/usr/include/mdds/flat_segment_tree.hpp is in libmdds-dev 0.12.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | /*************************************************************************
*
* Copyright (c) 2008-2014 Kohei Yoshida
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************/
#ifndef __MDDS_FLAT_SEGMENT_TREE_HPP__
#define __MDDS_FLAT_SEGMENT_TREE_HPP__
#include <iostream>
#include <sstream>
#include <utility>
#include <cassert>
#include <limits>
#include "mdds/node.hpp"
#include "mdds/flat_segment_tree_itr.hpp"
#include "mdds/global.hpp"
#ifdef MDDS_UNIT_TEST
#include <cstdio>
#include <vector>
#endif
namespace mdds {
template<typename _Key, typename _Value>
class flat_segment_tree
{
public:
typedef _Key key_type;
typedef _Value value_type;
struct nonleaf_value_type
{
key_type low; /// low range value (inclusive)
key_type high; /// high range value (non-inclusive)
bool operator== (const nonleaf_value_type& r) const
{
return low == r.low && high == r.high;
}
nonleaf_value_type()
: low()
, high()
{
}
};
struct leaf_value_type
{
key_type key;
value_type value;
bool operator== (const leaf_value_type& r) const
{
return key == r.key && value == r.value;
}
leaf_value_type()
: key()
, value()
{
}
};
// Handlers required by the node template class.
struct fill_nonleaf_value_handler;
struct init_handler;
struct dispose_handler;
#ifdef MDDS_UNIT_TEST
struct to_string_handler;
#endif
typedef __st::node<flat_segment_tree> node;
typedef typename node::node_ptr node_ptr;
typedef __st::nonleaf_node<flat_segment_tree> nonleaf_node;
struct fill_nonleaf_value_handler
{
void operator() (__st::nonleaf_node<flat_segment_tree>& _self, const __st::node_base* left_node, const __st::node_base* right_node)
{
// Parent node should carry the range of all of its child nodes.
if (left_node)
{
_self.value_nonleaf.low =
left_node->is_leaf ?
static_cast<const node*>(left_node)->value_leaf.key :
static_cast<const nonleaf_node*>(left_node)->value_nonleaf.low;
}
else
{
// Having a left node is prerequisite.
throw general_error("flat_segment_tree::fill_nonleaf_value_handler: Having a left node is prerequisite.");
}
if (right_node)
{
if (right_node->is_leaf)
{
// When the child nodes are leaf nodes, the upper bound
// must be the value of the node that comes after the
// right leaf node (if such node exists).
const node* p = static_cast<const node*>(right_node);
if (p->next)
_self.value_nonleaf.high = p->next->value_leaf.key;
else
_self.value_nonleaf.high = p->value_leaf.key;
}
else
{
_self.value_nonleaf.high = static_cast<const nonleaf_node*>(right_node)->value_nonleaf.high;
}
}
else
{
_self.value_nonleaf.high =
left_node->is_leaf ?
static_cast<const node*>(left_node)->value_leaf.key :
static_cast<const nonleaf_node*>(left_node)->value_nonleaf.high;
}
}
};
#ifdef MDDS_UNIT_TEST
struct to_string_handler
{
std::string operator() (const node& _self) const
{
std::ostringstream os;
os << "(" << _self.value_leaf.key << ") ";
return os.str();
}
std::string operator() (const mdds::__st::nonleaf_node<flat_segment_tree>& _self) const
{
std::ostringstream os;
os << "(" << _self.value_nonleaf.low << "-" << _self.value_nonleaf.high << ") ";
return os.str();
}
};
#endif
struct init_handler
{
void operator() (node& /*_self*/) {}
void operator() (__st::nonleaf_node<flat_segment_tree>& /*_self*/) {}
};
struct dispose_handler
{
void operator() (node& /*_self*/) {}
void operator() (__st::nonleaf_node<flat_segment_tree>& /*_self*/) {}
};
private:
friend struct ::mdds::__fst::itr_forward_handler<flat_segment_tree>;
friend struct ::mdds::__fst::itr_reverse_handler<flat_segment_tree>;
public:
class const_iterator : public ::mdds::__fst::const_iterator_base<
flat_segment_tree, ::mdds::__fst::itr_forward_handler<flat_segment_tree> >
{
typedef ::mdds::__fst::const_iterator_base<
flat_segment_tree, ::mdds::__fst::itr_forward_handler<flat_segment_tree> >
base_type;
friend class flat_segment_tree;
public:
const_iterator() :
base_type(NULL, false) {}
private:
explicit const_iterator(const typename base_type::fst_type* _db, bool _end) :
base_type(_db, _end) {}
explicit const_iterator(const typename base_type::fst_type* _db, const node* p) :
base_type(_db, p) {}
};
class const_reverse_iterator : public ::mdds::__fst::const_iterator_base<
flat_segment_tree, ::mdds::__fst::itr_reverse_handler<flat_segment_tree> >
{
typedef ::mdds::__fst::const_iterator_base<
flat_segment_tree, ::mdds::__fst::itr_reverse_handler<flat_segment_tree> >
base_type;
friend class flat_segment_tree;
public:
const_reverse_iterator() :
base_type(NULL, false) {}
private:
explicit const_reverse_iterator(const typename base_type::fst_type* _db, bool _end) :
base_type(_db, _end) {}
};
const_iterator begin() const
{
return const_iterator(this, false);
}
const_iterator end() const
{
return const_iterator(this, true);
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(this, false);
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(this, true);
}
flat_segment_tree(key_type min_val, key_type max_val, value_type init_val);
/**
* Copy constructor only copies the leaf nodes.
