/usr/share/javascript/yui3/matrix/matrix.js is in libjs-yui3-full 3.5.1-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | /*
YUI 3.5.1 (build 22)
Copyright 2012 Yahoo! Inc. All rights reserved.
Licensed under the BSD License.
http://yuilibrary.com/license/
*/
YUI.add('matrix', function(Y) {
var MatrixUtil = {
/**
* Used as value for the _rounding method.
*
* @property _rounder
* @private
*/
_rounder: 100000,
/**
* Rounds values
*
* @method _round
* @private
*/
_round: function(val) {
val = Math.round(val * MatrixUtil._rounder) / MatrixUtil._rounder;
return val;
},
/**
* Converts a radian value to a degree.
*
* @method rad2deg
* @param {Number} rad Radian value to be converted.
* @return Number
*/
rad2deg: function(rad) {
var deg = rad * (180 / Math.PI);
return deg;
},
/**
* Converts a degree value to a radian.
*
* @method deg2rad
* @param {Number} deg Degree value to be converted to radian.
* @return Number
*/
deg2rad: function(deg) {
var rad = deg * (Math.PI / 180);
return rad;
},
/**
* Converts an angle to a radian
*
* @method angle2rad
* @param {Objecxt} val Value to be converted to radian.
* @return Number
*/
angle2rad: function(val) {
if (typeof val === 'string' && val.indexOf('rad') > -1) {
val = parseFloat(val);
} else { // default to deg
val = MatrixUtil.deg2rad(parseFloat(val));
}
return val;
},
/**
* Converts a transform object to an array of column vectors.
*
* / \
* | matrix[0][0] matrix[1][0] matrix[2][0] |
* | matrix[0][1] matrix[1][1] matrix[2][1] |
* | matrix[0][2] matrix[1][2] matrix[2][2] |
* \ /
*
* @method getnxn
* @return Array
*/
convertTransformToArray: function(matrix)
{
var matrixArray = [
[matrix.a, matrix.c, matrix.dx],
[matrix.b, matrix.d, matrix.dy],
[0, 0, 1]
];
return matrixArray;
},
/**
* Returns the determinant of a given matrix.
*
* / \
* | matrix[0][0] matrix[1][0] matrix[2][0] |
* | matrix[0][1] matrix[1][1] matrix[2][1] |
* | matrix[0][2] matrix[1][2] matrix[2][2] |
* | matrix[0][3] matrix[1][3] matrix[2][3] |
* \ /
*
* @method getDeterminant
* @param {Array} matrix An nxn matrix represented an array of vector (column) arrays. Each vector array has index for each row.
* @return Number
*/
getDeterminant: function(matrix)
{
var determinant = 0,
len = matrix.length,
i = 0,
multiplier;
if(len == 2)
{
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
}
for(; i < len; ++i)
{
multiplier = matrix[i][0];
if(i % 2 === 0 || i === 0)
{
determinant += multiplier * MatrixUtil.getDeterminant(MatrixUtil.getMinors(matrix, i, 0));
}
else
{
determinant -= multiplier * MatrixUtil.getDeterminant(MatrixUtil.getMinors(matrix, i, 0));
}
}
return determinant;
},
/**
* Returns the inverse of a matrix
*
* @method inverse
* @param Array matrix An array representing an nxn matrix
* @return Array
*
* / \
* | matrix[0][0] matrix[1][0] matrix[2][0] |
* | matrix[0][1] matrix[1][1] matrix[2][1] |
* | matrix[0][2] matrix[1][2] matrix[2][2] |
* | matrix[0][3] matrix[1][3] matrix[2][3] |
* \ /
*/
inverse: function(matrix)
{
var determinant = 0,
len = matrix.length,
i = 0,
j,
inverse,
adjunct = [],
//vector representing 2x2 matrix
minor = [];
if(len === 2)
{
determinant = matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
inverse = [
[matrix[1][1] * determinant, -matrix[1][0] * determinant],
[-matrix[0][1] * determinant, matrix[0][0] * determinant]
];
}
else
{
determinant = MatrixUtil.getDeterminant(matrix);
for(; i < len; ++i)
{
adjunct[i] = [];
for(j = 0; j < len; ++j)
{
minor = MatrixUtil.getMinors(matrix, j, i);
adjunct[i][j] = MatrixUtil.getDeterminant(minor);
if((i + j) % 2 !== 0 && (i + j) !== 0)
{
adjunct[i][j] *= -1;
}
}
}
inverse = MatrixUtil.scalarMultiply(adjunct, 1/determinant);
}
return inverse;
},
/**
* Multiplies a matrix by a numeric value.
