedule) const;
/// Get an isl string representing the access function read from IR.
std::string getOriginalAccessRelationStr() const;
/// Get an isl string representing a new access function, if available.
std::string getNewAccessRelationStr() const;
/// Get the base address of this access (e.g. A for A[i+j]) when
/// detected.
Value *getOriginalBaseAddr() const {
assert(!getOriginalScopArrayInfo() /* may noy yet be initialized */ ||
getOriginalScopArrayInfo()->getBasePtr() == BaseAddr);
return BaseAddr;
}
/// Get the base address of this access (e.g. A for A[i+j]) after a
/// potential change by setNewAccessRelation().
Value *getLatestBaseAddr() const {
return getLatestScopArrayInfo()->getBasePtr();
}
/// Old name for getOriginalBaseAddr().
Value *getBaseAddr() const { return getOriginalBaseAddr(); }
/// Get the detection-time base array isl_id for this access.
__isl_give isl_id *getOriginalArrayId() const;
/// Get the base array isl_id for this access, modifiable through
/// setNewAccessRelation().
__isl_give isl_id *getLatestArrayId() const;
/// Old name of getOriginalArrayId().
__isl_give isl_id *getArrayId() const { return getOriginalArrayId(); }
/// Get the detection-time ScopArrayInfo object for the base address.
const ScopArrayInfo *getOriginalScopArrayInfo() const;
/// Get the ScopArrayInfo object for the base address, or the one set
/// by setNewAccessRelation().
const ScopArrayInfo *getLatestScopArrayInfo() const;
/// Legacy name of getOriginalScopArrayInfo().
const ScopArrayInfo *getScopArrayInfo() const {
return getOriginalScopArrayInfo();
}
/// Return a string representation of the access's reduction type.
const std::string getReductionOperatorStr() const;
/// Return a string representation of the reduction type @p RT.
static const std::string getReductionOperatorStr(ReductionType RT);
const std::string &getBaseName() const { return BaseName; }
/// Return the element type of the accessed array wrt. this access.
Type *getElementType() const { return ElementType; }
/// Return the access value of this memory access.
Value *getAccessValue() const { return AccessValue; }
/// Return the access instruction of this memory access.
Instruction *getAccessInstruction() const { return AccessInstruction; }
/// Return the number of access function subscript.
unsigned getNumSubscripts() const { return Subscripts.size(); }
/// Return the access function subscript in the dimension @p Dim.
const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
/// Compute the isl representation for the SCEV @p E wrt. this access.
///
/// Note that this function will also adjust the invalid context accordingly.
__isl_give isl_pw_aff *getPwAff(const SCEV *E);
/// Get the invalid domain for this access.
__isl_give isl_set *getInvalidDomain() const {
return isl_set_copy(InvalidDomain);
}
/// Get the invalid context for this access.
__isl_give isl_set *getInvalidContext() const {
return isl_set_params(getInvalidDomain());
}
/// Get the stride of this memory access in the specified Schedule. Schedule
/// is a map from the statement to a schedule where the innermost dimension is
/// the dimension of the innermost loop containing the statement.
__isl_give isl_set *getStride(__isl_take const isl_map *Schedule) const;
/// Is the stride of the access equal to a certain width? Schedule is a map
/// from the statement to a schedule where the innermost dimension is the
/// dimension of the innermost loop containing the statement.
bool isStrideX(__isl_take const isl_map *Schedule, int StrideWidth) const;
/// Is consecutive memory accessed for a given statement instance set?
/// Schedule is a map from the statement to a schedule where the innermost
/// dimension is the dimension of the innermost loop containing the
/// statement.
bool isStrideOne(__isl_take const isl_map *Schedule) const;
/// Is always the same memory accessed for a given statement instance set?
/// Schedule is a map from the statement to a schedule where the innermost
/// dimension is the dimension of the innermost loop containing the
/// statement.
bool isStrideZero(__isl_take const isl_map *Schedule) const;
/// Return the kind when this access was first detected.
ScopArrayInfo::MemoryKind getOriginalKind() const {
assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
getOriginalScopArrayInfo()->getKind() == Kind);
return Kind;
}
/// Return the kind considering a potential setNewAccessRelation.
ScopArrayInfo::MemoryKind getLatestKind() const {
return getLatestScopArrayInfo()->getKind();
}
/// Whether this is an access of an explicit load or store in the IR.
bool isOriginalArrayKind() const {
return getOriginalKind() == ScopArrayInfo::MK_Array;
}
/// Whether storage memory is either an custom .s2a/.phiops alloca
/// (false) or an existing pointer into an array (true).
bool isLatestArrayKind() const {
return getLatestKind() == ScopArrayInfo::MK_Array;
}
/// Old name of isOriginalArrayKind.
bool isArrayKind() const { return isOriginalArrayKind(); }
/// Whether this access is an array to a scalar memory object, without
/// considering changes by setNewAccessRelation.
///
/// Scalar accesses are accesses to MK_Value, MK_PHI or MK_ExitPHI.
bool isOriginalScalarKind() const {
return getOriginalKind() != ScopArrayInfo::MK_Array;
}
/// Whether this access is an array to a scalar memory object, also
/// considering changes by setNewAccessRelation.
bool isLatestScalarKind() const {
return getLatestKind() != ScopArrayInfo::MK_Array;
}
/// Old name of isOriginalScalarKind.
bool isScalarKind() const { return isOriginalScalarKind(); }
/// Was this MemoryAccess detected as a scalar dependences?
bool isOriginalValueKind() const {
return getOriginalKind() == ScopArrayInfo::MK_Value;
}
/// Is this MemoryAccess currently modeling scalar dependences?
bool isLatestValueKind() const {
return getLatestKind() == ScopArrayInfo::MK_Value;
}
/// Old name of isOriginalValueKind().
bool isValueKind() const { return isOriginalValueKind(); }
/// Was this MemoryAccess detected as a special PHI node access?
bool isOriginalPHIKind() const {
return getOriginalKind() == ScopArrayInfo::MK_PHI;
}
/// Is this MemoryAccess modeling special PHI node accesses, also
/// considering a potential change by setNewAccessRelation?
bool isLatestPHIKind() const {
return getLatestKind() == ScopArrayInfo::MK_PHI;
}
/// Old name of isOriginalPHIKind.
bool isPHIKind() const { return isOriginalPHIKind(); }
/// Was this MemoryAccess detected as the accesses of a PHI node in the
/// SCoP's exit block?
bool isOriginalExitPHIKind() const {
return getOriginalKind() == ScopArrayInfo::MK_ExitPHI;
}
/// Is this MemoryAccess modeling the accesses of a PHI node in the
/// SCoP's exit block? Can be changed to an array access using
/// setNewAccessRelation().
bool isLatestExitPHIKind() const {
return getLatestKind() == ScopArrayInfo::MK_ExitPHI;
}
/// Old name of isOriginalExitPHIKind().
bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
/// Was this access detected as one of the two PHI types?
bool isOriginalAnyPHIKind() const {
return isOriginalPHIKind() || isOriginalExitPHIKind();
}
/// Does this access orginate from one of the two PHI types? Can be
/// changed to an array access using setNewAccessRelation().
bool isLatestAnyPHIKind() const {
return isLatestPHIKind() || isLatestExitPHIKind();
}
/// Old name of isOriginalAnyPHIKind().
bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
/// Get the statement that contains this memory access.
ScopStmt *getStatement() const { return Statement; }
/// Get the reduction type of this access
ReductionType getReductionType() const { return RedType; }
/// Update the original access relation.
