This file is indexed.

/usr/share/doc/llvm-3.8-doc/html/SourceLevelDebugging.html is in llvm-3.8-doc 1:3.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Source Level Debugging with LLVM &mdash; LLVM 3.8 documentation</title>
    
    <link rel="stylesheet" href="_static/llvm-theme.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '3.8',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <link rel="top" title="LLVM 3.8 documentation" href="index.html" />
    <link rel="next" title="Auto-Vectorization in LLVM" href="Vectorizers.html" />
    <link rel="prev" title="System Library" href="SystemLibrary.html" />
<style type="text/css">
  table.right { float: right; margin-left: 20px; }
  table.right td { border: 1px solid #ccc; }
</style>

  </head>
  <body role="document">
<div class="logo">
  <a href="index.html">
    <img src="_static/logo.png"
         alt="LLVM Logo" width="250" height="88"/></a>
</div>

    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="Vectorizers.html" title="Auto-Vectorization in LLVM"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="SystemLibrary.html" title="System Library"
             accesskey="P">previous</a> |</li>
  <li><a href="http://llvm.org/">LLVM Home</a>&nbsp;|&nbsp;</li>
  <li><a href="index.html">Documentation</a>&raquo;</li>
 
      </ul>
    </div>


    <div class="document">
      <div class="documentwrapper">
          <div class="body" role="main">
            
