/usr/lib/python3.5/test/test_random.py is in libpython3.5-testsuite 3.5.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | import unittest
import unittest.mock
import random
import time
import pickle
import warnings
from functools import partial
from math import log, exp, pi, fsum, sin
from test import support
class TestBasicOps:
# Superclass with tests common to all generators.
# Subclasses must arrange for self.gen to retrieve the Random instance
# to be tested.
def randomlist(self, n):
"""Helper function to make a list of random numbers"""
return [self.gen.random() for i in range(n)]
def test_autoseed(self):
self.gen.seed()
state1 = self.gen.getstate()
time.sleep(0.1)
self.gen.seed() # diffent seeds at different times
state2 = self.gen.getstate()
self.assertNotEqual(state1, state2)
def test_saverestore(self):
N = 1000
self.gen.seed()
state = self.gen.getstate()
randseq = self.randomlist(N)
self.gen.setstate(state) # should regenerate the same sequence
self.assertEqual(randseq, self.randomlist(N))
def test_seedargs(self):
# Seed value with a negative hash.
class MySeed(object):
def __hash__(self):
return -1729
for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20),
3.14, 1+2j, 'a', tuple('abc'), MySeed()]:
self.gen.seed(arg)
for arg in [list(range(3)), dict(one=1)]:
self.assertRaises(TypeError, self.gen.seed, arg)
self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
self.assertRaises(TypeError, type(self.gen), [])
@unittest.mock.patch('random._urandom') # os.urandom
def test_seed_when_randomness_source_not_found(self, urandom_mock):
# Random.seed() uses time.time() when an operating system specific
# randomness source is not found. To test this on machines were it
# exists, run the above test, test_seedargs(), again after mocking
# os.urandom() so that it raises the exception expected when the
# randomness source is not available.
urandom_mock.side_effect = NotImplementedError
self.test_seedargs()
def test_shuffle(self):
shuffle = self.gen.shuffle
lst = []
shuffle(lst)
self.assertEqual(lst, [])
lst = [37]
shuffle(lst)
self.assertEqual(lst, [37])
seqs = [list(range(n)) for n in range(10)]
shuffled_seqs = [list(range(n)) for n in range(10)]
for shuffled_seq in shuffled_seqs:
shuffle(shuffled_seq)
for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
self.assertEqual(len(seq), len(shuffled_seq))
self.assertEqual(set(seq), set(shuffled_seq))
# The above tests all would pass if the shuffle was a
# no-op. The following non-deterministic test covers that. It
# asserts that the shuffled sequence of 1000 distinct elements
# must be different from the original one. Although there is
# mathematically a non-zero probability that this could
# actually happen in a genuinely random shuffle, it is
# completely negligible, given that the number of possible
# permutations of 1000 objects is 1000! (factorial of 1000),
# which is considerably larger than the number of atoms in the
# universe...
lst = list(range(1000))
shuffled_lst = list(range(1000))
shuffle(shuffled_lst)
self.assertTrue(lst != shuffled_lst)
shuffle(lst)
self.assertTrue(lst != shuffled_lst)
def test_choice(self):
choice = self.gen.choice
with self.assertRaises(IndexError):
choice([])
self.assertEqual(choice([50]), 50)
self.assertIn(choice([25, 75]), [25, 75])
def test_sample(self):
# For the entire allowable range of 0 <= k <= N, validate that
# the sample is of the correct length and contains only unique items
N = 100
population = range(N)
for k in range(N+1):
s = self.gen.sample(population, k)
self.assertEqual(len(s), k)
uniq = set(s)
self.assertEqual(len(uniq), k)
self.assertTrue(uniq <= set(population))
self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
# Exception raised if size of sample exceeds that of population
self.assertRaises(ValueError, self.gen.sample, population, N+1)
def test_sample_distribution(self):
# For the entire allowable range of 0 <= k <= N, validate that
# sample generates all possible permutations
n = 5
pop = range(n)
trials = 10000 # large num prevents false negatives without slowing normal case
def factorial(n):
if n == 0:
return 1
return n * factorial(n - 1)
for k in range(n):
expected = factorial(n) // factorial(n-k)
perms = {}
for i in range(trials):
perms[tuple(self.gen.sample(pop, k))] = None
if len(perms) == expected:
break
else:
self.fail()
def test_sample_inputs(self):
# SF bug #801342 -- population can be any iterable defining __len__()
self.gen.sample(set(range(20)), 2)
self.gen.sample(range(20), 2)
self.gen.sample(range(20), 2)
self.gen.sample(str('abcdefghijklmnopqrst'), 2)
self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
def test_sample_on_dicts(self):
self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
def test_gauss(self):