///
/// We need to update the original access relation during scop construction,
/// when unifying the memory accesses that access the same scop array info
/// object. After the scop has been constructed, the original access relation
/// should not be changed any more. Instead setNewAccessRelation should
/// be called.
void setAccessRelation(__isl_take isl_map *AccessRelation);
/// Set the updated access relation read from JSCOP file.
void setNewAccessRelation(__isl_take isl_map *NewAccessRelation);
/// Mark this a reduction like access
void markAsReductionLike(ReductionType RT) { RedType = RT; }
/// Align the parameters in the access relation to the scop context
void realignParams();
/// Update the dimensionality of the memory access.
///
/// During scop construction some memory accesses may not be constructed with
/// their full dimensionality, but outer dimensions may have been omitted if
/// they took the value 'zero'. By updating the dimensionality of the
/// statement we add additional zero-valued dimensions to match the
/// dimensionality of the ScopArrayInfo object that belongs to this memory
/// access.
void updateDimensionality();
/// Get identifier for the memory access.
///
/// This identifier is unique for all accesses that belong to the same scop
/// statement.
__isl_give isl_id *getId() const;
/// Print the MemoryAccess.
///
/// @param OS The output stream the MemoryAccess is printed to.
void print(raw_ostream &OS) const;
/// Print the MemoryAccess to stderr.
void dump() const;
/// Is the memory access affine?
bool isAffine() const { return IsAffine; }
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
MemoryAccess::ReductionType RT);
/// Ordered list type to hold accesses.
using MemoryAccessList = std::forward_list<MemoryAccess *>;
/// Helper structure for invariant memory accesses.
struct InvariantAccess {
/// The memory access that is (partially) invariant.
MemoryAccess *MA;
/// The context under which the access is not invariant.
isl_set *NonHoistableCtx;
};
/// Ordered container type to hold invariant accesses.
using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
/// Type for equivalent invariant accesses and their domain context.
struct InvariantEquivClassTy {
/// The pointer that identifies this equivalence class
const SCEV *IdentifyingPointer;
/// Memory accesses now treated invariant
///
/// These memory accesses access the pointer location that identifies
/// this equivalence class. They are treated as invariant and hoisted during
/// code generation.
MemoryAccessList InvariantAccesses;
/// The execution context under which the memory location is accessed
///
/// It is the union of the execution domains of the memory accesses in the
/// InvariantAccesses list.
isl_set *ExecutionContext;
/// The type of the invariant access
///
/// It is used to differentiate between differently typed invariant loads from
/// the same location.
Type *AccessType;
};
/// Type for invariant accesses equivalence classes.
using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
/// Statement of the Scop
///
/// A Scop statement represents an instruction in the Scop.
///
/// It is further described by its iteration domain, its schedule and its data
/// accesses.
/// At the moment every statement represents a single basic block of LLVM-IR.
class ScopStmt {
public:
ScopStmt(const ScopStmt &) = delete;
const ScopStmt &operator=(const ScopStmt &) = delete;
/// Create the ScopStmt from a BasicBlock.
ScopStmt(Scop &parent, BasicBlock &bb);
/// Create an overapproximating ScopStmt for the region @p R.
ScopStmt(Scop &parent, Region &R);
/// Create a copy statement.
///
/// @param Stmt The parent statement.
/// @param SourceRel The source location.
/// @param TargetRel The target location.
/// @param Domain The original domain under which copy statement whould
/// be executed.
ScopStmt(Scop &parent, __isl_take isl_map *SourceRel,
__isl_take isl_map *TargetRel, __isl_take isl_set *Domain);
/// Initialize members after all MemoryAccesses have been added.
void init(LoopInfo &LI);
private:
/// Polyhedral description
//@{
/// The Scop containing this ScopStmt
Scop &Parent;
/// The domain under which this statement is not modeled precisely.
///
/// The invalid domain for a statement describes all parameter combinations
/// under which the statement looks to be executed but is in fact not because
/// some assumption/restriction makes the statement/scop invalid.
isl_set *InvalidDomain;
/// The iteration domain describes the set of iterations for which this
/// statement is executed.
///
/// Example:
/// for (i = 0; i < 100 + b; ++i)
/// for (j = 0; j < i; ++j)
/// S(i,j);
///
/// 'S' is executed for different values of i and j. A vector of all
/// induction variables around S (i, j) is called iteration vector.
/// The domain describes the set of possible iteration vectors.
///
/// In this case it is:
///
/// Domain: 0 <= i <= 100 + b
/// 0 <= j <= i
///
/// A pair of statement and iteration vector (S, (5,3)) is called statement
/// instance.
isl_set *Domain;
/// The memory accesses of this statement.
///
/// The only side effects of a statement are its memory accesses.
typedef SmallVector<MemoryAccess *, 8> MemoryAccessVec;
MemoryAccessVec MemAccs;
/// Mapping from instructions to (scalar) memory accesses.
DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
/// The set of values defined elsewhere required in this ScopStmt and
/// their MK_Value READ MemoryAccesses.
DenseMap<Value *, MemoryAccess *> ValueReads;
/// The set of values defined in this ScopStmt that are required
/// elsewhere, mapped to their MK_Value WRITE MemoryAccesses.
DenseMap<Instruction *, MemoryAccess *> ValueWrites;
/// Map from PHI nodes to its incoming value when coming from this
/// statement.
///
/// Non-affine subregions can have multiple exiting blocks that are incoming
/// blocks of the PHI nodes. This map ensures that there is only one write
/// operation for the complete subregion. A PHI selecting the relevant value
/// will be inserted.
DenseMap<PHINode *, MemoryAccess *> PHIWrites;
//@}
/// A SCoP statement represents either a basic block (affine/precise case) or
/// a whole region (non-affine case).
///
/// Only one of the following two members will therefore be set and indicate
/// which kind of statement this is.
///
///{
/// The BasicBlock represented by this statement (in the affine case).
BasicBlock *BB;
/// The region represented by this statement (in the non-affine case).
Region *R;
///}
/// The isl AST build for the new generated AST.
isl_ast_build *Build;
SmallVector<Loop *, 4> NestLoops;
std::string BaseName;
/// Build the statement.
//@{
void buildDomain();
/// Fill NestLoops with loops surrounding this statement.
void collectSurroundingLoops();
/// Build the access relation of all memory accesses.
void buildAccessRelations();
/// Detect and mark reductions in the ScopStmt
void checkForReductions();
/// Collect loads which might form a reduction chain with @p StoreMA
void
collectCandiateReductionLoads(MemoryAccess *StoreMA,
llvm::SmallVectorImpl<MemoryAccess *> &Loads);
//@}
public:
~ScopStmt();
/// Get an isl_ctx pointer.
isl_ctx *getIslCtx() const;
/// Get the iteration domain of this ScopStmt.
///
/// @return The iteration domain of this ScopStmt.
__isl_give isl_set *getDomain() const;
/// Get the space of the iteration domain
///
/// @return The space of the iteration domain
__isl_give isl_space *getDomainSpace() const;
/// Get the id of the iteration domain space
///
/// @return The id of the iteration domain space
__isl_give isl_id *getDomainId() const;
/// Get an isl string representing this domain.
std::string getDomainStr() const;
/// Get the schedule function of this ScopStmt.
///
/// @return The schedule function of this ScopStmt, if it does not contain
/// extension nodes, and nullptr, otherwise.
__isl_give isl_map *getSchedule() const;
/// Get an isl string representing this schedule.