  <div class="section" id="source-level-debugging-with-llvm">
<h1>Source Level Debugging with LLVM<a class="headerlink" href="#source-level-debugging-with-llvm" title="Permalink to this headline"></a></h1>
<div class="contents local topic" id="contents">
<ul class="simple">
<li><a class="reference internal" href="#introduction" id="id7">Introduction</a><ul>
<li><a class="reference internal" href="#philosophy-behind-llvm-debugging-information" id="id8">Philosophy behind LLVM debugging information</a></li>
<li><a class="reference internal" href="#debug-information-consumers" id="id9">Debug information consumers</a></li>
<li><a class="reference internal" href="#debugging-optimized-code" id="id10">Debugging optimized code</a></li>
</ul>
</li>
<li><a class="reference internal" href="#debugging-information-format" id="id11">Debugging information format</a><ul>
<li><a class="reference internal" href="#debugger-intrinsic-functions" id="id12">Debugger intrinsic functions</a><ul>
<li><a class="reference internal" href="#llvm-dbg-declare" id="id13"><code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code></a></li>
<li><a class="reference internal" href="#llvm-dbg-value" id="id14"><code class="docutils literal"><span class="pre">llvm.dbg.value</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#object-lifetimes-and-scoping" id="id15">Object lifetimes and scoping</a></li>
<li><a class="reference internal" href="#c-c-front-end-specific-debug-information" id="id16">C/C++ front-end specific debug information</a><ul>
<li><a class="reference internal" href="#c-c-source-file-information" id="id17">C/C++ source file information</a></li>
<li><a class="reference internal" href="#c-c-global-variable-information" id="id18">C/C++ global variable information</a></li>
<li><a class="reference internal" href="#c-c-function-information" id="id19">C/C++ function information</a></li>
</ul>
</li>
<li><a class="reference internal" href="#id3" id="id20">Debugging information format</a><ul>
<li><a class="reference internal" href="#debugging-information-extension-for-objective-c-properties" id="id21">Debugging Information Extension for Objective C Properties</a><ul>
<li><a class="reference internal" href="#id4" id="id22">Introduction</a></li>
<li><a class="reference internal" href="#proposal" id="id23">Proposal</a></li>
<li><a class="reference internal" href="#new-dwarf-tags" id="id24">New DWARF Tags</a></li>
<li><a class="reference internal" href="#new-dwarf-attributes" id="id25">New DWARF Attributes</a></li>
<li><a class="reference internal" href="#new-dwarf-constants" id="id26">New DWARF Constants</a></li>
</ul>
</li>
<li><a class="reference internal" href="#name-accelerator-tables" id="id27">Name Accelerator Tables</a><ul>
<li><a class="reference internal" href="#id5" id="id28">Introduction</a></li>
<li><a class="reference internal" href="#hash-tables" id="id29">Hash Tables</a><ul>
<li><a class="reference internal" href="#standard-hash-tables" id="id30">Standard Hash Tables</a></li>
<li><a class="reference internal" href="#name-hash-tables" id="id31">Name Hash Tables</a></li>
</ul>
</li>
<li><a class="reference internal" href="#details" id="id32">Details</a><ul>
<li><a class="reference internal" href="#header-layout" id="id33">Header Layout</a></li>
<li><a class="reference internal" href="#fixed-lookup" id="id34">Fixed Lookup</a></li>
</ul>
</li>
<li><a class="reference internal" href="#id6" id="id35">Contents</a></li>
<li><a class="reference internal" href="#language-extensions-and-file-format-changes" id="id36">Language Extensions and File Format Changes</a><ul>
<li><a class="reference internal" href="#objective-c-extensions" id="id37">Objective-C Extensions</a></li>
<li><a class="reference internal" href="#mach-o-changes" id="id38">Mach-O Changes</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="introduction">
<h2><a class="toc-backref" href="#id7">Introduction</a><a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>This document is the central repository for all information pertaining to debug
information in LLVM.  It describes the <a class="reference internal" href="#format"><span>actual format that the LLVM debug
information takes</span></a>, which is useful for those interested in creating
front-ends or dealing directly with the information.  Further, this document
provides specific examples of what debug information for C/C++ looks like.</p>
<div class="section" id="philosophy-behind-llvm-debugging-information">
<h3><a class="toc-backref" href="#id8">Philosophy behind LLVM debugging information</a><a class="headerlink" href="#philosophy-behind-llvm-debugging-information" title="Permalink to this headline"></a></h3>
<p>The idea of the LLVM debugging information is to capture how the important
pieces of the source-language&#8217;s Abstract Syntax Tree map onto LLVM code.
Several design aspects have shaped the solution that appears here.  The
important ones are:</p>
<ul class="simple">
<li>Debugging information should have very little impact on the rest of the
compiler.  No transformations, analyses, or code generators should need to
be modified because of debugging information.</li>
<li>LLVM optimizations should interact in <a class="reference internal" href="#intro-debugopt"><span>well-defined and easily described
ways</span></a> with the debugging information.</li>
<li>Because LLVM is designed to support arbitrary programming languages,
LLVM-to-LLVM tools should not need to know anything about the semantics of
the source-level-language.</li>
<li>Source-level languages are often <strong>widely</strong> different from one another.
LLVM should not put any restrictions of the flavor of the source-language,
and the debugging information should work with any language.</li>
<li>With code generator support, it should be possible to use an LLVM compiler
to compile a program to native machine code and standard debugging
formats.  This allows compatibility with traditional machine-code level
debuggers, like GDB or DBX.</li>
</ul>
<p>The approach used by the LLVM implementation is to use a small set of
<a class="reference internal" href="#format-common-intrinsics"><span>intrinsic functions</span></a> to define a mapping
between LLVM program objects and the source-level objects.  The description of
the source-level program is maintained in LLVM metadata in an
<a class="reference internal" href="#ccxx-frontend"><span>implementation-defined format</span></a> (the C/C++ front-end
currently uses working draft 7 of the <a class="reference external" href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3 standard</a>).</p>
<p>When a program is being debugged, a debugger interacts with the user and turns
the stored debug information into source-language specific information.  As
such, a debugger must be aware of the source-language, and is thus tied to a
specific language or family of languages.</p>
</div>
<div class="section" id="debug-information-consumers">
<h3><a class="toc-backref" href="#id9">Debug information consumers</a><a class="headerlink" href="#debug-information-consumers" title="Permalink to this headline"></a></h3>
<p>The role of debug information is to provide meta information normally stripped
away during the compilation process.  This meta information provides an LLVM
user a relationship between generated code and the original program source
code.</p>
<p>Currently, debug information is consumed by DwarfDebug to produce dwarf
information used by the gdb debugger.  Other targets could use the same
information to produce stabs or other debug forms.</p>
<p>It would also be reasonable to use debug information to feed profiling tools
for analysis of generated code, or, tools for reconstructing the original
source from generated code.</p>
<p>TODO - expound a bit more.</p>
</div>
<div class="section" id="debugging-optimized-code">
<span id="intro-debugopt"></span><h3><a class="toc-backref" href="#id10">Debugging optimized code</a><a class="headerlink" href="#debugging-optimized-code" title="Permalink to this headline"></a></h3>
<p>An extremely high priority of LLVM debugging information is to make it interact
well with optimizations and analysis.  In particular, the LLVM debug
information provides the following guarantees:</p>
<ul class="simple">
<li>LLVM debug information <strong>always provides information to accurately read
the source-level state of the program</strong>, regardless of which LLVM
optimizations have been run, and without any modification to the
optimizations themselves.  However, some optimizations may impact the
ability to modify the current state of the program with a debugger, such
as setting program variables, or calling functions that have been
deleted.</li>
<li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
debugging information, allowing them to update the debugging information
as they perform aggressive optimizations.  This means that, with effort,
the LLVM optimizers could optimize debug code just as well as non-debug
code.</li>
<li>LLVM debug information does not prevent optimizations from
happening (for example inlining, basic block reordering/merging/cleanup,
tail duplication, etc).</li>
<li>LLVM debug information is automatically optimized along with the rest of
the program, using existing facilities.  For example, duplicate