*/
flat_segment_tree(const flat_segment_tree<key_type, value_type>& r);
~flat_segment_tree();
/**
* Assignment only copies the leaf nodes.
*/
flat_segment_tree<key_type, value_type>&
operator=(const flat_segment_tree<key_type, value_type>& other);
void swap(flat_segment_tree<key_type, value_type>& other);
void clear();
/**
* Insert a new segment into the tree. It searches for the point of
* insertion from the first leaf node.
*
* @param start_key start value of the segment being inserted. The value
* is inclusive.
* @param end_key end value of the segment being inserted. The value is
* not inclusive.
* @param val value associated with this segment.
*
* @return pair of const_iterator corresponding to the start position of
* the inserted segment, and a boolean value indicating whether or
* not the insertion has modified the tree.
*/
::std::pair<const_iterator, bool>
insert_front(key_type start_key, key_type end_key, value_type val)
{
return insert_segment_impl(start_key, end_key, val, true);
}
/**
* Insert a new segment into the tree. Unlike
* the <code>insert_front</code>, this method searches for the point of
* insertion from the last leaf node toward the first.
*
* @param start_key start value of the segment being inserted. The value
* is inclusive.
* @param end_key end value of the segment being inserted. The value is
* not inclusive.
* @param val value associated with this segment.
*
* @return pair of const_iterator corresponding to the start position of
* the inserted segment, and a boolean value indicating whether or
* not the insertion has modified the tree.
*/
::std::pair<const_iterator, bool>
insert_back(key_type start_key, key_type end_key, value_type val)
{
return insert_segment_impl(start_key, end_key, val, false);
}
/**
* Insert a new segment into the tree at or after specified point of
* insertion.
*
* @param pos specified insertion point
* @param start_key start value of the segment being inserted. The value
* is inclusive.
* @param end_key end value of the segment being inserted. The value is
* not inclusive.
* @param val value associated with this segment.
*
* @return pair of const_iterator corresponding to the start position of
* the inserted segment, and a boolean value indicating whether or
* not the insertion has modified the tree.
*/
::std::pair<const_iterator, bool>
insert(const const_iterator& pos, key_type start_key, key_type end_key, value_type val);
/**
* Remove a segment specified by the start and end key values, and shift
* the remaining segments (i.e. those segments that come after the removed
* segment) to left. Note that the start and end positions of the segment
* being removed <b>must</b> be within the base segment span.
*
* @param start_key start position of the segment being removed.
* @param end_key end position of the segment being removed.
*/
void shift_left(key_type start_key, key_type end_key);
/**
* Shift all segments that occur at or after the specified start position
* to right by the size specified.
*
* @param pos position where the right-shift occurs.
* @param size amount of shift (must be greater than 0)
* @param skip_start_node if true, and the specified position is at an
* existing node position, that node will
* <i>not</i> be shifted. This argument has no
* effect if the position specified does not
* coincide with any of the existing nodes.
*/
void shift_right(key_type pos, key_type size, bool skip_start_node);
/**
* Perform leaf-node search for a value associated with a key.
*
* @param key key value
* @param value value associated with key specified gets stored upon
* successful search.
* @param start_key pointer to a variable where the start key value of the
* segment that contains the key gets stored upon
* successful search.
* @param end_key pointer to a varaible where the end key value of the
* segment that contains the key gets stored upon
* successful search.