///
/// @return An isl string representing this schedule, if it does not contain
/// extension nodes, and an empty string, otherwise.
std::string getScheduleStr() const;
/// Get the invalid domain for this statement.
__isl_give isl_set *getInvalidDomain() const {
return isl_set_copy(InvalidDomain);
}
/// Get the invalid context for this statement.
__isl_give isl_set *getInvalidContext() const {
return isl_set_params(getInvalidDomain());
}
/// Set the invalid context for this statement to @p ID.
void setInvalidDomain(__isl_take isl_set *ID);
/// Get the BasicBlock represented by this ScopStmt (if any).
///
/// @return The BasicBlock represented by this ScopStmt, or null if the
/// statement represents a region.
BasicBlock *getBasicBlock() const { return BB; }
/// Return true if this statement represents a single basic block.
bool isBlockStmt() const { return BB != nullptr; }
/// Return true if this is a copy statement.
bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
/// Get the region represented by this ScopStmt (if any).
///
/// @return The region represented by this ScopStmt, or null if the statement
/// represents a basic block.
Region *getRegion() const { return R; }
/// Return true if this statement represents a whole region.
bool isRegionStmt() const { return R != nullptr; }
/// Return a BasicBlock from this statement.
///
/// For block statements, it returns the BasicBlock itself. For subregion
/// statements, return its entry block.
BasicBlock *getEntryBlock() const;
/// Return true if this statement does not contain any accesses.
bool isEmpty() const { return MemAccs.empty(); }
/// Return the only array access for @p Inst, if existing.
///
/// @param Inst The instruction for which to look up the access.
/// @returns The unique array memory access related to Inst or nullptr if
/// no array access exists
MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
auto It = InstructionToAccess.find(Inst);
if (It == InstructionToAccess.end())
return nullptr;
MemoryAccess *ArrayAccess = nullptr;
for (auto Access : It->getSecond()) {
if (!Access->isArrayKind())
continue;
assert(!ArrayAccess && "More then one array access for instruction");
ArrayAccess = Access;
}
return ArrayAccess;
}
/// Return the only array access for @p Inst.
///
/// @param Inst The instruction for which to look up the access.
/// @returns The unique array memory access related to Inst.
MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
assert(ArrayAccess && "No array access found for instruction!");
return *ArrayAccess;
}
/// Return the MemoryAccess that writes the value of an instruction
/// defined in this statement, or nullptr if not existing, respectively
/// not yet added.
MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
assert((isRegionStmt() && R->contains(Inst)) ||
(!isRegionStmt() && Inst->getParent() == BB));
return ValueWrites.lookup(Inst);
}
/// Return the MemoryAccess that reloads a value, or nullptr if not
/// existing, respectively not yet added.
MemoryAccess *lookupValueReadOf(Value *Inst) const {
return ValueReads.lookup(Inst);
}
/// Return the PHI write MemoryAccess for the incoming values from any
/// basic block in this ScopStmt, or nullptr if not existing,
/// respectively not yet added.
MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
assert(isBlockStmt() || R->getExit() == PHI->getParent());
return PHIWrites.lookup(PHI);
}
/// Add @p Access to this statement's list of accesses.
void addAccess(MemoryAccess *Access);
/// Remove a MemoryAccess from this statement.
///
/// Note that scalar accesses that are caused by MA will
/// be eliminated too.
void removeMemoryAccess(MemoryAccess *MA);
typedef MemoryAccessVec::iterator iterator;
typedef MemoryAccessVec::const_iterator const_iterator;
iterator begin() { return MemAccs.begin(); }
iterator end() { return MemAccs.end(); }
const_iterator begin() const { return MemAccs.begin(); }
const_iterator end() const { return MemAccs.end(); }
size_t size() const { return MemAccs.size(); }
unsigned getNumIterators() const;
Scop *getParent() { return &Parent; }
const Scop *getParent() const { return &Parent; }
const char *getBaseName() const;
/// Set the isl AST build.
void setAstBuild(__isl_keep isl_ast_build *B) { Build = B; }
/// Get the isl AST build.
__isl_keep isl_ast_build *getAstBuild() const { return Build; }
/// Restrict the domain of the statement.
///
/// @param NewDomain The new statement domain.
void restrictDomain(__isl_take isl_set *NewDomain);
/// Compute the isl representation for the SCEV @p E in this stmt.
///
/// @param E The SCEV that should be translated.
/// @param NonNegative Flag to indicate the @p E has to be non-negative.
///
/// Note that this function will also adjust the invalid context accordingly.
__isl_give isl_pw_aff *getPwAff(const SCEV *E, bool NonNegative = false);
/// Get the loop for a dimension.
///
/// @param Dimension The dimension of the induction variable
/// @return The loop at a certain dimension.
Loop *getLoopForDimension(unsigned Dimension) const;
/// Align the parameters in the statement to the scop context
void realignParams();
/// Print the ScopStmt.
///
/// @param OS The output stream the ScopStmt is printed to.
void print(raw_ostream &OS) const;
/// Print the ScopStmt to stderr.
void dump() const;
};
/// Print ScopStmt S to raw_ostream O.
static inline raw_ostream &operator<<(raw_ostream &O, const ScopStmt &S) {
S.print(O);
return O;
}
/// Static Control Part
///
/// A Scop is the polyhedral representation of a control flow region detected
/// by the Scop detection. It is generated by translating the LLVM-IR and
/// abstracting its effects.
///
/// A Scop consists of a set of:
///
/// * A set of statements executed in the Scop.
///
/// * A set of global parameters
/// Those parameters are scalar integer values, which are constant during
/// execution.
///
/// * A context
/// This context contains information about the values the parameters
/// can take and relations between different parameters.
class Scop {
public:
/// Type to represent a pair of minimal/maximal access to an array.
using MinMaxAccessTy = std::pair<isl_pw_multi_aff *, isl_pw_multi_aff *>;
/// Vector of minimal/maximal accesses to different arrays.
using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
/// Pair of minimal/maximal access vectors representing
/// read write and read only accesses
using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
/// Vector of pair of minimal/maximal access vectors representing
/// non read only and read only accesses for each alias group.
using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
private:
Scop(const Scop &) = delete;
const Scop &operator=(const Scop &) = delete;
ScalarEvolution *SE;
/// The underlying Region.
Region &R;
// Access functions of the SCoP.
//
// This owns all the MemoryAccess objects of the Scop created in this pass.
AccFuncVector AccessFunctions;
/// Flag to indicate that the scheduler actually optimized the SCoP.
bool IsOptimized;
/// True if the underlying region has a single exiting block.
bool HasSingleExitEdge;
/// Flag to remember if the SCoP contained an error block or not.
bool HasErrorBlock;
/// Max loop depth.
unsigned MaxLoopDepth;
/// Number of copy statements.
unsigned CopyStmtsNum;
typedef std::list<ScopStmt> StmtSet;
/// The statements in this Scop.
StmtSet Stmts;
/// Parameters of this Scop
ParameterSetTy Parameters;
/// Mapping from parameters to their ids.
DenseMap<const SCEV *, isl_id *> ParameterIds;
/// The context of the SCoP created during SCoP detection.
ScopDetection::DetectionContext &DC;
/// Isl context.
///
/// We need a shared_ptr with reference counter to delete the context when all
/// isl objects are deleted. We will distribute the shared_ptr to all objects
/// that use the context to create isl objects, and increase the reference
/// counter. By doing this, we guarantee that the context is deleted when we
/// delete the last object that creates isl objects with the context.
std::shared_ptr<isl_ctx> IslCtx;
/// A map from basic blocks to SCoP statements.