information is automatically merged by the linker, and unused information
is automatically removed.</li>
</ul>
<p>Basically, the debug information allows you to compile a program with
&#8220;<code class="docutils literal"><span class="pre">-O0</span> <span class="pre">-g</span></code>&#8221; and get full debug information, allowing you to arbitrarily modify
the program as it executes from a debugger.  Compiling a program with
&#8220;<code class="docutils literal"><span class="pre">-O3</span> <span class="pre">-g</span></code>&#8221; gives you full debug information that is always available and
accurate for reading (e.g., you get accurate stack traces despite tail call
elimination and inlining), but you might lose the ability to modify the program
and call functions where were optimized out of the program, or inlined away
completely.</p>
<p><a class="reference internal" href="TestingGuide.html#test-suite-quickstart"><span>LLVM test suite</span></a> provides a framework to test
optimizer&#8217;s handling of debugging information.  It can be run like this:</p>
<div class="highlight-bash"><div class="highlight"><pre>% <span class="nb">cd</span> llvm/projects/test-suite/MultiSource/Benchmarks  <span class="c1"># or some other level</span>
% make <span class="nv">TEST</span><span class="o">=</span>dbgopt
</pre></div>
</div>
<p>This will test impact of debugging information on optimization passes.  If
debugging information influences optimization passes then it will be reported
as a failure.  See <a class="reference internal" href="TestingGuide.html"><em>LLVM Testing Infrastructure Guide</em></a> for more information on LLVM test
infrastructure and how to run various tests.</p>
</div>
</div>
<div class="section" id="debugging-information-format">
<span id="format"></span><h2><a class="toc-backref" href="#id11">Debugging information format</a><a class="headerlink" href="#debugging-information-format" title="Permalink to this headline"></a></h2>
<p>LLVM debugging information has been carefully designed to make it possible for
the optimizer to optimize the program and debugging information without
necessarily having to know anything about debugging information.  In
particular, the use of metadata avoids duplicated debugging information from
the beginning, and the global dead code elimination pass automatically deletes
debugging information for a function if it decides to delete the function.</p>
<p>To do this, most of the debugging information (descriptors for types,
variables, functions, source files, etc) is inserted by the language front-end
in the form of LLVM metadata.</p>
<p>Debug information is designed to be agnostic about the target debugger and
debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
pass to decode the information that represents variables, types, functions,
namespaces, etc: this allows for arbitrary source-language semantics and
type-systems to be used, as long as there is a module written for the target
debugger to interpret the information.</p>
<p>To provide basic functionality, the LLVM debugger does have to make some
assumptions about the source-level language being debugged, though it keeps
these to a minimum.  The only common features that the LLVM debugger assumes
exist are <a class="reference external" href="LangRef.html#difile">source files</a>, and <a class="reference external" href="LangRef.html#diglobalvariable">program objects</a>.  These abstract objects are used by a
debugger to form stack traces, show information about local variables, etc.</p>
<p>This section of the documentation first describes the representation aspects
common to any source-language.  <a class="reference internal" href="#ccxx-frontend"><span>C/C++ front-end specific debug information</span></a> describes the data layout
conventions used by the C and C++ front-ends.</p>
<p>Debug information descriptors are <a class="reference external" href="LangRef.html#specialized-metadata">specialized metadata nodes</a>, first-class subclasses of <code class="docutils literal"><span class="pre">Metadata</span></code>.</p>
<div class="section" id="debugger-intrinsic-functions">
<span id="format-common-intrinsics"></span><h3><a class="toc-backref" href="#id12">Debugger intrinsic functions</a><a class="headerlink" href="#debugger-intrinsic-functions" title="Permalink to this headline"></a></h3>
<p>LLVM uses several intrinsic functions (name prefixed with &#8220;<code class="docutils literal"><span class="pre">llvm.dbg</span></code>&#8221;) to
provide debug information at various points in generated code.</p>
<div class="section" id="llvm-dbg-declare">
<h4><a class="toc-backref" href="#id13"><code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code></a><a class="headerlink" href="#llvm-dbg-declare" title="Permalink to this headline"></a></h4>
<div class="highlight-llvm"><div class="highlight"><pre><span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">)</span>
</pre></div>
</div>
<p>This intrinsic provides information about a local element (e.g., variable).
The first argument is metadata holding the alloca for the variable.  The second
argument is a <a class="reference external" href="LangRef.html#dilocalvariable">local variable</a> containing a
description of the variable.  The third argument is a <a class="reference external" href="LangRef.html#diexpression">complex expression</a>.</p>
</div>
<div class="section" id="llvm-dbg-value">
<h4><a class="toc-backref" href="#id14"><code class="docutils literal"><span class="pre">llvm.dbg.value</span></code></a><a class="headerlink" href="#llvm-dbg-value" title="Permalink to this headline"></a></h4>
<div class="highlight-llvm"><div class="highlight"><pre><span class="kt">void</span> <span class="vg">@llvm.dbg.value</span><span class="p">(</span><span class="kt">metadata</span><span class="p">,</span> <span class="k">i64</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">)</span>
</pre></div>
</div>
<p>This intrinsic provides information when a user source variable is set to a new
value.  The first argument is the new value (wrapped as metadata).  The second
argument is the offset in the user source variable where the new value is
written.  The third argument is a <a class="reference external" href="LangRef.html#dilocalvariable">local variable</a> containing a description of the variable.  The
third argument is a <a class="reference external" href="LangRef.html#diexpression">complex expression</a>.</p>
</div>
</div>
</div>
<div class="section" id="object-lifetimes-and-scoping">
<h2><a class="toc-backref" href="#id15">Object lifetimes and scoping</a><a class="headerlink" href="#object-lifetimes-and-scoping" title="Permalink to this headline"></a></h2>
<p>In many languages, the local variables in functions can have their lifetimes or
scopes limited to a subset of a function.  In the C family of languages, for
example, variables are only live (readable and writable) within the source
block that they are defined in.  In functional languages, values are only
readable after they have been defined.  Though this is a very obvious concept,
it is non-trivial to model in LLVM, because it has no notion of scoping in this
sense, and does not want to be tied to a language&#8217;s scoping rules.</p>
<p>In order to handle this, the LLVM debug format uses the metadata attached to
llvm instructions to encode line number and scoping information.  Consider the
following C fragment, for example:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="mf">1.</span>  <span class="kt">void</span> <span class="n">foo</span><span class="p">()</span> <span class="p">{</span>
<span class="mf">2.</span>    <span class="kt">int</span> <span class="n">X</span> <span class="o">=</span> <span class="mi">21</span><span class="p">;</span>
<span class="mf">3.</span>    <span class="kt">int</span> <span class="n">Y</span> <span class="o">=</span> <span class="mi">22</span><span class="p">;</span>
<span class="mf">4.</span>    <span class="p">{</span>
<span class="mf">5.</span>      <span class="kt">int</span> <span class="n">Z</span> <span class="o">=</span> <span class="mi">23</span><span class="p">;</span>
<span class="mf">6.</span>      <span class="n">Z</span> <span class="o">=</span> <span class="n">X</span><span class="p">;</span>
<span class="mf">7.</span>    <span class="p">}</span>
<span class="mf">8.</span>    <span class="n">X</span> <span class="o">=</span> <span class="n">Y</span><span class="p">;</span>
<span class="mf">9.</span>  <span class="p">}</span>
</pre></div>
</div>
<p>Compiled to LLVM, this function would be represented like this:</p>
<div class="highlight-llvm"><div class="highlight"><pre>; Function Attrs: nounwind ssp uwtable
define void @foo() #0 !dbg !4 {
entry:
  %X = alloca i32, align 4
  %Y = alloca i32, align 4
  %Z = alloca i32, align 4
  call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
  store i32 21, i32* %X, align 4, !dbg !14
  call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
  store i32 22, i32* %Y, align 4, !dbg !16
  call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
  store i32 23, i32* %Z, align 4, !dbg !19
  %0 = load i32, i32* %X, align 4, !dbg !20
  store i32 %0, i32* %Z, align 4, !dbg !21
  %1 = load i32, i32* %Y, align 4, !dbg !22
  store i32 %1, i32* %X, align 4, !dbg !23
  ret void, !dbg !24
}