*
* @method scalarMultiply
* @param {Array} matrix The matrix to be altered.
* @param {Number} multiplier The number to multiply against the matrix.
* @return Array
*/
scalarMultiply: function(matrix, multiplier)
{
var i = 0,
j,
len = matrix.length;
for(; i < len; ++i)
{
for(j = 0; j < len; ++j)
{
matrix[i][j] = MatrixUtil._round(matrix[i][j] * multiplier);
}
}
return matrix;
},
/**
* Returns the transpose for an nxn matrix.
*
* @method transpose
* @param matrix An nxn matrix represented by an array of vector arrays.
* @return Array
*/
transpose: function(matrix)
{
var len = matrix.length,
i = 0,
j = 0,
transpose = [];
for(; i < len; ++i)
{
transpose[i] = [];
for(j = 0; j < len; ++j)
{
transpose[i].push(matrix[j][i]);
}
}
return transpose;
},
/**
* Returns a matrix of minors based on a matrix, column index and row index.
*
* @method getMinors
* @param {Array} matrix The matrix from which to extract the matrix of minors.
* @param {Number} columnIndex A zero-based index representing the specified column to exclude.
* @param {Number} rowIndex A zero-based index represeenting the specified row to exclude.
* @return Array
*/
getMinors: function(matrix, columnIndex, rowIndex)
{
var minors = [],
len = matrix.length,
i = 0,
j,
column;
for(; i < len; ++i)
{
if(i !== columnIndex)
{
column = [];
for(j = 0; j < len; ++j)
{
if(j !== rowIndex)
{
column.push(matrix[i][j]);
}
}
minors.push(column);
}
}
return minors;
},
/**
* Returns the sign of value
*
* @method sign
* @param {Number} val value to be interpreted
* @return Number
*/
sign: function(val)
{
return val === 0 ? 1 : val/Math.abs(val);
},
/**
* Multiplies a vector and a matrix
*
* @method vectorMatrixProduct
* @param {Array} vector Array representing a column vector
* @param {Array} matrix Array representing an nxn matrix
* @return Array
*/
vectorMatrixProduct: function(vector, matrix)
{
var i,
j,
len = vector.length,
product = [],
rowProduct;
for(i = 0; i < len; ++i)
{
rowProduct = 0;
for(j = 0; j < len; ++j)
{
rowProduct += vector[i] * matrix[i][j];
}
product[i] = rowProduct;
}
return product;
},
/**
* Breaks up a 2d transform matrix into a series of transform operations.
*
* @method decompose
* @param {Array} 3x3 matrix array
* @return Array
*/
decompose: function(matrix)
{
var a = parseFloat(matrix[0][0]),
b = parseFloat(matrix[1][0]),
c = parseFloat(matrix[0][1]),
d = parseFloat(matrix[1][1]),
dx = parseFloat(matrix[0][2]),
dy = parseFloat(matrix[1][2]),
rotate,
sx,
sy,
shear;
if((a * d - b * c) === 0)
{
return false;
}
//get length of vector(ab)
sx = MatrixUtil._round(Math.sqrt(a * a + b * b));
//normalize components of vector(ab)
a /= sx;
b /= sx;
shear = MatrixUtil._round(a * c + b * d);
c -= a * shear;
d -= b * shear;
//get length of vector(cd)
sy = MatrixUtil._round(Math.sqrt(c * c + d * d));
//normalize components of vector(cd)
c /= sy;
d /= sy;
shear /=sy;
shear = MatrixUtil._round(MatrixUtil.rad2deg(Math.atan(shear)));
rotate = MatrixUtil._round(MatrixUtil.rad2deg(Math.atan2(matrix[1][0], matrix[0][0])));
return [
["translate", dx, dy],
["rotate", rotate],
["skewX", shear],
["scale", sx, sy]
];
},
/**
* Parses a transform string and returns an array of transform arrays.