DenseMap<BasicBlock *, ScopStmt *> StmtMap;
/// A map from basic blocks to their domains.
DenseMap<BasicBlock *, isl_set *> DomainMap;
/// Constraints on parameters.
isl_set *Context;
/// The affinator used to translate SCEVs to isl expressions.
SCEVAffinator Affinator;
typedef std::map<std::pair<AssertingVH<const Value>, int>,
std::unique_ptr<ScopArrayInfo>>
ArrayInfoMapTy;
typedef StringMap<std::unique_ptr<ScopArrayInfo>> ArrayNameMapTy;
typedef SetVector<ScopArrayInfo *> ArrayInfoSetTy;
/// A map to remember ScopArrayInfo objects for all base pointers.
///
/// As PHI nodes may have two array info objects associated, we add a flag
/// that distinguishes between the PHI node specific ArrayInfo object
/// and the normal one.
ArrayInfoMapTy ScopArrayInfoMap;
/// A map to remember ScopArrayInfo objects for all names of memory
/// references.
ArrayNameMapTy ScopArrayNameMap;
/// A set to remember ScopArrayInfo objects.
/// @see Scop::ScopArrayInfoMap
ArrayInfoSetTy ScopArrayInfoSet;
/// The assumptions under which this scop was built.
///
/// When constructing a scop sometimes the exact representation of a statement
/// or condition would be very complex, but there is a common case which is a
/// lot simpler, but which is only valid under certain assumptions. The
/// assumed context records the assumptions taken during the construction of
/// this scop and that need to be code generated as a run-time test.
isl_set *AssumedContext;
/// The restrictions under which this SCoP was built.
///
/// The invalid context is similar to the assumed context as it contains
/// constraints over the parameters. However, while we need the constraints
/// in the assumed context to be "true" the constraints in the invalid context
/// need to be "false". Otherwise they behave the same.
isl_set *InvalidContext;
/// Helper struct to remember assumptions.
struct Assumption {
/// The kind of the assumption (e.g., WRAPPING).
AssumptionKind Kind;
/// Flag to distinguish assumptions and restrictions.
AssumptionSign Sign;
/// The valid/invalid context if this is an assumption/restriction.
isl_set *Set;
/// The location that caused this assumption.
DebugLoc Loc;
/// An optional block whose domain can simplify the assumption.
BasicBlock *BB;
};
/// Collection to hold taken assumptions.
///
/// There are two reasons why we want to record assumptions first before we
/// add them to the assumed/invalid context:
/// 1) If the SCoP is not profitable or otherwise invalid without the
/// assumed/invalid context we do not have to compute it.
/// 2) Information about the context are gathered rather late in the SCoP
/// construction (basically after we know all parameters), thus the user
/// might see overly complicated assumptions to be taken while they will
/// only be simplified later on.
SmallVector<Assumption, 8> RecordedAssumptions;
/// The schedule of the SCoP
///
/// The schedule of the SCoP describes the execution order of the statements
/// in the scop by assigning each statement instance a possibly
/// multi-dimensional execution time. The schedule is stored as a tree of
/// schedule nodes.
///
/// The most common nodes in a schedule tree are so-called band nodes. Band
/// nodes map statement instances into a multi dimensional schedule space.
/// This space can be seen as a multi-dimensional clock.
///
/// Example:
///
/// <S,(5,4)> may be mapped to (5,4) by this schedule:
///
/// s0 = i (Year of execution)
/// s1 = j (Day of execution)
///
/// or to (9, 20) by this schedule:
///
/// s0 = i + j (Year of execution)
/// s1 = 20 (Day of execution)
///
/// The order statement instances are executed is defined by the
/// schedule vectors they are mapped to. A statement instance
/// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
/// the schedule vector of A is lexicographic smaller than the schedule
/// vector of B.
///
/// Besides band nodes, schedule trees contain additional nodes that specify
/// a textual ordering between two subtrees or filter nodes that filter the
/// set of statement instances that will be scheduled in a subtree. There
/// are also several other nodes. A full description of the different nodes
/// in a schedule tree is given in the isl manual.
isl_schedule *Schedule;
/// The set of minimal/maximal accesses for each alias group.
///
/// When building runtime alias checks we look at all memory instructions and
/// build so called alias groups. Each group contains a set of accesses to
/// different base arrays which might alias with each other. However, between
/// alias groups there is no aliasing possible.
///
/// In a program with int and float pointers annotated with tbaa information
/// we would probably generate two alias groups, one for the int pointers and
/// one for the float pointers.
///
/// During code generation we will create a runtime alias check for each alias
/// group to ensure the SCoP is executed in an alias free environment.
MinMaxVectorPairVectorTy MinMaxAliasGroups;
/// Mapping from invariant loads to the representing invariant load of
/// their equivalence class.
ValueToValueMap InvEquivClassVMap;
/// List of invariant accesses.
InvariantEquivClassesTy InvariantEquivClasses;
/// Scop constructor; invoked from ScopBuilder::buildScop.
Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI,
ScopDetection::DetectionContext &DC);
//@}
/// Initialize this ScopBuilder.
void init(AliasAnalysis &AA, DominatorTree &DT, LoopInfo &LI);
/// Propagate domains that are known due to graph properties.
///
/// As a CFG is mostly structured we use the graph properties to propagate
/// domains without the need to compute all path conditions. In particular, if
/// a block A dominates a block B and B post-dominates A we know that the
/// domain of B is a superset of the domain of A. As we do not have
/// post-dominator information available here we use the less precise region
/// information. Given a region R, we know that the exit is always executed if
/// the entry was executed, thus the domain of the exit is a superset of the
/// domain of the entry. In case the exit can only be reached from within the
/// region the domains are in fact equal. This function will use this property
/// to avoid the generation of condition constraints that determine when a
/// branch is taken. If @p BB is a region entry block we will propagate its
/// domain to the region exit block. Additionally, we put the region exit
/// block in the @p FinishedExitBlocks set so we can later skip edges from
/// within the region to that block.
///
/// @param BB The block for which the domain is currently propagated.
/// @param BBLoop The innermost affine loop surrounding @p BB.
/// @param FinishedExitBlocks Set of region exits the domain was set for.
/// @param LI The LoopInfo for the current function.
///
void propagateDomainConstraintsToRegionExit(
BasicBlock *BB, Loop *BBLoop,
SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI);
/// Compute the union of predecessor domains for @p BB.
///
/// To compute the union of all domains of predecessors of @p BB this
/// function applies similar reasoning on the CFG structure as described for
/// @see propagateDomainConstraintsToRegionExit
///
/// @param BB The block for which the predecessor domains are collected.
/// @param Domain The domain under which BB is executed.
/// @param DT The DominatorTree for the current function.
/// @param LI The LoopInfo for the current function.
///
/// @returns The domain under which @p BB is executed.
__isl_give isl_set *
getPredecessorDomainConstraints(BasicBlock *BB, __isl_keep isl_set *Domain,
DominatorTree &DT, LoopInfo &LI);
/// Add loop carried constraints to the header block of the loop @p L.
///
/// @param L The loop to process.
/// @param LI The LoopInfo for the current function.
///
/// @returns True if there was no problem and false otherwise.
bool addLoopBoundsToHeaderDomain(Loop *L, LoopInfo &LI);
/// Compute the branching constraints for each basic block in @p R.
///
/// @param R The region we currently build branching conditions for.