; Function Attrs: nounwind readnone
declare void @llvm.dbg.declare(metadata, metadata, metadata) #1

attributes #0 = { nounwind ssp uwtable &quot;less-precise-fpmad&quot;=&quot;false&quot; &quot;no-frame-pointer-elim&quot;=&quot;true&quot; &quot;no-frame-pointer-elim-non-leaf&quot; &quot;no-infs-fp-math&quot;=&quot;false&quot; &quot;no-nans-fp-math&quot;=&quot;false&quot; &quot;stack-protector-buffer-size&quot;=&quot;8&quot; &quot;unsafe-fp-math&quot;=&quot;false&quot; &quot;use-soft-float&quot;=&quot;false&quot; }
attributes #1 = { nounwind readnone }

!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!7, !8, !9}
!llvm.ident = !{!10}

!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: &quot;clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)&quot;, isOptimized: false, runtimeVersion: 0, emissionKind: 1, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
!1 = !DIFile(filename: &quot;/dev/stdin&quot;, directory: &quot;/Users/dexonsmith/data/llvm/debug-info&quot;)
!2 = !{}
!3 = !{!4}
!4 = distinct !DISubprogram(name: &quot;foo&quot;, scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
!5 = !DISubroutineType(types: !6)
!6 = !{null}
!7 = !{i32 2, !&quot;Dwarf Version&quot;, i32 2}
!8 = !{i32 2, !&quot;Debug Info Version&quot;, i32 3}
!9 = !{i32 1, !&quot;PIC Level&quot;, i32 2}
!10 = !{!&quot;clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)&quot;}
!11 = !DILocalVariable(name: &quot;X&quot;, scope: !4, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: &quot;int&quot;, size: 32, align: 32, encoding: DW_ATE_signed)
!13 = !DIExpression()
!14 = !DILocation(line: 2, column: 9, scope: !4)
!15 = !DILocalVariable(name: &quot;Y&quot;, scope: !4, file: !1, line: 3, type: !12)
!16 = !DILocation(line: 3, column: 9, scope: !4)
!17 = !DILocalVariable(name: &quot;Z&quot;, scope: !18, file: !1, line: 5, type: !12)
!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
!20 = !DILocation(line: 6, column: 11, scope: !18)
!21 = !DILocation(line: 6, column: 9, scope: !18)
!22 = !DILocation(line: 8, column: 9, scope: !4)
!23 = !DILocation(line: 8, column: 7, scope: !4)
!24 = !DILocation(line: 9, column: 3, scope: !4)
</pre></div>
</div>
<p>This example illustrates a few important details about LLVM debugging
information.  In particular, it shows how the <code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code> intrinsic and
location information, which are attached to an instruction, are applied
together to allow a debugger to analyze the relationship between statements,
variable definitions, and the code used to implement the function.</p>
<div class="highlight-llvm"><div class="highlight"><pre><span class="k">call</span> <span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span> <span class="k">i32</span><span class="p">*</span> <span class="nv">%X</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!11</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!13</span><span class="p">),</span> <span class="nv">!dbg</span> <span class="nv nv-Anonymous">!14</span>
  <span class="c">; [debug line = 2:7] [debug variable = X]</span>
</pre></div>
</div>
<p>The first intrinsic <code class="docutils literal"><span class="pre">%llvm.dbg.declare</span></code> encodes debugging information for the
variable <code class="docutils literal"><span class="pre">X</span></code>.  The metadata <code class="docutils literal"><span class="pre">!dbg</span> <span class="pre">!14</span></code> attached to the intrinsic provides
scope information for the variable <code class="docutils literal"><span class="pre">X</span></code>.</p>
<div class="highlight-llvm"><div class="highlight"><pre>!14 = !DILocation(line: 2, column: 9, scope: !4)
!4 = distinct !DISubprogram(name: &quot;foo&quot;, scope: !1, file: !1, line: 1, type: !5,
                            isLocal: false, isDefinition: true, scopeLine: 1,
                            isOptimized: false, variables: !2)
</pre></div>
</div>
<p>Here <code class="docutils literal"><span class="pre">!14</span></code> is metadata providing <a class="reference external" href="LangRef.html#dilocation">location information</a>.  In this example, scope is encoded by <code class="docutils literal"><span class="pre">!4</span></code>, a
<a class="reference external" href="LangRef.html#disubprogram">subprogram descriptor</a>.  This way the location
information attached to the intrinsics indicates that the variable <code class="docutils literal"><span class="pre">X</span></code> is
declared at line number 2 at a function level scope in function <code class="docutils literal"><span class="pre">foo</span></code>.</p>
<p>Now lets take another example.</p>
<div class="highlight-llvm"><div class="highlight"><pre><span class="k">call</span> <span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span> <span class="k">i32</span><span class="p">*</span> <span class="nv">%Z</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!17</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!13</span><span class="p">),</span> <span class="nv">!dbg</span> <span class="nv nv-Anonymous">!19</span>
  <span class="c">; [debug line = 5:9] [debug variable = Z]</span>
</pre></div>
</div>
<p>The third intrinsic <code class="docutils literal"><span class="pre">%llvm.dbg.declare</span></code> encodes debugging information for
variable <code class="docutils literal"><span class="pre">Z</span></code>.  The metadata <code class="docutils literal"><span class="pre">!dbg</span> <span class="pre">!19</span></code> attached to the intrinsic provides
scope information for the variable <code class="docutils literal"><span class="pre">Z</span></code>.</p>
<div class="highlight-llvm"><div class="highlight"><pre>!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
</pre></div>
</div>
<p>Here <code class="docutils literal"><span class="pre">!19</span></code> indicates that <code class="docutils literal"><span class="pre">Z</span></code> is declared at line number 5 and column
number 0 inside of lexical scope <code class="docutils literal"><span class="pre">!18</span></code>.  The lexical scope itself resides
inside of subprogram <code class="docutils literal"><span class="pre">!4</span></code> described above.</p>
<p>The scope information attached with each instruction provides a straightforward
way to find instructions covered by a scope.</p>
</div>
<div class="section" id="c-c-front-end-specific-debug-information">
<span id="ccxx-frontend"></span><h2><a class="toc-backref" href="#id16">C/C++ front-end specific debug information</a><a class="headerlink" href="#c-c-front-end-specific-debug-information" title="Permalink to this headline"></a></h2>
<p>The C and C++ front-ends represent information about the program in a format
that is effectively identical to <a class="reference external" href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3.0</a> in terms of information
content.  This allows code generators to trivially support native debuggers by
generating standard dwarf information, and contains enough information for
non-dwarf targets to translate it as needed.</p>
<p>This section describes the forms used to represent C and C++ programs.  Other
languages could pattern themselves after this (which itself is tuned to
representing programs in the same way that DWARF 3 does), or they could choose
to provide completely different forms if they don&#8217;t fit into the DWARF model.
As support for debugging information gets added to the various LLVM
source-language front-ends, the information used should be documented here.</p>
<p>The following sections provide examples of a few C/C++ constructs and the debug
information that would best describe those constructs.  The canonical
references are the <code class="docutils literal"><span class="pre">DIDescriptor</span></code> classes defined in
<code class="docutils literal"><span class="pre">include/llvm/IR/DebugInfo.h</span></code> and the implementations of the helper functions
in <code class="docutils literal"><span class="pre">lib/IR/DIBuilder.cpp</span></code>.</p>
<div class="section" id="c-c-source-file-information">
<h3><a class="toc-backref" href="#id17">C/C++ source file information</a><a class="headerlink" href="#c-c-source-file-information" title="Permalink to this headline"></a></h3>
<p><code class="docutils literal"><span class="pre">llvm::Instruction</span></code> provides easy access to metadata attached with an
instruction.  One can extract line number information encoded in LLVM IR using
<code class="docutils literal"><span class="pre">Instruction::getDebugLoc()</span></code> and <code class="docutils literal"><span class="pre">DILocation::getLine()</span></code>.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">if</span> <span class="p">(</span><span class="n">DILocation</span> <span class="o">*</span><span class="n">Loc</span> <span class="o">=</span> <span class="n">I</span><span class="o">-&gt;</span><span class="n">getDebugLoc</span><span class="p">())</span> <span class="p">{</span> <span class="c1">// Here I is an LLVM instruction</span>
  <span class="kt">unsigned</span> <span class="n">Line</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-&gt;</span><span class="n">getLine</span><span class="p">();</span>
  <span class="n">StringRef</span> <span class="n">File</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-&gt;</span><span class="n">getFilename</span><span class="p">();</span>
  <span class="n">StringRef</span> <span class="n">Dir</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-&gt;</span><span class="n">getDirectory</span><span class="p">();</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="c-c-global-variable-information">
<h3><a class="toc-backref" href="#id18">C/C++ global variable information</a><a class="headerlink" href="#c-c-global-variable-information" title="Permalink to this headline"></a></h3>
<p>Given an integer global variable declared as follows:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="n">MyGlobal</span> <span class="o">=</span> <span class="mi">100</span><span class="p">;</span>
</pre></div>
</div>
<p>a C/C++ front-end would generate the following descriptors:</p>
<div class="highlight-llvm"><div class="highlight"><pre>;;
;; Define the global itself.
;;
@MyGlobal = global i32 100, align 4