# Ensure that the seed() method initializes all the hidden state. In
# particular, through 2.2.1 it failed to reset a piece of state used
# by (and only by) the .gauss() method.
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
self.gen.seed(seed)
x1 = self.gen.random()
y1 = self.gen.gauss(0, 1)
self.gen.seed(seed)
x2 = self.gen.random()
y2 = self.gen.gauss(0, 1)
self.assertEqual(x1, x2)
self.assertEqual(y1, y2)
def test_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
state = pickle.dumps(self.gen, proto)
origseq = [self.gen.random() for i in range(10)]
newgen = pickle.loads(state)
restoredseq = [newgen.random() for i in range(10)]
self.assertEqual(origseq, restoredseq)
def test_bug_1727780(self):
# verify that version-2-pickles can be loaded
# fine, whether they are created on 32-bit or 64-bit
# platforms, and that version-3-pickles load fine.
files = [("randv2_32.pck", 780),
("randv2_64.pck", 866),
("randv3.pck", 343)]
for file, value in files:
f = open(support.findfile(file),"rb")
r = pickle.load(f)
f.close()
self.assertEqual(int(r.random()*1000), value)
def test_bug_9025(self):
# Had problem with an uneven distribution in int(n*random())
# Verify the fix by checking that distributions fall within expectations.
n = 100000
randrange = self.gen.randrange
k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
self.assertTrue(0.30 < k/n < .37, (k/n))
try:
random.SystemRandom().random()
except NotImplementedError:
SystemRandom_available = False
else:
SystemRandom_available = True
@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
gen = random.SystemRandom()
def test_autoseed(self):
# Doesn't need to do anything except not fail
self.gen.seed()
def test_saverestore(self):
self.assertRaises(NotImplementedError, self.gen.getstate)
self.assertRaises(NotImplementedError, self.gen.setstate, None)
def test_seedargs(self):
# Doesn't need to do anything except not fail
self.gen.seed(100)
def test_gauss(self):
self.gen.gauss_next = None
self.gen.seed(100)
self.assertEqual(self.gen.gauss_next, None)
def test_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
def test_53_bits_per_float(self):
# This should pass whenever a C double has 53 bit precision.
span = 2 ** 53
cum = 0
for i in range(100):
cum |= int(self.gen.random() * span)
self.assertEqual(cum, span-1)
def test_bigrand(self):