*
* @method getTransformArray
* @param {String} val A transform string
* @return Array
*/
getTransformArray: function(transform) {
var re = /\s*([a-z]*)\(([\w,\.,\-,\s]*)\)/gi,
transforms = [],
args,
m,
decomp,
methods = MatrixUtil.transformMethods;
while ((m = re.exec(transform))) {
if (methods.hasOwnProperty(m[1]))
{
args = m[2].split(',');
args.unshift(m[1]);
transforms.push(args);
}
else if(m[1] == "matrix")
{
args = m[2].split(',');
decomp = MatrixUtil.decompose([
[args[0], args[2], args[4]],
[args[1], args[3], args[5]],
[0, 0, 1]
]);
transforms.push(decomp[0]);
transforms.push(decomp[1]);
transforms.push(decomp[2]);
transforms.push(decomp[3]);
}
}
return transforms;
},
/**
* Returns an array of transform arrays representing transform functions and arguments.
*
* @method getTransformFunctionArray
* @return Array
*/
getTransformFunctionArray: function(transform) {
var list;
switch(transform)
{
case "skew" :
list = [transform, 0, 0];
break;
case "scale" :
list = [transform, 1, 1];
break;
case "scaleX" :
list = [transform, 1];
break;
case "scaleY" :
list = [transform, 1];
break;
case "translate" :
list = [transform, 0, 0];
break;
default :
list = [transform, 0];
break;
}
return list;
},
/**
* Compares to arrays or transform functions to ensure both contain the same functions in the same
* order.
*
* @method compareTransformSequence
* @param {Array} list1 Array to compare
* @param {Array} list2 Array to compare
* @return Boolean
*/
compareTransformSequence: function(list1, list2)
{
var i = 0,
len = list1.length,
len2 = list2.length,
isEqual = len === len2;
if(isEqual)
{
for(; i < len; ++i)
{
if(list1[i][0] != list2[i][0])
{
isEqual = false;
break;
}
}
}
return isEqual;
},
/**
* Mapping of possible transform method names.
*
* @property transformMethods
* @type Object
*/
transformMethods: {
rotate: "rotate",
skew: "skew",
skewX: "skewX",
skewY: "skewY",
translate: "translate",
translateX: "translateX",
translateY: "tranlsateY",
scale: "scale",
scaleX: "scaleX",
scaleY: "scaleY"
}
};
Y.MatrixUtil = MatrixUtil;
/**
* Matrix is a class that allows for the manipulation of a transform matrix.
* This class is a work in progress.
*
* @class Matrix
* @constructor
* @module matrix
*/
var Matrix = function(config) {
this.init(config);
};
Matrix.prototype = {
/**
* Used as value for the _rounding method.
*
* @property _rounder
* @private
*/
_rounder: 100000,
/**
* Updates the matrix.
*
* @method multiple
* @param {Number} a
* @param {Number} b
* @param {Number} c
* @param {Number} d
* @param {Number} dx
* @param {Number} dy
*/
multiply: function(a, b, c, d, dx, dy) {
var matrix = this,
matrix_a = matrix.a * a + matrix.c * b,
matrix_b = matrix.b * a + matrix.d * b,
matrix_c = matrix.a * c + matrix.c * d,
matrix_d = matrix.b * c + matrix.d * d,
matrix_dx = matrix.a * dx + matrix.c * dy + matrix.dx,
matrix_dy = matrix.b * dx + matrix.d * dy + matrix.dy;
matrix.a = this._round(matrix_a);
matrix.b = this._round(matrix_b);
matrix.c = this._round(matrix_c);
matrix.d = this._round(matrix_d);
matrix.dx = this._round(matrix_dx);
matrix.dy = this._round(matrix_dy);
return this;
},
/**
* Parses a string and updates the matrix.