;;
;; List of debug info of globals
;;
!llvm.dbg.cu = !{!0}

;; Some unrelated metadata.
!llvm.module.flags = !{!6, !7}

;; Define the compile unit.
!0 = !DICompileUnit(language: DW_LANG_C99, file: !1,
                    producer:
                    &quot;clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)&quot;,
                    isOptimized: false, runtimeVersion: 0, emissionKind: 1,
                    enums: !2, retainedTypes: !2, subprograms: !2, globals:
                    !3, imports: !2)

;;
;; Define the file
;;
!1 = !DIFile(filename: &quot;/dev/stdin&quot;,
             directory: &quot;/Users/dexonsmith/data/llvm/debug-info&quot;)

;; An empty array.
!2 = !{}

;; The Array of Global Variables
!3 = !{!4}

;;
;; Define the global variable itself.
;;
!4 = !DIGlobalVariable(name: &quot;MyGlobal&quot;, scope: !0, file: !1, line: 1,
                       type: !5, isLocal: false, isDefinition: true,
                       variable: i32* @MyGlobal)

;;
;; Define the type
;;
!5 = !DIBasicType(name: &quot;int&quot;, size: 32, align: 32, encoding: DW_ATE_signed)

;; Dwarf version to output.
!6 = !{i32 2, !&quot;Dwarf Version&quot;, i32 2}

;; Debug info schema version.
!7 = !{i32 2, !&quot;Debug Info Version&quot;, i32 3}
</pre></div>
</div>
</div>
<div class="section" id="c-c-function-information">
<h3><a class="toc-backref" href="#id19">C/C++ function information</a><a class="headerlink" href="#c-c-function-information" title="Permalink to this headline"></a></h3>
<p>Given a function declared as follows:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="nf">main</span><span class="p">(</span><span class="kt">int</span> <span class="n">argc</span><span class="p">,</span> <span class="kt">char</span> <span class="o">*</span><span class="n">argv</span><span class="p">[])</span> <span class="p">{</span>
  <span class="k">return</span> <span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>a C/C++ front-end would generate the following descriptors:</p>
<div class="highlight-llvm"><div class="highlight"><pre>;;
;; Define the anchor for subprograms.
;;
!4 = !DISubprogram(name: &quot;main&quot;, scope: !1, file: !1, line: 1, type: !5,
                   isLocal: false, isDefinition: true, scopeLine: 1,
                   flags: DIFlagPrototyped, isOptimized: false,
                   variables: !2)