/// @param DT The DominatorTree for the current function.
/// @param LI The LoopInfo for the current function.
///
/// @returns True if there was no problem and false otherwise.
bool buildDomainsWithBranchConstraints(Region *R, DominatorTree &DT,
LoopInfo &LI);
/// Propagate the domain constraints through the region @p R.
///
/// @param R The region we currently build branching conditions for.
/// @param DT The DominatorTree for the current function.
/// @param LI The LoopInfo for the current function.
///
/// @returns True if there was no problem and false otherwise.
bool propagateDomainConstraints(Region *R, DominatorTree &DT, LoopInfo &LI);
/// Propagate invalid domains of statements through @p R.
///
/// This method will propagate invalid statement domains through @p R and at
/// the same time add error block domains to them. Additionally, the domains
/// of error statements and those only reachable via error statements will be
/// replaced by an empty set. Later those will be removed completely.
///
/// @param R The currently traversed region.
/// @param DT The DominatorTree for the current function.
/// @param LI The LoopInfo for the current function.
///
/// @returns True if there was no problem and false otherwise.
bool propagateInvalidStmtDomains(Region *R, DominatorTree &DT, LoopInfo &LI);
/// Compute the domain for each basic block in @p R.
///
/// @param R The region we currently traverse.
/// @param DT The DominatorTree for the current function.
/// @param LI The LoopInfo for the current function.
///
/// @returns True if there was no problem and false otherwise.
bool buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI);
/// Add parameter constraints to @p C that imply a non-empty domain.
__isl_give isl_set *addNonEmptyDomainConstraints(__isl_take isl_set *C) const;
/// Return the access for the base ptr of @p MA if any.
MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
/// Check if the base ptr of @p MA is in the SCoP but not hoistable.
bool hasNonHoistableBasePtrInScop(MemoryAccess *MA,
__isl_keep isl_union_map *Writes);
/// Create equivalence classes for required invariant accesses.
///
/// These classes will consolidate multiple required invariant loads from the
/// same address in order to keep the number of dimensions in the SCoP
/// description small. For each such class equivalence class only one
/// representing element, hence one required invariant load, will be chosen
/// and modeled as parameter. The method
/// Scop::getRepresentingInvariantLoadSCEV() will replace each element from an
/// equivalence class with the representing element that is modeled. As a
/// consequence Scop::getIdForParam() will only return an id for the
/// representing element of each equivalence class, thus for each required
/// invariant location.
void buildInvariantEquivalenceClasses();
/// Return the context under which the access cannot be hoisted.
///
/// @param Access The access to check.
/// @param Writes The set of all memory writes in the scop.
///
/// @return Return the context under which the access cannot be hoisted or a
/// nullptr if it cannot be hoisted at all.
__isl_give isl_set *getNonHoistableCtx(MemoryAccess *Access,
__isl_keep isl_union_map *Writes);
/// Verify that all required invariant loads have been hoisted.
///
/// Invariant load hoisting is not guaranteed to hoist all loads that were
/// assumed to be scop invariant during scop detection. This function checks
/// for cases where the hoisting failed, but where it would have been
/// necessary for our scop modeling to be correct. In case of insufficent
/// hoisting the scop is marked as invalid.
///
/// In the example below Bound[1] is required to be invariant:
///
/// for (int i = 1; i < Bound[0]; i++)
/// for (int j = 1; j < Bound[1]; j++)
/// ...
///
void verifyInvariantLoads();
/// Hoist invariant memory loads and check for required ones.
///
/// We first identify "common" invariant loads, thus loads that are invariant
/// and can be hoisted. Then we check if all required invariant loads have
/// been identified as (common) invariant. A load is a required invariant load
/// if it was assumed to be invariant during SCoP detection, e.g., to assume
/// loop bounds to be affine or runtime alias checks to be placeable. In case
/// a required invariant load was not identified as (common) invariant we will
/// drop this SCoP. An example for both "common" as well as required invariant
/// loads is given below:
///
/// for (int i = 1; i < *LB[0]; i++)
/// for (int j = 1; j < *LB[1]; j++)
/// A[i][j] += A[0][0] + (*V);
///
/// Common inv. loads: V, A[0][0], LB[0], LB[1]
/// Required inv. loads: LB[0], LB[1], (V, if it may alias with A or LB)
///
void hoistInvariantLoads();
/// Add invariant loads listed in @p InvMAs with the domain of @p Stmt.
void addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs);
/// Create an id for @p Param and store it in the ParameterIds map.
void createParameterId(const SCEV *Param);
/// Build the Context of the Scop.
void buildContext();
/// Add user provided parameter constraints to context (source code).
void addUserAssumptions(DominatorTree &DT, LoopInfo &LI);
/// Add user provided parameter constraints to context (command line).
void addUserContext();
/// Add the bounds of the parameters to the context.
void addParameterBounds();
/// Simplify the assumed and invalid context.
void simplifyContexts();
/// Get the representing SCEV for @p S if applicable, otherwise @p S.
///
/// Invariant loads of the same location are put in an equivalence class and
/// only one of them is chosen as a representing element that will be
/// modeled as a parameter. The others have to be normalized, i.e.,
/// replaced by the representing element of their equivalence class, in order
/// to get the correct parameter value, e.g., in the SCEVAffinator.
///
/// @param S The SCEV to normalize.
///
/// @return The representing SCEV for invariant loads or @p S if none.
const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S);
/// Create a new SCoP statement for @p BB.
///
/// A new statement for @p BB will be created and added to the statement
/// vector
/// and map.
///
/// @param BB The basic block we build the statement for.
void addScopStmt(BasicBlock *BB);
/// Create a new SCoP statement for @p R.
///
/// A new statement for @p R will be created and added to the statement vector
/// and map.
///
/// @param R The region we build the statement for.
void addScopStmt(Region *R);
/// Update access dimensionalities.
///
/// When detecting memory accesses different accesses to the same array may
/// have built with different dimensionality, as outer zero-values dimensions
/// may not have been recognized as separate dimensions. This function goes
/// again over all memory accesses and updates their dimensionality to match
/// the dimensionality of the underlying ScopArrayInfo object.
void updateAccessDimensionality();
/// Fold size constants to the right.
///
/// In case all memory accesses in a given dimension are multiplied with a
/// common constant, we can remove this constant from the individual access
/// functions and move it to the size of the memory access. We do this as this
/// increases the size of the innermost dimension, consequently widens the
/// valid range the array subscript in this dimension can evaluate to, and
/// as a result increases the likelyhood that our delinearization is
/// correct.
///
/// Example:
///
/// A[][n]
/// S[i,j] -> A[2i][2j+1]
/// S[i,j] -> A[2i][2j]
///
/// =>
///
/// A[][2n]
/// S[i,j] -> A[i][2j+1]
/// S[i,j] -> A[i][2j]
///
/// Constants in outer dimensions can arise when the elements of a parametric
/// multi-dimensional array are not elementar data types, but e.g.,
/// structures.
void foldSizeConstantsToRight();
/// Fold memory accesses to handle parametric offset.
///
/// As a post-processing step, we 'fold' memory accesses to parameteric
/// offsets in the access functions. @see MemoryAccess::foldAccess for
/// details.
void foldAccessRelations();
/// Assume that all memory accesses are within bounds.
///
/// After we have built a model of all memory accesses, we need to assume
/// that the model we built matches reality -- aka. all modeled memory
/// accesses always remain within bounds. We do this as last step, after
/// all memory accesses have been modeled and canonicalized.
void assumeNoOutOfBounds();
/// Finalize all access relations.