*
* @method applyCSSText
* @param {String} val A css transform string
*/
applyCSSText: function(val) {
var re = /\s*([a-z]*)\(([\w,\.,\-,\s]*)\)/gi,
args,
m;
val = val.replace(/matrix/g, "multiply");
while ((m = re.exec(val))) {
if (typeof this[m[1]] === 'function') {
args = m[2].split(',');
this[m[1]].apply(this, args);
}
}
},
/**
* Parses a string and returns an array of transform arrays.
*
* @method getTransformArray
* @param {String} val A css transform string
* @return Array
*/
getTransformArray: function(val) {
var re = /\s*([a-z]*)\(([\w,\.,\-,\s]*)\)/gi,
transforms = [],
args,
m;
val = val.replace(/matrix/g, "multiply");
while ((m = re.exec(val))) {
if (typeof this[m[1]] === 'function') {
args = m[2].split(',');
args.unshift(m[1]);
transforms.push(args);
}
}
return transforms;
},
/**
* Default values for the matrix
*
* @property _defaults
* @private
*/
_defaults: {
a: 1,
b: 0,
c: 0,
d: 1,
dx: 0,
dy: 0
},
/**
* Rounds values
*
* @method _round
* @private
*/
_round: function(val) {
val = Math.round(val * this._rounder) / this._rounder;
return val;
},
/**
* Initializes a matrix.
*
* @method init
* @param {Object} config Specified key value pairs for matrix properties. If a property is not explicitly defined in the config argument,
* the default value will be used.
*/
init: function(config) {
var defaults = this._defaults,
prop;
config = config || {};
for (prop in defaults) {
if(defaults.hasOwnProperty(prop))
{
this[prop] = (prop in config) ? config[prop] : defaults[prop];
}
}
this._config = config;
},
/**
* Applies a scale transform
*
* @method scale
* @param {Number} val
*/
scale: function(x, y) {
this.multiply(x, 0, 0, y, 0, 0);
return this;
},
/**
* Applies a skew transformation.
*
* @method skew
* @param {Number} x The value to skew on the x-axis.
* @param {Number} y The value to skew on the y-axis.
*/
skew: function(x, y) {
x = x || 0;
y = y || 0;
if (x !== undefined) { // null or undef
x = Math.tan(this.angle2rad(x));
}
if (y !== undefined) { // null or undef
y = Math.tan(this.angle2rad(y));
}
this.multiply(1, y, x, 1, 0, 0);
return this;
},
/**
* Applies a skew to the x-coordinate
*
* @method skewX
* @param {Number} x x-coordinate
*/
skewX: function(x) {
this.skew(x);
return this;
},
/**
* Applies a skew to the y-coordinate
*
* @method skewY
* @param {Number} y y-coordinate
*/
skewY: function(y) {
this.skew(null, y);
return this;
},
/**
* Returns a string of text that can be used to populate a the css transform property of an element.
*
* @method toCSSText
* @return String
*/
toCSSText: function() {
var matrix = this,
dx = matrix.dx,
dy = matrix.dy,
text = 'matrix(';
if (Y.UA.gecko) { // requires unit
if (!isNaN(dx)) {
dx += 'px';
}
if (!isNaN(dy)) {
dy += 'px';
}
}
text += matrix.a + ',' +
matrix.b + ',' +
matrix.c + ',' +
matrix.d + ',' +
dx + ',' +
dy;
text += ')';
return text;
},
/**
* Returns a string that can be used to populate the css filter property of an element.
*
* @method toFilterText
* @return String
*/
toFilterText: function() {
var matrix = this,
text = 'progid:DXImageTransform.Microsoft.Matrix(';
text += 'M11=' + matrix.a + ',' +
'M21=' + matrix.b + ',' +
'M12=' + matrix.c + ',' +
'M22=' + matrix.d + ',' +
'sizingMethod="auto expand")';
text += '';
return text;
},
/**
* Converts a radian value to a degree.
*
* @method rad2deg
* @param {Number} rad Radian value to be converted.
* @return Number
*/
rad2deg: function(rad) {
var deg = rad * (180 / Math.PI);
return deg;
},
/**
* Converts a degree value to a radian.
*
* @method deg2rad
* @param {Number} deg Degree value to be converted to radian.