;;
;; Define the subprogram itself.
;;
define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
...
}
</pre></div>
</div>
</div>
</div>
<div class="section" id="id3">
<h2><a class="toc-backref" href="#id20">Debugging information format</a><a class="headerlink" href="#id3" title="Permalink to this headline"></a></h2>
<div class="section" id="debugging-information-extension-for-objective-c-properties">
<h3><a class="toc-backref" href="#id21">Debugging Information Extension for Objective C Properties</a><a class="headerlink" href="#debugging-information-extension-for-objective-c-properties" title="Permalink to this headline"></a></h3>
<div class="section" id="id4">
<h4><a class="toc-backref" href="#id22">Introduction</a><a class="headerlink" href="#id4" title="Permalink to this headline"></a></h4>
<p>Objective C provides a simpler way to declare and define accessor methods using
declared properties.  The language provides features to declare a property and
to let compiler synthesize accessor methods.</p>
<p>The debugger lets developer inspect Objective C interfaces and their instance
variables and class variables.  However, the debugger does not know anything
about the properties defined in Objective C interfaces.  The debugger consumes
information generated by compiler in DWARF format.  The format does not support
encoding of Objective C properties.  This proposal describes DWARF extensions to
encode Objective C properties, which the debugger can use to let developers
inspect Objective C properties.</p>
</div>
<div class="section" id="proposal">
<h4><a class="toc-backref" href="#id23">Proposal</a><a class="headerlink" href="#proposal" title="Permalink to this headline"></a></h4>
<p>Objective C properties exist separately from class members.  A property can be
defined only by &#8220;setter&#8221; and &#8220;getter&#8221; selectors, and be calculated anew on each
access.  Or a property can just be a direct access to some declared ivar.
Finally it can have an ivar &#8220;automatically synthesized&#8221; for it by the compiler,
in which case the property can be referred to in user code directly using the
standard C dereference syntax as well as through the property &#8220;dot&#8221; syntax, but
there is no entry in the <code class="docutils literal"><span class="pre">&#64;interface</span></code> declaration corresponding to this ivar.</p>
<p>To facilitate debugging, these properties we will add a new DWARF TAG into the
<code class="docutils literal"><span class="pre">DW_TAG_structure_type</span></code> definition for the class to hold the description of a
given property, and a set of DWARF attributes that provide said description.
The property tag will also contain the name and declared type of the property.</p>
<p>If there is a related ivar, there will also be a DWARF property attribute placed
in the <code class="docutils literal"><span class="pre">DW_TAG_member</span></code> DIE for that ivar referring back to the property TAG
for that property.  And in the case where the compiler synthesizes the ivar
directly, the compiler is expected to generate a <code class="docutils literal"><span class="pre">DW_TAG_member</span></code> for that
ivar (with the <code class="docutils literal"><span class="pre">DW_AT_artificial</span></code> set to 1), whose name will be the name used
to access this ivar directly in code, and with the property attribute pointing
back to the property it is backing.</p>
<p>The following examples will serve as illustration for our discussion:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="nc">I1</span> <span class="p">{</span>
  <span class="kt">int</span> <span class="n">n2</span><span class="p">;</span>
<span class="p">}</span>

<span class="k">@property</span> <span class="kt">int</span> <span class="n">p1</span><span class="p">;</span>
<span class="k">@property</span> <span class="kt">int</span> <span class="n">p2</span><span class="p">;</span>
<span class="k">@end</span>

<span class="k">@implementation</span> <span class="nc">I1</span>
<span class="k">@synthesize</span> <span class="n">p1</span><span class="p">;</span>
<span class="k">@synthesize</span> <span class="n">p2</span> <span class="o">=</span> <span class="n">n2</span><span class="p">;</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>This produces the following DWARF (this is a &#8220;pseudo dwarfdump&#8221; output):</p>
<div class="highlight-none"><div class="highlight"><pre>0x00000100:  TAG_structure_type [7] *
               AT_APPLE_runtime_class( 0x10 )
               AT_name( &quot;I1&quot; )
               AT_decl_file( &quot;Objc_Property.m&quot; )
               AT_decl_line( 3 )

0x00000110    TAG_APPLE_property
                AT_name ( &quot;p1&quot; )
                AT_type ( {0x00000150} ( int ) )

0x00000120:   TAG_APPLE_property
                AT_name ( &quot;p2&quot; )
                AT_type ( {0x00000150} ( int ) )

0x00000130:   TAG_member [8]
                AT_name( &quot;_p1&quot; )
                AT_APPLE_property ( {0x00000110} &quot;p1&quot; )
                AT_type( {0x00000150} ( int ) )
                AT_artificial ( 0x1 )

0x00000140:    TAG_member [8]
                 AT_name( &quot;n2&quot; )
                 AT_APPLE_property ( {0x00000120} &quot;p2&quot; )
                 AT_type( {0x00000150} ( int ) )

0x00000150:  AT_type( ( int ) )
</pre></div>
</div>
<p>Note, the current convention is that the name of the ivar for an
auto-synthesized property is the name of the property from which it derives
with an underscore prepended, as is shown in the example.  But we actually
don&#8217;t need to know this convention, since we are given the name of the ivar
directly.</p>
<p>Also, it is common practice in ObjC to have different property declarations in
the &#64;interface and &#64;implementation - e.g. to provide a read-only property in
the interface,and a read-write interface in the implementation.  In that case,
the compiler should emit whichever property declaration will be in force in the
current translation unit.</p>
<p>Developers can decorate a property with attributes which are encoded using
<code class="docutils literal"><span class="pre">DW_AT_APPLE_property_attribute</span></code>.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@property</span> <span class="p">(</span><span class="k">readonly</span><span class="p">,</span> <span class="k">nonatomic</span><span class="p">)</span> <span class="kt">int</span> <span class="n">pr</span><span class="p">;</span>
</pre></div>
</div>
<div class="highlight-none"><div class="highlight"><pre>TAG_APPLE_property [8]
  AT_name( &quot;pr&quot; )
  AT_type ( {0x00000147} (int) )
  AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
</pre></div>
</div>
<p>The setter and getter method names are attached to the property using
<code class="docutils literal"><span class="pre">DW_AT_APPLE_property_setter</span></code> and <code class="docutils literal"><span class="pre">DW_AT_APPLE_property_getter</span></code> attributes.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="nc">I1</span>
<span class="k">@property</span> <span class="p">(</span><span class="k">setter</span><span class="o">=</span><span class="nl">myOwnP3Setter</span><span class="p">:)</span> <span class="kt">int</span> <span class="n">p3</span><span class="p">;</span>
<span class="p">-(</span><span class="kt">void</span><span class="p">)</span><span class="nf">myOwnP3Setter:</span><span class="p">(</span><span class="kt">int</span><span class="p">)</span><span class="nv">a</span><span class="p">;</span>
<span class="k">@end</span>

