/usr/include/glm/gtx/quaternion.inl is in libglm-dev 0.9.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | ///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_quaternion
/// @file glm/gtx/quaternion.inl
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include <limits>
#include "../gtc/constants.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross
(
tvec3<T, P> const & v,
tquat<T, P> const & q
)
{
return inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross
(
tquat<T, P> const & q,
tvec3<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> squad
(
tquat<T, P> const & q1,
tquat<T, P> const & q2,
tquat<T, P> const & s1,
tquat<T, P> const & s2,
T const & h)
{
return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> intermediate
(
tquat<T, P> const & prev,
tquat<T, P> const & curr,
tquat<T, P> const & next
)
{
tquat<T, P> invQuat = inverse(curr);
return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> exp
(
tquat<T, P> const & q
)
{
tvec3<T, P> u(q.x, q.y, q.z);
T Angle = glm::length(u);
if (Angle < epsilon<T>())
return tquat<T, P>();
tvec3<T, P> v(u / Angle);
return tquat<T, P>(cos(Angle), sin(Angle) * v);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> log
(
tquat<T, P> const & q
)
{
tvec3<T, P> u(q.x, q.y, q.z);
T Vec3Len = length(u);
if (Vec3Len < epsilon<T>())
{
if(q.w > static_cast<T>(0))
return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
else if(q.w < static_cast<T>(0))
return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
else
return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
}
else
{
T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w);
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
return tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z);
}
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
{
//Raising to the power of 0 should yield 1
//Needed to prevent a division by 0 error later on
if(y > -epsilon<T>() && y < epsilon<T>())
return tquat<T, P>(1,0,0,0);
//To deal with non-unit quaternions
T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
//Equivalent to raising a real number to a power
//Needed to prevent a division by 0 error later on
if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
return tquat<T, P>(pow(x.w, y),0,0,0);
T Angle = acos(x.w / magnitude);
T NewAngle = Angle * y;
T Div = sin(NewAngle) / sin(Angle);
T Mag = pow(magnitude, y-1);
return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> rotate
(
tquat<T, P> const & q,
tvec3<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> rotate
(
tquat<T, P> const & q,
tvec4<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T extractRealComponent
(
tquat<T, P> const & q
)
{
T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
if(w < T(0))
return T(0);
else
return -sqrt(w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
tquat<T, P> const & q
)
{
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> shortMix
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
{
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T fCos = dot(x, y);
tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
if(fCos < static_cast<T>(0))
{
y2 = -y;
fCos = -fCos;
}
//if(fCos > 1.0f) // problem
T k0, k1;
if(fCos > (static_cast<T>(1) - epsilon<T>()))
{
k0 = static_cast<T>(1) - a;
k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
}
else
{
T fSin = sqrt(T(1) - fCos * fCos);
T fAngle = atan(fSin, fCos);
T fOneOverSin = static_cast<T>(1) / fSin;
k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
}
return tquat<T, P>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> fastMix
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
{
return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> rotation
(
tvec3<T, P> const & orig,
tvec3<T, P> const & dest
)
{
T cosTheta = dot(orig, dest);
tvec3<T, P> rotationAxis;
if(cosTheta >= static_cast<T>(1) - epsilon<T>())
return quat();
if(cosTheta < static_cast<T>(-1) + epsilon<T>())
{
// special case when vectors in opposite directions :
// there is no "ideal" rotation axis
// So guess one; any will do as long as it's perpendicular to start
// This implementation favors a rotation around the Up axis (Y),
// since it's often what you want to do.
rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);
rotationAxis = normalize(rotationAxis);
return angleAxis(pi<T>(), rotationAxis);
}
// Implementation from Stan Melax's Game Programming Gems 1 article
rotationAxis = cross(orig, dest);
T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
T invs = static_cast<T>(1) / s;
return tquat<T, P>(
s * static_cast<T>(0.5f),
rotationAxis.x * invs,
rotationAxis.y * invs,
rotationAxis.z * invs);
}
}//namespace glm
|