* @return Number
*/
deg2rad: function(deg) {
var rad = deg * (Math.PI / 180);
return rad;
},
angle2rad: function(val) {
if (typeof val === 'string' && val.indexOf('rad') > -1) {
val = parseFloat(val);
} else { // default to deg
val = this.deg2rad(parseFloat(val));
}
return val;
},
/**
* Applies a rotate transform.
*
* @method rotate
* @param {Number} deg The degree of the rotation.
*/
rotate: function(deg, x, y) {
var rad = this.angle2rad(deg),
sin = Math.sin(rad),
cos = Math.cos(rad);
this.multiply(cos, sin, 0 - sin, cos, 0, 0);
return this;
},
/**
* Applies translate transformation.
*
* @method translate
* @param {Number} x The value to transate on the x-axis.
* @param {Number} y The value to translate on the y-axis.
*/
translate: function(x, y) {
x = parseFloat(x) || 0;
y = parseFloat(y) || 0;
this.multiply(1, 0, 0, 1, x, y);
return this;
},
/**
* Returns an identity matrix.
*
* @method identity
* @return Object
*/
identity: function() {
var config = this._config,
defaults = this._defaults,
prop;
for (prop in config) {
if (prop in defaults) {
this[prop] = defaults[prop];
}
}
return this;
},
/**
* Returns a 3x3 Matrix array
*
* / \
* | matrix[0][0] matrix[1][0] matrix[2][0] |
* | matrix[0][1] matrix[1][1] matrix[2][1] |
* | matrix[0][2] matrix[1][2] matrix[2][2] |
* \ /
*
* @method getMatrixArray
* @return Array
*/
getMatrixArray: function()
{
var matrix = this,
matrixArray = [
[matrix.a, matrix.c, matrix.dx],
[matrix.b, matrix.d, matrix.dy],
[0, 0, 1]
];
return matrixArray;
},
/**
* Returns the left, top, right and bottom coordinates for a transformed
* item.
*
* @method getContentRect
* @param {Number} width The width of the item.
* @param {Number} height The height of the item.
* @param {Number} x The x-coordinate of the item.
* @param {Number} y The y-coordinate of the item.
* @return Object
*/
getContentRect: function(width, height, x, y)
{
var left = !isNaN(x) ? x : 0,
top = !isNaN(y) ? y : 0,
right = left + width,
bottom = top + height,
matrix = this,
a = matrix.a,
b = matrix.b,
c = matrix.c,
d = matrix.d,
dx = matrix.dx,
dy = matrix.dy,
x1 = (a * left + c * top + dx),
y1 = (b * left + d * top + dy),
//[x2, y2]
x2 = (a * right + c * top + dx),
y2 = (b * right + d * top + dy),
//[x3, y3]
x3 = (a * left + c * bottom + dx),
y3 = (b * left + d * bottom + dy),
//[x4, y4]
x4 = (a * right + c * bottom + dx),
y4 = (b * right + d * bottom + dy);
return {
left: Math.min(x3, Math.min(x1, Math.min(x2, x4))),
right: Math.max(x3, Math.max(x1, Math.max(x2, x4))),
top: Math.min(y2, Math.min(y4, Math.min(y3, y1))),
bottom: Math.max(y2, Math.max(y4, Math.max(y3, y1)))
};
},
/**
* Returns the determinant of the matrix.
*
* @method getDeterminant
* @return Number
*/
getDeterminant: function()
{
return Y.MatrixUtil.getDeterminant(this.getMatrixArray());
},
/**
* Returns the inverse (in array form) of the matrix.
*
* @method inverse
* @return Array
*/
inverse: function()
{
return Y.MatrixUtil.inverse(this.getMatrixArray());
},
/**
* Returns the transpose of the matrix
*
* @method transpose
* @return Array
*/
transpose: function()
{
return Y.MatrixUtil.transpose(this.getMatrixArray());
},
/**
* Returns an array of transform commands that represent the matrix.
*
* @method decompose
* @return Array
*/
decompose: function()
{
return Y.MatrixUtil.decompose(this.getMatrixArray());
}
};
Y.Matrix = Matrix;
}, '3.5.1' ,{requires:['yui-base']});
|