<span class="k">@implementation</span> <span class="nc">I1</span>
<span class="k">@synthesize</span> <span class="n">p3</span><span class="p">;</span>
<span class="p">-(</span><span class="kt">void</span><span class="p">)</span><span class="nf">myOwnP3Setter:</span><span class="p">(</span><span class="kt">int</span><span class="p">)</span><span class="nv">a</span><span class="p">{</span> <span class="p">}</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>The DWARF for this would be:</p>
<div class="highlight-none"><div class="highlight"><pre>0x000003bd: TAG_structure_type [7] *
              AT_APPLE_runtime_class( 0x10 )
              AT_name( &quot;I1&quot; )
              AT_decl_file( &quot;Objc_Property.m&quot; )
              AT_decl_line( 3 )

0x000003cd      TAG_APPLE_property
                  AT_name ( &quot;p3&quot; )
                  AT_APPLE_property_setter ( &quot;myOwnP3Setter:&quot; )
                  AT_type( {0x00000147} ( int ) )

0x000003f3:     TAG_member [8]
                  AT_name( &quot;_p3&quot; )
                  AT_type ( {0x00000147} ( int ) )
                  AT_APPLE_property ( {0x000003cd} )
                  AT_artificial ( 0x1 )
</pre></div>
</div>
</div>
<div class="section" id="new-dwarf-tags">
<h4><a class="toc-backref" href="#id24">New DWARF Tags</a><a class="headerlink" href="#new-dwarf-tags" title="Permalink to this headline"></a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="74%" />
<col width="26%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">TAG</th>
<th class="head">Value</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>DW_TAG_APPLE_property</td>
<td>0x4200</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="new-dwarf-attributes">
<h4><a class="toc-backref" href="#id25">New DWARF Attributes</a><a class="headerlink" href="#new-dwarf-attributes" title="Permalink to this headline"></a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="63%" />
<col width="16%" />
<col width="22%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Attribute</th>
<th class="head">Value</th>
<th class="head">Classes</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>DW_AT_APPLE_property</td>
<td>0x3fed</td>
<td>Reference</td>
</tr>
<tr class="row-odd"><td>DW_AT_APPLE_property_getter</td>
<td>0x3fe9</td>
<td>String</td>
</tr>
<tr class="row-even"><td>DW_AT_APPLE_property_setter</td>
<td>0x3fea</td>
<td>String</td>
</tr>
<tr class="row-odd"><td>DW_AT_APPLE_property_attribute</td>
<td>0x3feb</td>
<td>Constant</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="new-dwarf-constants">
<h4><a class="toc-backref" href="#id26">New DWARF Constants</a><a class="headerlink" href="#new-dwarf-constants" title="Permalink to this headline"></a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="73%" />
<col width="11%" />
<col width="16%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head" colspan="2">Name</th>
<th class="head">Value</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_readonly</td>
<td>0x01</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_getter</td>
<td>0x02</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_assign</td>
<td>0x04</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_readwrite</td>
<td>0x08</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_retain</td>
<td>0x10</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_copy</td>
<td>0x20</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_nonatomic</td>
<td>0x40</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_setter</td>
<td>0x80</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_atomic</td>
<td>0x100</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_weak</td>
<td>0x200</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_strong</td>
<td>0x400</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_unsafe_unretained</td>
<td>0x800</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="name-accelerator-tables">
<h3><a class="toc-backref" href="#id27">Name Accelerator Tables</a><a class="headerlink" href="#name-accelerator-tables" title="Permalink to this headline"></a></h3>
<div class="section" id="id5">
<h4><a class="toc-backref" href="#id28">Introduction</a><a class="headerlink" href="#id5" title="Permalink to this headline"></a></h4>
<p>The &#8220;<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>&#8221; and &#8220;<code class="docutils literal"><span class="pre">.debug_pubtypes</span></code>&#8221; formats are not what a
debugger needs.  The &#8220;<code class="docutils literal"><span class="pre">pub</span></code>&#8221; in the section name indicates that the entries
in the table are publicly visible names only.  This means no static or hidden
functions show up in the &#8220;<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>&#8221;.  No static variables or private
class variables are in the &#8220;<code class="docutils literal"><span class="pre">.debug_pubtypes</span></code>&#8221;.  Many compilers add different
things to these tables, so we can&#8217;t rely upon the contents between gcc, icc, or
clang.</p>
<p>The typical query given by users tends not to match up with the contents of
these tables.  For example, the DWARF spec states that &#8220;In the case of the name
of a function member or static data member of a C++ structure, class or union,
the name presented in the &#8220;<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>&#8221; section is not the simple name
given by the <code class="docutils literal"><span class="pre">DW_AT_name</span> <span class="pre">attribute</span></code> of the referenced debugging information
entry, but rather the fully qualified name of the data or function member.&#8221;
So the only names in these tables for complex C++ entries is a fully
qualified name.  Debugger users tend not to enter their search strings as
&#8220;<code class="docutils literal"><span class="pre">a::b::c(int,const</span> <span class="pre">Foo&amp;)</span> <span class="pre">const</span></code>&#8221;, but rather as &#8220;<code class="docutils literal"><span class="pre">c</span></code>&#8221;, &#8220;<code class="docutils literal"><span class="pre">b::c</span></code>&#8221; , or
&#8220;<code class="docutils literal"><span class="pre">a::b::c</span></code>&#8221;.  So the name entered in the name table must be demangled in
order to chop it up appropriately and additional names must be manually entered
into the table to make it effective as a name lookup table for debuggers to
use.</p>
<p>All debuggers currently ignore the &#8220;<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>&#8221; table as a result of
its inconsistent and useless public-only name content making it a waste of
space in the object file.  These tables, when they are written to disk, are not
sorted in any way, leaving every debugger to do its own parsing and sorting.
These tables also include an inlined copy of the string values in the table
itself making the tables much larger than they need to be on disk, especially