# The randrange routine should build-up the required number of bits
# in stages so that all bit positions are active.
span = 2 ** 500
cum = 0
for i in range(100):
r = self.gen.randrange(span)
self.assertTrue(0 <= r < span)
cum |= r
self.assertEqual(cum, span-1)
def test_bigrand_ranges(self):
for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
start = self.gen.randrange(2 ** (i-2))
stop = self.gen.randrange(2 ** i)
if stop <= start:
continue
self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
def test_rangelimits(self):
for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
self.assertEqual(set(range(start,stop)),
set([self.gen.randrange(start,stop) for i in range(100)]))
def test_randrange_nonunit_step(self):
rint = self.gen.randrange(0, 10, 2)
self.assertIn(rint, (0, 2, 4, 6, 8))
rint = self.gen.randrange(0, 2, 2)
self.assertEqual(rint, 0)
def test_randrange_errors(self):
raises = partial(self.assertRaises, ValueError, self.gen.randrange)
# Empty range
raises(3, 3)
raises(-721)
raises(0, 100, -12)
# Non-integer start/stop
raises(3.14159)
raises(0, 2.71828)
# Zero and non-integer step
raises(0, 42, 0)
raises(0, 42, 3.14159)
def test_genrandbits(self):
# Verify ranges
for k in range(1, 1000):
self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
# Verify all bits active
getbits = self.gen.getrandbits
for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
cum = 0
for i in range(100):
cum |= getbits(span)
self.assertEqual(cum, 2**span-1)
# Verify argument checking
self.assertRaises(TypeError, self.gen.getrandbits)
self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
self.assertRaises(ValueError, self.gen.getrandbits, 0)
self.assertRaises(ValueError, self.gen.getrandbits, -1)
self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
def test_randbelow_logic(self, _log=log, int=int):
# check bitcount transition points: 2**i and 2**(i+1)-1
# show that: k = int(1.001 + _log(n, 2))
# is equal to or one greater than the number of bits in n
for i in range(1, 1000):
n = 1 << i # check an exact power of two
numbits = i+1
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits)
self.assertEqual(n, 2**(k-1))
n += n - 1 # check 1 below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertIn(k, [numbits, numbits+1])
self.assertTrue(2**k > n > 2**(k-2))
n -= n >> 15 # check a little farther below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits) # note the stronger assertion
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
gen = random.Random()
def test_guaranteed_stable(self):
# These sequences are guaranteed to stay the same across versions of python
self.gen.seed(3456147, version=1)
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
'0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
self.gen.seed("the quick brown fox", version=2)
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
'0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
def test_setstate_first_arg(self):
self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
def test_setstate_middle_arg(self):
# Wrong type, s/b tuple
self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
# Wrong length, s/b 625
self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
# Wrong type, s/b tuple of 625 ints
self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
# Last element s/b an int also
self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
# Last element s/b between 0 and 624
with self.assertRaises((ValueError, OverflowError)):
self.gen.setstate((2, (1,)*624+(625,), None))
with self.assertRaises((ValueError, OverflowError)):
self.gen.setstate((2, (1,)*624+(-1,), None))
# Little trick to make "tuple(x % (2**32) for x in internalstate)"
# raise ValueError. I cannot think of a simple way to achieve this, so
# I am opting for using a generator as the middle argument of setstate
# which attempts to cast a NaN to integer.
state_values = self.gen.getstate()[1]
state_values = list(state_values)
state_values[-1] = float('nan')
state = (int(x) for x in state_values)
self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
def test_referenceImplementation(self):
# Compare the python implementation with results from the original
# code. Create 2000 53-bit precision random floats. Compare only
# the last ten entries to show that the independent implementations
# are tracking. Here is the main() function needed to create the
# list of expected random numbers:
# void main(void){
# int i;
# unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
# init_by_array(init, length);
# for (i=0; i<2000; i++) {
# printf("%.15f ", genrand_res53());
# if (i%5==4) printf("\n");
# }
# }
expected = [0.45839803073713259,
0.86057815201978782,
0.92848331726782152,
0.35932681119782461,
0.081823493762449573,
0.14332226470169329,
0.084297823823520024,
0.53814864671831453,
0.089215024911993401,
0.78486196105372907]
self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertAlmostEqual(a,e,places=14)
def test_strong_reference_implementation(self):
# Like test_referenceImplementation, but checks for exact bit-level
# equality. This should pass on any box where C double contains
# at least 53 bits of precision (the underlying algorithm suffers
# no rounding errors -- all results are exact).
from math import ldexp
expected = [0x0eab3258d2231f,
0x1b89db315277a5,
0x1db622a5518016,
0x0b7f9af0d575bf,
0x029e4c4db82240,
0x04961892f5d673,
0x02b291598e4589,
0x11388382c15694,
0x02dad977c9e1fe,
0x191d96d4d334c6]
self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertEqual(int(ldexp(a, 53)), e)
def test_long_seed(self):