///
/// When building up access relations, temporary access relations that
/// correctly represent each individual access are constructed. However, these
/// access relations can be inconsistent or non-optimal when looking at the
/// set of accesses as a whole. This function finalizes the memory accesses
/// and constructs a globally consistent state.
void finalizeAccesses();
/// Construct the schedule of this SCoP.
///
/// @param LI The LoopInfo for the current function.
void buildSchedule(LoopInfo &LI);
/// A loop stack element to keep track of per-loop information during
/// schedule construction.
typedef struct LoopStackElement {
// The loop for which we keep information.
Loop *L;
// The (possibly incomplete) schedule for this loop.
isl_schedule *Schedule;
// The number of basic blocks in the current loop, for which a schedule has
// already been constructed.
unsigned NumBlocksProcessed;
LoopStackElement(Loop *L, __isl_give isl_schedule *S,
unsigned NumBlocksProcessed)
: L(L), Schedule(S), NumBlocksProcessed(NumBlocksProcessed) {}
} LoopStackElementTy;
/// The loop stack used for schedule construction.
///
/// The loop stack keeps track of schedule information for a set of nested
/// loops as well as an (optional) 'nullptr' loop that models the outermost
/// schedule dimension. The loops in a loop stack always have a parent-child
/// relation where the loop at position n is the parent of the loop at
/// position n + 1.
typedef SmallVector<LoopStackElementTy, 4> LoopStackTy;
/// Construct schedule information for a given Region and add the
/// derived information to @p LoopStack.
///
/// Given a Region we derive schedule information for all RegionNodes
/// contained in this region ensuring that the assigned execution times
/// correctly model the existing control flow relations.
///
/// @param R The region which to process.
/// @param LoopStack A stack of loops that are currently under
/// construction.
/// @param LI The LoopInfo for the current function.
void buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI);
/// Build Schedule for the region node @p RN and add the derived
/// information to @p LoopStack.
///
/// In case @p RN is a BasicBlock or a non-affine Region, we construct the
/// schedule for this @p RN and also finalize loop schedules in case the
/// current @p RN completes the loop.
///
/// In case @p RN is a not-non-affine Region, we delegate the construction to
/// buildSchedule(Region *R, ...).
///
/// @param RN The RegionNode region traversed.
/// @param LoopStack A stack of loops that are currently under
/// construction.
/// @param LI The LoopInfo for the current function.
void buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI);
/// Collect all memory access relations of a given type.
///
/// @param Predicate A predicate function that returns true if an access is
/// of a given type.
///
/// @returns The set of memory accesses in the scop that match the predicate.
__isl_give isl_union_map *
getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
/// @name Helper functions for printing the Scop.
///
//@{
void printContext(raw_ostream &OS) const;
void printArrayInfo(raw_ostream &OS) const;
void printStatements(raw_ostream &OS) const;
void printAliasAssumptions(raw_ostream &OS) const;
//@}
friend class ScopBuilder;
public:
~Scop();
/// Get the count of copy statements added to this Scop.
///
/// @return The count of copy statements added to this Scop.
unsigned getCopyStmtsNum() { return CopyStmtsNum; }
/// Create a new copy statement.
///
/// A new statement will be created and added to the statement vector.
///
/// @param Stmt The parent statement.
/// @param SourceRel The source location.
/// @param TargetRel The target location.
/// @param Domain The original domain under which copy statement whould
/// be executed.
ScopStmt *addScopStmt(__isl_take isl_map *SourceRel,
__isl_take isl_map *TargetRel,
__isl_take isl_set *Domain);
/// Add the access function to all MemoryAccess objects of the Scop
/// created in this pass.
void addAccessFunction(MemoryAccess *Access) {
AccessFunctions.emplace_back(Access);
}
ScalarEvolution *getSE() const;
/// Get the count of parameters used in this Scop.
///
/// @return The count of parameters used in this Scop.
size_t getNumParams() const { return Parameters.size(); }
/// Take a list of parameters and add the new ones to the scop.
void addParams(const ParameterSetTy &NewParameters);
/// Return whether this scop is empty, i.e. contains no statements that
/// could be executed.
bool isEmpty() const { return Stmts.empty(); }
typedef ArrayInfoSetTy::iterator array_iterator;
typedef ArrayInfoSetTy::const_iterator const_array_iterator;
typedef iterator_range<ArrayInfoSetTy::iterator> array_range;
typedef iterator_range<ArrayInfoSetTy::const_iterator> const_array_range;
inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
inline const_array_iterator array_begin() const {
return ScopArrayInfoSet.begin();
}
inline const_array_iterator array_end() const {
return ScopArrayInfoSet.end();
}
inline array_range arrays() {
return array_range(array_begin(), array_end());
}
inline const_array_range arrays() const {
return const_array_range(array_begin(), array_end());
}
/// Return the isl_id that represents a certain parameter.
///
/// @param Parameter A SCEV that was recognized as a Parameter.
///
/// @return The corresponding isl_id or NULL otherwise.
__isl_give isl_id *getIdForParam(const SCEV *Parameter);
/// Get the maximum region of this static control part.
///
/// @return The maximum region of this static control part.
inline const Region &getRegion() const { return R; }
inline Region &getRegion() { return R; }
/// Return the function this SCoP is in.
Function &getFunction() const { return *R.getEntry()->getParent(); }
/// Check if @p L is contained in the SCoP.
bool contains(const Loop *L) const { return R.contains(L); }
/// Check if @p BB is contained in the SCoP.
bool contains(const BasicBlock *BB) const { return R.contains(BB); }
/// Check if @p I is contained in the SCoP.
bool contains(const Instruction *I) const { return R.contains(I); }
/// Return the unique exit block of the SCoP.
BasicBlock *getExit() const { return R.getExit(); }
/// Return the unique exiting block of the SCoP if any.
BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
/// Return the unique entry block of the SCoP.
BasicBlock *getEntry() const { return R.getEntry(); }
/// Return the unique entering block of the SCoP if any.
BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
/// Return true if @p BB is the exit block of the SCoP.
bool isExit(BasicBlock *BB) const { return getExit() == BB; }
/// Return a range of all basic blocks in the SCoP.
Region::block_range blocks() const { return R.blocks(); }
/// Return true if and only if @p BB dominates the SCoP.
bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
/// Get the maximum depth of the loop.
///
/// @return The maximum depth of the loop.
inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
/// Return the invariant equivalence class for @p Val if any.
InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
/// Return the set of invariant accesses.
InvariantEquivClassesTy &getInvariantAccesses() {
return InvariantEquivClasses;
}
/// Check if the scop has any invariant access.
bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
/// Mark the SCoP as optimized by the scheduler.
void markAsOptimized() { IsOptimized = true; }
/// Check if the SCoP has been optimized by the scheduler.
bool isOptimized() const { return IsOptimized; }
/// Get the name of this Scop.
std::string getNameStr() const;
/// Get the constraint on parameter of this Scop.
///
/// @return The constraint on parameter of this Scop.
__isl_give isl_set *getContext() const;
__isl_give isl_space *getParamSpace() const;
/// Get the assumed context for this Scop.
///
/// @return The assumed context of this Scop.
__isl_give isl_set *getAssumedContext() const;
/// Return true if the optimized SCoP can be executed.
///
/// In addition to the runtime check context this will also utilize the domain
/// constraints to decide it the optimized version can actually be executed.
