This file is indexed.

/usr/include/glm/gtx/quaternion.inl is in libglm-dev 0.9.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// Restrictions:
///		By making use of the Software for military purposes, you choose to make
///		a Bunny unhappy.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_quaternion
/// @file glm/gtx/quaternion.inl
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

#include <limits>
#include "../gtc/constants.hpp"

namespace glm
{
	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> cross
	(
		tvec3<T, P> const & v,
		tquat<T, P> const & q
	)
	{
		return inverse(q) * v;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> cross
	(
		tquat<T, P> const & q,
		tvec3<T, P> const & v
	)
	{
		return q * v;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> squad
	(
		tquat<T, P> const & q1,
		tquat<T, P> const & q2,
		tquat<T, P> const & s1,
		tquat<T, P> const & s2,
		T const & h)
	{
		return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> intermediate
	(
		tquat<T, P> const & prev,
		tquat<T, P> const & curr,
		tquat<T, P> const & next
	)
	{
		tquat<T, P> invQuat = inverse(curr);
		return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> exp
	(
		tquat<T, P> const & q
	)
	{
		tvec3<T, P> u(q.x, q.y, q.z);
		T Angle = glm::length(u);
		if (Angle < epsilon<T>())
			return tquat<T, P>();

		tvec3<T, P> v(u / Angle);
		return tquat<T, P>(cos(Angle), sin(Angle) * v);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> log
	(
		tquat<T, P> const & q
	)
	{
		tvec3<T, P> u(q.x, q.y, q.z);
		T Vec3Len = length(u);

		if (Vec3Len < epsilon<T>())
		{
			if(q.w > static_cast<T>(0))
				return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
			else if(q.w < static_cast<T>(0))
				return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
			else
				return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
		}
		else
		{
			T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w);
			T t = atan(Vec3Len, T(q.w)) / Vec3Len;
			return tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z);
		}
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
	{
		//Raising to the power of 0 should yield 1
		//Needed to prevent a division by 0 error later on
		if(y > -epsilon<T>() && y < epsilon<T>())
			return tquat<T, P>(1,0,0,0);

		//To deal with non-unit quaternions
		T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);

		//Equivalent to raising a real number to a power
		//Needed to prevent a division by 0 error later on
		if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
			return tquat<T, P>(pow(x.w, y),0,0,0);

		T Angle = acos(x.w / magnitude);
		T NewAngle = Angle * y;
		T Div = sin(NewAngle) / sin(Angle);
		T Mag = pow(magnitude, y-1);

		return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> rotate
	(
		tquat<T, P> const & q,
		tvec3<T, P> const & v
	)
	{
		return q * v;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec4<T, P> rotate
	(
		tquat<T, P> const & q,
		tvec4<T, P> const & v
	)
	{
		return q * v;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER T extractRealComponent
	(
		tquat<T, P> const & q
	)
	{
		T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
		if(w < T(0))
			return T(0);
		else
			return -sqrt(w);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER T length2
	(
		tquat<T, P> const & q
	)
	{
		return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> shortMix
	(
		tquat<T, P> const & x,
		tquat<T, P> const & y,
		T const & a
	)
	{
		if(a <= static_cast<T>(0)) return x;
		if(a >= static_cast<T>(1)) return y;

		T fCos = dot(x, y);
		tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
		if(fCos < static_cast<T>(0))
		{
			y2 = -y;
			fCos = -fCos;
		}

		//if(fCos > 1.0f) // problem
		T k0, k1;
		if(fCos > (static_cast<T>(1) - epsilon<T>()))
		{
			k0 = static_cast<T>(1) - a;
			k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
		}
		else
		{
			T fSin = sqrt(T(1) - fCos * fCos);
			T fAngle = atan(fSin, fCos);
			T fOneOverSin = static_cast<T>(1) / fSin;
			k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
			k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
		}

		return tquat<T, P>(
			k0 * x.w + k1 * y2.w,
			k0 * x.x + k1 * y2.x,
			k0 * x.y + k1 * y2.y,
			k0 * x.z + k1 * y2.z);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> fastMix
	(
		tquat<T, P> const & x,
		tquat<T, P> const & y,
		T const & a
	)
	{
		return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tquat<T, P> rotation
	(
		tvec3<T, P> const & orig,
		tvec3<T, P> const & dest
	)
	{
		T cosTheta = dot(orig, dest);
		tvec3<T, P> rotationAxis;

		if(cosTheta >= static_cast<T>(1) - epsilon<T>())
			return quat();

		if(cosTheta < static_cast<T>(-1) + epsilon<T>())
		{
			// special case when vectors in opposite directions :
			// there is no "ideal" rotation axis
			// So guess one; any will do as long as it's perpendicular to start
			// This implementation favors a rotation around the Up axis (Y),
			// since it's often what you want to do.
			rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
			if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
				rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);

			rotationAxis = normalize(rotationAxis);
			return angleAxis(pi<T>(), rotationAxis);
		}

		// Implementation from Stan Melax's Game Programming Gems 1 article
		rotationAxis = cross(orig, dest);

		T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
		T invs = static_cast<T>(1) / s;

		return tquat<T, P>(
			s * static_cast<T>(0.5f), 
			rotationAxis.x * invs,
			rotationAxis.y * invs,
			rotationAxis.z * invs);
	}

}//namespace glm