# This is most interesting to run in debug mode, just to make sure
# nothing blows up. Under the covers, a dynamically resized array
# is allocated, consuming space proportional to the number of bits
# in the seed. Unfortunately, that's a quadratic-time algorithm,
# so don't make this horribly big.
seed = (1 << (10000 * 8)) - 1 # about 10K bytes
self.gen.seed(seed)
def test_53_bits_per_float(self):
# This should pass whenever a C double has 53 bit precision.
span = 2 ** 53
cum = 0
for i in range(100):
cum |= int(self.gen.random() * span)
self.assertEqual(cum, span-1)
def test_bigrand(self):
# The randrange routine should build-up the required number of bits
# in stages so that all bit positions are active.
span = 2 ** 500
cum = 0
for i in range(100):
r = self.gen.randrange(span)
self.assertTrue(0 <= r < span)
cum |= r
self.assertEqual(cum, span-1)
def test_bigrand_ranges(self):
for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
start = self.gen.randrange(2 ** (i-2))
stop = self.gen.randrange(2 ** i)
if stop <= start:
continue
self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
def test_rangelimits(self):
for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
self.assertEqual(set(range(start,stop)),
set([self.gen.randrange(start,stop) for i in range(100)]))
def test_genrandbits(self):
# Verify cross-platform repeatability
self.gen.seed(1234567)
self.assertEqual(self.gen.getrandbits(100),
97904845777343510404718956115)
# Verify ranges
for k in range(1, 1000):
self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
# Verify all bits active
getbits = self.gen.getrandbits
for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
cum = 0
for i in range(100):
cum |= getbits(span)
self.assertEqual(cum, 2**span-1)
# Verify argument checking
self.assertRaises(TypeError, self.gen.getrandbits)
self.assertRaises(TypeError, self.gen.getrandbits, 'a')
self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
self.assertRaises(ValueError, self.gen.getrandbits, 0)
self.assertRaises(ValueError, self.gen.getrandbits, -1)
def test_randbelow_logic(self, _log=log, int=int):
# check bitcount transition points: 2**i and 2**(i+1)-1
# show that: k = int(1.001 + _log(n, 2))
# is equal to or one greater than the number of bits in n
for i in range(1, 1000):
n = 1 << i # check an exact power of two
numbits = i+1
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits)
self.assertEqual(n, 2**(k-1))
n += n - 1 # check 1 below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertIn(k, [numbits, numbits+1])
self.assertTrue(2**k > n > 2**(k-2))
n -= n >> 15 # check a little farther below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits) # note the stronger assertion
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
@unittest.mock.patch('random.Random.random')
def test_randbelow_overriden_random(self, random_mock):
# Random._randbelow() can only use random() when the built-in one
# has been overridden but no new getrandbits() method was supplied.
random_mock.side_effect = random.SystemRandom().random
maxsize = 1<<random.BPF
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# Population range too large (n >= maxsize)
self.gen._randbelow(maxsize+1, maxsize = maxsize)
self.gen._randbelow(5640, maxsize = maxsize)