///
/// @returns True if the optimized SCoP can be executed.
bool hasFeasibleRuntimeContext() const;
/// Check if the assumption in @p Set is trivial or not.
///
/// @param Set The relations between parameters that are assumed to hold.
/// @param Sign Enum to indicate if the assumptions in @p Set are positive
/// (needed/assumptions) or negative (invalid/restrictions).
///
/// @returns True if the assumption @p Set is not trivial.
bool isEffectiveAssumption(__isl_keep isl_set *Set, AssumptionSign Sign);
/// Track and report an assumption.
///
/// Use 'clang -Rpass-analysis=polly-scops' or 'opt
/// -pass-remarks-analysis=polly-scops' to output the assumptions.
///
/// @param Kind The assumption kind describing the underlying cause.
/// @param Set The relations between parameters that are assumed to hold.
/// @param Loc The location in the source that caused this assumption.
/// @param Sign Enum to indicate if the assumptions in @p Set are positive
/// (needed/assumptions) or negative (invalid/restrictions).
///
/// @returns True if the assumption is not trivial.
bool trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
DebugLoc Loc, AssumptionSign Sign);
/// Add assumptions to assumed context.
///
/// The assumptions added will be assumed to hold during the execution of the
/// scop. However, as they are generally not statically provable, at code
/// generation time run-time checks will be generated that ensure the
/// assumptions hold.
///
/// WARNING: We currently exploit in simplifyAssumedContext the knowledge
/// that assumptions do not change the set of statement instances
/// executed.
///
/// @param Kind The assumption kind describing the underlying cause.
/// @param Set The relations between parameters that are assumed to hold.
/// @param Loc The location in the source that caused this assumption.
/// @param Sign Enum to indicate if the assumptions in @p Set are positive
/// (needed/assumptions) or negative (invalid/restrictions).
void addAssumption(AssumptionKind Kind, __isl_take isl_set *Set, DebugLoc Loc,
AssumptionSign Sign);
/// Record an assumption for later addition to the assumed context.
///
/// This function will add the assumption to the RecordedAssumptions. This
/// collection will be added (@see addAssumption) to the assumed context once
/// all paramaters are known and the context is fully build.
///
/// @param Kind The assumption kind describing the underlying cause.
/// @param Set The relations between parameters that are assumed to hold.
/// @param Loc The location in the source that caused this assumption.
/// @param Sign Enum to indicate if the assumptions in @p Set are positive
/// (needed/assumptions) or negative (invalid/restrictions).
/// @param BB The block in which this assumption was taken. If it is
/// set, the domain of that block will be used to simplify the
/// actual assumption in @p Set once it is added. This is useful
/// if the assumption was created prior to the domain.
void recordAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
DebugLoc Loc, AssumptionSign Sign,
BasicBlock *BB = nullptr);
/// Add all recorded assumptions to the assumed context.
void addRecordedAssumptions();
/// Mark the scop as invalid.
///
/// This method adds an assumption to the scop that is always invalid. As a
/// result, the scop will not be optimized later on. This function is commonly
/// called when a condition makes it impossible (or too compile time
/// expensive) to process this scop any further.
///
/// @param Kind The assumption kind describing the underlying cause.
/// @param Loc The location in the source that triggered .
void invalidate(AssumptionKind Kind, DebugLoc Loc);
/// Get the invalid context for this Scop.
///
/// @return The invalid context of this Scop.
__isl_give isl_set *getInvalidContext() const;
/// Return true if and only if the InvalidContext is trivial (=empty).
bool hasTrivialInvalidContext() const {
return isl_set_is_empty(InvalidContext);
}
/// Build the alias checks for this SCoP.
bool buildAliasChecks(AliasAnalysis &AA);
/// Build all alias groups for this SCoP.
///
/// @returns True if __no__ error occurred, false otherwise.
bool buildAliasGroups(AliasAnalysis &AA);
/// Return all alias groups for this SCoP.
const MinMaxVectorPairVectorTy &getAliasGroups() const {
return MinMaxAliasGroups;
}
/// Get an isl string representing the context.
std::string getContextStr() const;
/// Get an isl string representing the assumed context.
std::string getAssumedContextStr() const;
/// Get an isl string representing the invalid context.
std::string getInvalidContextStr() const;
/// Return the ScopStmt for the given @p BB or nullptr if there is
/// none.
ScopStmt *getStmtFor(BasicBlock *BB) const;
/// Return the ScopStmt that represents the Region @p R, or nullptr if
/// it is not represented by any statement in this Scop.
ScopStmt *getStmtFor(Region *R) const;
/// Return the ScopStmt that represents @p RN; can return nullptr if
/// the RegionNode is not within the SCoP or has been removed due to
/// simplifications.
ScopStmt *getStmtFor(RegionNode *RN) const;
/// Return the ScopStmt an instruction belongs to, or nullptr if it
/// does not belong to any statement in this Scop.
ScopStmt *getStmtFor(Instruction *Inst) const {
return getStmtFor(Inst->getParent());
}
/// Return the number of statements in the SCoP.
size_t getSize() const { return Stmts.size(); }
/// @name Statements Iterators
///
/// These iterators iterate over all statements of this Scop.
//@{
typedef StmtSet::iterator iterator;
typedef StmtSet::const_iterator const_iterator;
iterator begin() { return Stmts.begin(); }
iterator end() { return Stmts.end(); }
const_iterator begin() const { return Stmts.begin(); }
const_iterator end() const { return Stmts.end(); }
typedef StmtSet::reverse_iterator reverse_iterator;
typedef StmtSet::const_reverse_iterator const_reverse_iterator;
reverse_iterator rbegin() { return Stmts.rbegin(); }
reverse_iterator rend() { return Stmts.rend(); }
const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
const_reverse_iterator rend() const { return Stmts.rend(); }
//@}
/// Return the set of required invariant loads.
const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
return DC.RequiredILS;
}
/// Add @p LI to the set of required invariant loads.
void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
/// Return true if and only if @p LI is a required invariant load.
bool isRequiredInvariantLoad(LoadInst *LI) const {
return getRequiredInvariantLoads().count(LI);
}
/// Return the set of boxed (thus overapproximated) loops.
const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
/// Return true if and only if @p R is a non-affine subregion.
bool isNonAffineSubRegion(const Region *R) {
return DC.NonAffineSubRegionSet.count(R);
}
const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
/// Return the (possibly new) ScopArrayInfo object for @p Access.
///
/// @param ElementType The type of the elements stored in this array.
/// @param Kind The kind of the array info object.
/// @param BaseName The optional name of this memory reference.
const ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr,
Type *ElementType,
ArrayRef<const SCEV *> Sizes,
ScopArrayInfo::MemoryKind Kind,
const char *BaseName = nullptr);
/// Create an array and return the corresponding ScopArrayInfo object.
///
/// @param ElementType The type of the elements stored in this array.
/// @param BaseName The name of this memory reference.
/// @param Sizes The sizes of dimensions.
const ScopArrayInfo *createScopArrayInfo(Type *ElementType,
const std::string &BaseName,
const std::vector<unsigned> &Sizes);
/// Return the cached ScopArrayInfo object for @p BasePtr.
///
/// @param BasePtr The base pointer the object has been stored for.
/// @param Kind The kind of array info object.
const ScopArrayInfo *getScopArrayInfo(Value *BasePtr,
ScopArrayInfo::MemoryKind Kind);
/// Invalidate ScopArrayInfo object for base address.