* @return a pair of const_iterator corresponding to the start position of
* the segment containing the key, and a boolean value indicating
* whether or not the search has been successful.
*
*/
::std::pair<const_iterator, bool>
search(key_type key, value_type& value, key_type* start_key = NULL, key_type* end_key = NULL) const;
/**
* Perform leaf-node search for a value associated with a key.
*
* @param pos position from which the search should start. When the
* position is invalid, it falls back to the normal search.
* @param key key value
* @param value value associated with key specified gets stored upon
* successful search.
* @param start_key pointer to a variable where the start key value of the
* segment that contains the key gets stored upon
* successful search.
* @param end_key pointer to a varaible where the end key value of the
* segment that contains the key gets stored upon
* successful search.
* @return a pair of const_iterator corresponding to the start position of
* the segment containing the key, and a boolean value indicating
* whether or not the search has been successful.
*/
::std::pair<const_iterator, bool>
search(const const_iterator& pos, key_type key, value_type& value, key_type* start_key = NULL, key_type* end_key = NULL) const;
/**
* Perform tree search for a value associated with a key. This method
* assumes that the tree is valid.
*
* @param key key value
* @param value value associated with key specified gets stored upon
* successful search.
* @param start_key pointer to a variable where the start key value of the
* segment that contains the key gets stored upon
* successful search.
* @param end_key pointer to a varaible where the end key value of the
* segment that contains the key gets stored upon
* successful search.
* @return a pair of const_iterator corresponding to the start position of
* the segment containing the key, and a boolean value indicating
* whether or not the search has been successful.
*/
std::pair<const_iterator, bool>
search_tree(key_type key, value_type& value, key_type* start_key = NULL, key_type* end_key = NULL) const;
void build_tree();
bool is_tree_valid() const
{
return m_valid_tree;
}
/**
* Equality between two flat_segment_tree instances is evaluated by
* comparing the keys and the values of the leaf nodes only. Neither the
* non-leaf nodes nor the validity of the tree is evaluated.
*/
bool operator==(const flat_segment_tree<key_type, value_type>& r) const;
bool operator !=(const flat_segment_tree<key_type, value_type>& r) const
{
return !operator==(r);
}
key_type min_key() const
{
return m_left_leaf->value_leaf.key;
}
key_type max_key() const
{
return m_right_leaf->value_leaf.key;
}
value_type default_value() const
{
return m_init_val;
}
/**
* Return the number of leaf nodes.
*
* @return number of leaf nodes.
*/
size_t leaf_size() const;
#ifdef MDDS_UNIT_TEST
nonleaf_node* get_root_node() const
{
return m_root_node;
}
void dump_tree() const
{
using ::std::cout;
using ::std::endl;
if (!m_valid_tree)
assert(!"attempted to dump an invalid tree!");
size_t node_count = mdds::__st::tree_dumper<node, nonleaf_node>::dump(m_root_node);
size_t node_instance_count = node::get_instance_count();
size_t leaf_count = leaf_size();
cout << "tree node count = " << node_count << "; node instance count = "
<< node_instance_count << "; leaf node count = " << leaf_count << endl;
assert(leaf_count == node_instance_count);
}
void dump_leaf_nodes() const
{
using ::std::cout;
using ::std::endl;
cout << "------------------------------------------" << endl;
node_ptr cur_node = m_left_leaf;
long node_id = 0;
while (cur_node)
{
cout << " node " << node_id++ << ": key = " << cur_node->value_leaf.key
<< "; value = " << cur_node->value_leaf.value
<< endl;
cur_node = cur_node->next;
}
cout << endl << " node instance count = " << node::get_instance_count() << endl;
}
/**
* Verify keys in the leaf nodes.
*
* @param key_values vector containing key values in the left-to-right
* order, including the key value of the rightmost leaf
* node.
*/
bool verify_keys(const ::std::vector<key_type>& key_values) const
{
{
// Start from the left-most node, and traverse right.
node* cur_node = m_left_leaf.get();
typename ::std::vector<key_type>::const_iterator itr = key_values.begin(), itr_end = key_values.end();
for (; itr != itr_end; ++itr)
{
if (!cur_node)
// Position past the right-mode node. Invalid.
return false;
if (cur_node->value_leaf.key != *itr)
// Key values differ.
return false;
cur_node = cur_node->next.get();
}
if (cur_node)
// At this point, we expect the current node to be at the position
// past the right-most node, which is NULL.
return false;
}
{
// Start from the right-most node, and traverse left.
node* cur_node = m_right_leaf.get();
typename ::std::vector<key_type>::const_reverse_iterator itr = key_values.rbegin(), itr_end = key_values.rend();
for (; itr != itr_end; ++itr)
{
if (!cur_node)
// Position past the left-mode node. Invalid.
return false;
if (cur_node->value_leaf.key != *itr)
// Key values differ.
return false;
cur_node = cur_node->prev.get();
}
if (cur_node)
// Likewise, we expect the current position to be past the
// left-most node, in which case the node value is NULL.
return false;
}
return true;
}
/**
* Verify values in the leaf nodes.