# This might be going too far to test a single line, but because of our
# noble aim of achieving 100% test coverage we need to write a case in
# which the following line in Random._randbelow() gets executed:
#
# rem = maxsize % n
# limit = (maxsize - rem) / maxsize
# r = random()
# while r >= limit:
# r = random() # <== *This line* <==<
#
# Therefore, to guarantee that the while loop is executed at least
# once, we need to mock random() so that it returns a number greater
# than 'limit' the first time it gets called.
n = 42
epsilon = 0.01
limit = (maxsize - (maxsize % n)) / maxsize
random_mock.side_effect = [limit + epsilon, limit - epsilon]
self.gen._randbelow(n, maxsize = maxsize)
def test_randrange_bug_1590891(self):
start = 1000000000000
stop = -100000000000000000000
step = -200
x = self.gen.randrange(start, stop, step)
self.assertTrue(stop < x <= start)
self.assertEqual((x+stop)%step, 0)
def gamma(z, sqrt2pi=(2.0*pi)**0.5):
# Reflection to right half of complex plane
if z < 0.5:
return pi / sin(pi*z) / gamma(1.0-z)
# Lanczos approximation with g=7
az = z + (7.0 - 0.5)
return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
0.9999999999995183,
676.5203681218835 / z,
-1259.139216722289 / (z+1.0),
771.3234287757674 / (z+2.0),
-176.6150291498386 / (z+3.0),
12.50734324009056 / (z+4.0),
-0.1385710331296526 / (z+5.0),
0.9934937113930748e-05 / (z+6.0),
0.1659470187408462e-06 / (z+7.0),
])
class TestDistributions(unittest.TestCase):
def test_zeroinputs(self):
# Verify that distributions can handle a series of zero inputs'
g = random.Random()
x = [g.random() for i in range(50)] + [0.0]*5
g.random = x[:].pop; g.uniform(1,10)
g.random = x[:].pop; g.paretovariate(1.0)
g.random = x[:].pop; g.expovariate(1.0)
g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
g.random = x[:].pop; g.normalvariate(0.0, 1.0)
g.random = x[:].pop; g.gauss(0.0, 1.0)
g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
g.random = x[:].pop; g.gammavariate(0.01, 1.0)
g.random = x[:].pop; g.gammavariate(1.0, 1.0)
g.random = x[:].pop; g.gammavariate(200.0, 1.0)
g.random = x[:].pop; g.betavariate(3.0, 3.0)
g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
def test_avg_std(self):
# Use integration to test distribution average and standard deviation.
# Only works for distributions which do not consume variates in pairs
g = random.Random()
N = 5000
x = [i/float(N) for i in range(1,N)]
for variate, args, mu, sigmasqrd in [
(g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
(g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
(g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
(g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
(g.paretovariate, (5.0,), 5.0/(5.0-1),
5.0/((5.0-1)**2*(5.0-2))),
(g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
g.random = x[:].pop
y = []
for i in range(len(x)):
try:
y.append(variate(*args))
except IndexError:
pass
s1 = s2 = 0
for e in y:
s1 += e
s2 += (e - mu) ** 2
N = len(y)
self.assertAlmostEqual(s1/N, mu, places=2,
msg='%s%r' % (variate.__name__, args))
self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
msg='%s%r' % (variate.__name__, args))
def test_constant(self):
g = random.Random()
N = 100
for variate, args, expected in [
(g.uniform, (10.0, 10.0), 10.0),
(g.triangular, (10.0, 10.0), 10.0),
(g.triangular, (10.0, 10.0, 10.0), 10.0),
(g.expovariate, (float('inf'),), 0.0),
(g.vonmisesvariate, (3.0, float('inf')), 3.0),
(g.gauss, (10.0, 0.0), 10.0),
(g.lognormvariate, (0.0, 0.0), 1.0),
(g.lognormvariate, (-float('inf'), 0.0), 0.0),
(g.normalvariate, (10.0, 0.0), 10.0),
(g.paretovariate, (float('inf'),), 1.0),
(g.weibullvariate, (10.0, float('inf')), 10.0),
(g.weibullvariate, (0.0, 10.0), 0.0),
]:
for i in range(N):
self.assertEqual(variate(*args), expected)
def test_von_mises_range(self):
# Issue 17149: von mises variates were not consistently in the
# range [0, 2*PI].
g = random.Random()
N = 100
for mu in 0.0, 0.1, 3.1, 6.2:
for kappa in 0.0, 2.3, 500.0:
for _ in range(N):
sample = g.vonmisesvariate(mu, kappa)
self.assertTrue(
0 <= sample <= random.TWOPI,
msg=("vonmisesvariate({}, {}) produced a result {} out"
" of range [0, 2*pi]").format(mu, kappa, sample))
def test_von_mises_large_kappa(self):
# Issue #17141: vonmisesvariate() was hang for large kappas
random.vonmisesvariate(0, 1e15)
random.vonmisesvariate(0, 1e100)
def test_gammavariate_errors(self):
# Both alpha and beta must be > 0.0
self.assertRaises(ValueError, random.gammavariate, -1, 3)
self.assertRaises(ValueError, random.gammavariate, 0, 2)
self.assertRaises(ValueError, random.gammavariate, 2, 0)
self.assertRaises(ValueError, random.gammavariate, 1, -3)
@unittest.mock.patch('random.Random.random')
def test_gammavariate_full_code_coverage(self, random_mock):