///
/// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
/// @param Kind The Kind of the ScopArrayInfo object.
void invalidateScopArrayInfo(Value *BasePtr, ScopArrayInfo::MemoryKind Kind) {
auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
if (It == ScopArrayInfoMap.end())
return;
ScopArrayInfoSet.remove(It->second.get());
ScopArrayInfoMap.erase(It);
}
void setContext(__isl_take isl_set *NewContext);
/// Align the parameters in the statement to the scop context
void realignParams();
/// Return true if this SCoP can be profitably optimized.
bool isProfitable() const;
/// Return true if the SCoP contained at least one error block.
bool hasErrorBlock() const { return HasErrorBlock; }
/// Return true if the underlying region has a single exiting block.
bool hasSingleExitEdge() const { return HasSingleExitEdge; }
/// Print the static control part.
///
/// @param OS The output stream the static control part is printed to.
void print(raw_ostream &OS) const;
/// Print the ScopStmt to stderr.
void dump() const;
/// Get the isl context of this static control part.
///
/// @return The isl context of this static control part.
isl_ctx *getIslCtx() const;
/// Directly return the shared_ptr of the context.
const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
/// Compute the isl representation for the SCEV @p E
///
/// @param E The SCEV that should be translated.
/// @param BB An (optional) basic block in which the isl_pw_aff is computed.
/// SCEVs known to not reference any loops in the SCoP can be
/// passed without a @p BB.
/// @param NonNegative Flag to indicate the @p E has to be non-negative.
///
/// Note that this function will always return a valid isl_pw_aff. However, if
/// the translation of @p E was deemed to complex the SCoP is invalidated and
/// a dummy value of appropriate dimension is returned. This allows to bail
/// for complex cases without "error handling code" needed on the users side.
__isl_give PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
bool NonNegative = false);
/// Compute the isl representation for the SCEV @p E
///
/// This function is like @see Scop::getPwAff() but strips away the invalid
/// domain part associated with the piecewise affine function.
__isl_give isl_pw_aff *getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr);
/// Return the domain of @p Stmt.
///
/// @param Stmt The statement for which the conditions should be returned.
__isl_give isl_set *getDomainConditions(const ScopStmt *Stmt) const;
/// Return the domain of @p BB.
///
/// @param BB The block for which the conditions should be returned.
__isl_give isl_set *getDomainConditions(BasicBlock *BB) const;
/// Get a union set containing the iteration domains of all statements.
__isl_give isl_union_set *getDomains() const;
/// Get a union map of all may-writes performed in the SCoP.
__isl_give isl_union_map *getMayWrites();
/// Get a union map of all must-writes performed in the SCoP.
__isl_give isl_union_map *getMustWrites();
/// Get a union map of all writes performed in the SCoP.
__isl_give isl_union_map *getWrites();
/// Get a union map of all reads performed in the SCoP.
__isl_give isl_union_map *getReads();
/// Get a union map of all memory accesses performed in the SCoP.
__isl_give isl_union_map *getAccesses();
/// Get the schedule of all the statements in the SCoP.
///
/// @return The schedule of all the statements in the SCoP, if the schedule of
/// the Scop does not contain extension nodes, and nullptr, otherwise.
__isl_give isl_union_map *getSchedule() const;
/// Get a schedule tree describing the schedule of all statements.
__isl_give isl_schedule *getScheduleTree() const;
/// Update the current schedule
///
/// NewSchedule The new schedule (given as a flat union-map).
void setSchedule(__isl_take isl_union_map *NewSchedule);
/// Update the current schedule
///
/// NewSchedule The new schedule (given as schedule tree).
void setScheduleTree(__isl_take isl_schedule *NewSchedule);
/// Intersects the domains of all statements in the SCoP.
///
/// @return true if a change was made
bool restrictDomains(__isl_take isl_union_set *Domain);
/// Get the depth of a loop relative to the outermost loop in the Scop.
///
/// This will return
/// 0 if @p L is an outermost loop in the SCoP
/// >0 for other loops in the SCoP
/// -1 if @p L is nullptr or there is no outermost loop in the SCoP
int getRelativeLoopDepth(const Loop *L) const;
/// Find the ScopArrayInfo associated with an isl Id
/// that has name @p Name.
ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
/// Check whether @p Schedule contains extension nodes.
///
/// @return true if @p Schedule contains extension nodes.
static bool containsExtensionNode(__isl_keep isl_schedule *Schedule);
/// Simplify the SCoP representation.
///
/// @param AfterHoisting Whether it is called after invariant load hoisting.
/// When true, also removes statements without
/// side-effects.
void simplifySCoP(bool AfterHoisting);
};
/// Print Scop scop to raw_ostream O.
static inline raw_ostream &operator<<(raw_ostream &O, const Scop &scop) {
scop.print(O);
return O;
}
/// The legacy pass manager's analysis pass to compute scop information
/// for a region.
class ScopInfoRegionPass : public RegionPass {
/// The Scop pointer which is used to construct a Scop.
std::unique_ptr<Scop> S;
public:
static char ID; // Pass identification, replacement for typeid
ScopInfoRegionPass() : RegionPass(ID) {}
~ScopInfoRegionPass() {}
/// Build Scop object, the Polly IR of static control
/// part for the current SESE-Region.
///
/// @return If the current region is a valid for a static control part,
/// return the Polly IR representing this static control part,
/// return null otherwise.
Scop *getScop() { return S.get(); }
const Scop *getScop() const { return S.get(); }
/// Calculate the polyhedral scop information for a given Region.
bool runOnRegion(Region *R, RGPassManager &RGM) override;
void releaseMemory() override { S.reset(); }
void print(raw_ostream &O, const Module *M = nullptr) const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
//===----------------------------------------------------------------------===//
/// The legacy pass manager's analysis pass to compute scop information
/// for the whole function.
///
/// This pass will maintain a map of the maximal region within a scop to its
/// scop object for all the feasible scops present in a function.
/// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
/// region pass manager.
class ScopInfoWrapperPass : public FunctionPass {
public:
using RegionToScopMapTy = DenseMap<Region *, std::unique_ptr<Scop>>;
using iterator = RegionToScopMapTy::iterator;
using const_iterator = RegionToScopMapTy::const_iterator;
private:
/// A map of Region to its Scop object containing
/// Polly IR of static control part
RegionToScopMapTy RegionToScopMap;
public:
static char ID; // Pass identification, replacement for typeid
ScopInfoWrapperPass() : FunctionPass(ID) {}
~ScopInfoWrapperPass() {}
/// Get the Scop object for the given Region
///
/// @return If the given region is the maximal region within a scop, return
/// the scop object. If the given region is a subregion, return a
/// nullptr. Top level region containing the entry block of a function
/// is not considered in the scop creation.
Scop *getScop(Region *R) const {
auto MapIt = RegionToScopMap.find(R);
if (MapIt != RegionToScopMap.end())
return MapIt->second.get();
return nullptr;
}
iterator begin() { return RegionToScopMap.begin(); }
iterator end() { return RegionToScopMap.end(); }
const_iterator begin() const { return RegionToScopMap.begin(); }
const_iterator end() const { return RegionToScopMap.end(); }
/// Calculate all the polyhedral scops for a given function.
bool runOnFunction(Function &F) override;
void releaseMemory() override { RegionToScopMap.clear(); }
void print(raw_ostream &O, const Module *M = nullptr) const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end namespace polly
namespace llvm {
class PassRegistry;
void initializeScopInfoRegionPassPass(llvm::PassRegistry &);
void initializeScopInfoWrapperPassPass(llvm::PassRegistry &);
} // namespace llvm
#endif
|