*
* @param values vector containing values to verify against, in the
* left-to-right order, <i>not</i> including the value of
* the rightmost leaf node.
*/
bool verify_values(const ::std::vector<value_type>& values) const
{
node* cur_node = m_left_leaf.get();
node* end_node = m_right_leaf.get();
typename ::std::vector<value_type>::const_iterator itr = values.begin(), itr_end = values.end();
for (; itr != itr_end; ++itr)
{
if (cur_node == end_node || !cur_node)
return false;
if (cur_node->value_leaf.value != *itr)
// Key values differ.
return false;
cur_node = cur_node->next.get();
}
if (cur_node != end_node)
// At this point, we expect the current node to be at the end of
// range.
return false;
return true;
}
#endif
private:
flat_segment_tree(); // default constructor is not allowed.
void append_new_segment(key_type start_key)
{
if (m_right_leaf->prev->value_leaf.key == start_key)
{
m_right_leaf->prev->value_leaf.value = m_init_val;
return;
}
#ifdef MDDS_UNIT_TEST
// The start position must come after the position of the last node
// before the right-most node.
assert(m_right_leaf->prev->value_leaf.key < start_key);
#endif
if (m_right_leaf->prev->value_leaf.value == m_init_val)
// The existing segment has the same value. No need to insert a
// new segment.
return;
node_ptr new_node(new node);
new_node->value_leaf.key = start_key;
new_node->value_leaf.value = m_init_val;
new_node->prev = m_right_leaf->prev;
new_node->next = m_right_leaf;
m_right_leaf->prev->next = new_node;
m_right_leaf->prev = new_node;
m_valid_tree = false;
}
::std::pair<const_iterator, bool>
insert_segment_impl(key_type start_key, key_type end_key, value_type val, bool forward);
::std::pair<const_iterator, bool>
insert_to_pos(node_ptr& start_pos, key_type start_key, key_type end_key, value_type val);
::std::pair<const_iterator, bool>
search_impl(const node* pos, key_type key, value_type& value, key_type* start_key, key_type* end_key) const;
const node* get_insertion_pos_leaf_reverse(key_type key, const node* start_pos) const;
const node* get_insertion_pos_leaf(key_type key, const node* start_pos) const;
static void shift_leaf_key_left(node_ptr& begin_node, node_ptr& end_node, key_type shift_value)
{
node* cur_node_p = begin_node.get();
node* end_node_p = end_node.get();
while (cur_node_p != end_node_p)
{
cur_node_p->value_leaf.key -= shift_value;
cur_node_p = cur_node_p->next.get();
}
}
static void shift_leaf_key_right(node_ptr& cur_node, node_ptr& end_node, key_type shift_value)
{
key_type end_node_key = end_node->value_leaf.key;
while (cur_node.get() != end_node.get())
{
cur_node->value_leaf.key += shift_value;
if (cur_node->value_leaf.key < end_node_key)
{
// The node is still in-bound. Keep shifting.
cur_node = cur_node->next;
continue;
}
// This node has been pushed outside the end node position.
// Remove all nodes that follows, and connect the previous node
// with the end node.
node_ptr last_node = cur_node->prev;
while (cur_node.get() != end_node.get())
{
node_ptr next_node = cur_node->next;
disconnect_all_nodes(cur_node.get());
cur_node = next_node;
}
last_node->next = end_node;
end_node->prev = last_node;
return;
}
}
void destroy();
private:
std::vector<nonleaf_node> m_nonleaf_node_pool;
nonleaf_node* m_root_node;
node_ptr m_left_leaf;
node_ptr m_right_leaf;
value_type m_init_val;
bool m_valid_tree;
};
template<typename _Key, typename _Value>
void
swap(flat_segment_tree<_Key, _Value>& left, flat_segment_tree<_Key, _Value>& right)
{
left.swap(right);
}
} // namespace mdds
#include "flat_segment_tree_def.inl"
#endif
|