# There are three different possibilities in the current implementation
# of random.gammavariate(), depending on the value of 'alpha'. What we
# are going to do here is to fix the values returned by random() to
# generate test cases that provide 100% line coverage of the method.
# #1: alpha > 1.0: we want the first random number to be outside the
# [1e-7, .9999999] range, so that the continue statement executes
# once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
random_mock.side_effect = [1e-8, 0.5, 0.3]
returned_value = random.gammavariate(1.1, 2.3)
self.assertAlmostEqual(returned_value, 2.53)
# #2: alpha == 1: first random number less than 1e-7 to that the body
# of the while loop executes once. Then random.random() returns 0.45,
# which causes while to stop looping and the algorithm to terminate.
random_mock.side_effect = [1e-8, 0.45]
returned_value = random.gammavariate(1.0, 3.14)
self.assertAlmostEqual(returned_value, 2.507314166123803)
# #3: 0 < alpha < 1. This is the most complex region of code to cover,
# as there are multiple if-else statements. Let's take a look at the
# source code, and determine the values that we need accordingly:
#
# while 1:
# u = random()
# b = (_e + alpha)/_e
# p = b*u
# if p <= 1.0: # <=== (A)
# x = p ** (1.0/alpha)
# else: # <=== (B)
# x = -_log((b-p)/alpha)
# u1 = random()
# if p > 1.0: # <=== (C)
# if u1 <= x ** (alpha - 1.0): # <=== (D)
# break
# elif u1 <= _exp(-x): # <=== (E)
# break
# return x * beta
#
# First, we want (A) to be True. For that we need that:
# b*random() <= 1.0
# r1 = random() <= 1.0 / b
#
# We now get to the second if-else branch, and here, since p <= 1.0,
# (C) is False and we take the elif branch, (E). For it to be True,
# so that the break is executed, we need that:
# r2 = random() <= _exp(-x)
# r2 <= _exp(-(p ** (1.0/alpha)))
# r2 <= _exp(-((b*r1) ** (1.0/alpha)))
_e = random._e
_exp = random._exp
_log = random._log
alpha = 0.35
beta = 1.45
b = (_e + alpha)/_e
epsilon = 0.01
r1 = 0.8859296441566 # 1.0 / b
r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
# These four "random" values result in the following trace:
# (A) True, (E) False --> [next iteration of while]
# (A) True, (E) True --> [while loop breaks]
random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
returned_value = random.gammavariate(alpha, beta)
self.assertAlmostEqual(returned_value, 1.4499999999997544)
# Let's now make (A) be False. If this is the case, when we get to the
# second if-else 'p' is greater than 1, so (C) evaluates to True. We
# now encounter a second if statement, (D), which in order to execute
# must satisfy the following condition:
# r2 <= x ** (alpha - 1.0)
# r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
# r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
r2 = 0.9445400408898141
# And these four values result in the following trace:
# (B) and (C) True, (D) False --> [next iteration of while]
# (B) and (C) True, (D) True [while loop breaks]
random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
returned_value = random.gammavariate(alpha, beta)
self.assertAlmostEqual(returned_value, 1.5830349561760781)
@unittest.mock.patch('random.Random.gammavariate')
def test_betavariate_return_zero(self, gammavariate_mock):
# betavariate() returns zero when the Gamma distribution
# that it uses internally returns this same value.
gammavariate_mock.return_value = 0.0
self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
class TestModule(unittest.TestCase):
def testMagicConstants(self):
self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
self.assertAlmostEqual(random.TWOPI, 6.28318530718)
self.assertAlmostEqual(random.LOG4, 1.38629436111989)
self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
def test__all__(self):
# tests validity but not completeness of the __all__ list
self.assertTrue(set(random.__all__) <= set(dir(random)))
def test_random_subclass_with_kwargs(self):
# SF bug #1486663 -- this used to erroneously raise a TypeError
class Subclass(random.Random):
def __init__(self, newarg=None):
random.Random.__init__(self)
Subclass(newarg=1)
if __name__ == "__main__":
unittest.main()
|