for large C++ programs.</p>
<p>Can&#8217;t we just fix the sections by adding all of the names we need to this
table? No, because that is not what the tables are defined to contain and we
won&#8217;t know the difference between the old bad tables and the new good tables.
At best we could make our own renamed sections that contain all of the data we
need.</p>
<p>These tables are also insufficient for what a debugger like LLDB needs.  LLDB
uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
often asked to look for type &#8220;<code class="docutils literal"><span class="pre">foo</span></code>&#8221; or namespace &#8220;<code class="docutils literal"><span class="pre">bar</span></code>&#8221;, or list items in
namespace &#8220;<code class="docutils literal"><span class="pre">baz</span></code>&#8221;.  Namespaces are not included in the pubnames or pubtypes
tables.  Since clang asks a lot of questions when it is parsing an expression,
we need to be very fast when looking up names, as it happens a lot.  Having new
accelerator tables that are optimized for very quick lookups will benefit this
type of debugging experience greatly.</p>
<p>We would like to generate name lookup tables that can be mapped into memory
from disk, and used as is, with little or no up-front parsing.  We would also
be able to control the exact content of these different tables so they contain
exactly what we need.  The Name Accelerator Tables were designed to fix these
issues.  In order to solve these issues we need to:</p>
<ul class="simple">
<li>Have a format that can be mapped into memory from disk and used as is</li>
<li>Lookups should be very fast</li>
<li>Extensible table format so these tables can be made by many producers</li>
<li>Contain all of the names needed for typical lookups out of the box</li>
<li>Strict rules for the contents of tables</li>
</ul>
<p>Table size is important and the accelerator table format should allow the reuse
of strings from common string tables so the strings for the names are not
duplicated.  We also want to make sure the table is ready to be used as-is by
simply mapping the table into memory with minimal header parsing.</p>
<p>The name lookups need to be fast and optimized for the kinds of lookups that
debuggers tend to do.  Optimally we would like to touch as few parts of the
mapped table as possible when doing a name lookup and be able to quickly find
the name entry we are looking for, or discover there are no matches.  In the
case of debuggers we optimized for lookups that fail most of the time.</p>
<p>Each table that is defined should have strict rules on exactly what is in the
accelerator tables and documented so clients can rely on the content.</p>
</div>
<div class="section" id="hash-tables">
<h4><a class="toc-backref" href="#id29">Hash Tables</a><a class="headerlink" href="#hash-tables" title="Permalink to this headline"></a></h4>
<div class="section" id="standard-hash-tables">
<h5><a class="toc-backref" href="#id30">Standard Hash Tables</a><a class="headerlink" href="#standard-hash-tables" title="Permalink to this headline"></a></h5>
<p>Typical hash tables have a header, buckets, and each bucket points to the
bucket contents:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
|  HEADER    |
|------------|
|  BUCKETS   |
|------------|
|  DATA      |
`------------&#39;
</pre></div>
</div>
<p>The BUCKETS are an array of offsets to DATA for each hash:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001000 | BUCKETS[0]
| 0x00002000 | BUCKETS[1]
| 0x00002200 | BUCKETS[2]
| 0x000034f0 | BUCKETS[3]
|            | ...
| 0xXXXXXXXX | BUCKETS[n_buckets]
&#39;------------&#39;
</pre></div>
</div>
<p>So for <code class="docutils literal"><span class="pre">bucket[3]</span></code> in the example above, we have an offset into the table
0x000034f0 which points to a chain of entries for the bucket.  Each bucket must
contain a next pointer, full 32 bit hash value, the string itself, and the data
for the current string value.</p>
<div class="highlight-none"><div class="highlight"><pre>            .------------.
0x000034f0: | 0x00003500 | next pointer
            | 0x12345678 | 32 bit hash
            | &quot;erase&quot;    | string value
            | data[n]    | HashData for this bucket
            |------------|
0x00003500: | 0x00003550 | next pointer
            | 0x29273623 | 32 bit hash
            | &quot;dump&quot;     | string value
            | data[n]    | HashData for this bucket
            |------------|
0x00003550: | 0x00000000 | next pointer
            | 0x82638293 | 32 bit hash
            | &quot;main&quot;     | string value
            | data[n]    | HashData for this bucket
            `------------&#39;
</pre></div>
</div>
<p>The problem with this layout for debuggers is that we need to optimize for the
negative lookup case where the symbol we&#8217;re searching for is not present.  So
if we were to lookup &#8220;<code class="docutils literal"><span class="pre">printf</span></code>&#8221; in the table above, we would make a 32 hash
for &#8220;<code class="docutils literal"><span class="pre">printf</span></code>&#8221;, it might match <code class="docutils literal"><span class="pre">bucket[3]</span></code>.  We would need to go to the
offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
so, we need to read the next pointer, then read the hash, compare it, and skip
to the next bucket.  Each time we are skipping many bytes in memory and
touching new cache pages just to do the compare on the full 32 bit hash.  All
of these accesses then tell us that we didn&#8217;t have a match.</p>
</div>
<div class="section" id="name-hash-tables">
<h5><a class="toc-backref" href="#id31">Name Hash Tables</a><a class="headerlink" href="#name-hash-tables" title="Permalink to this headline"></a></h5>
<p>To solve the issues mentioned above we have structured the hash tables a bit
differently: a header, buckets, an array of all unique 32 bit hash values,
followed by an array of hash value data offsets, one for each hash value, then
the data for all hash values:</p>
<div class="highlight-none"><div class="highlight"><pre>.-------------.
|  HEADER     |
|-------------|
|  BUCKETS    |
|-------------|
|  HASHES     |
|-------------|
|  OFFSETS    |
|-------------|
|  DATA       |
`-------------&#39;
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">BUCKETS</span></code> in the name tables are an index into the <code class="docutils literal"><span class="pre">HASHES</span></code> array.  By
making all of the full 32 bit hash values contiguous in memory, we allow
ourselves to efficiently check for a match while touching as little memory as
possible.  Most often checking the 32 bit hash values is as far as the lookup
goes.  If it does match, it usually is a match with no collisions.  So for a
table with &#8220;<code class="docutils literal"><span class="pre">n_buckets</span></code>&#8221; buckets, and &#8220;<code class="docutils literal"><span class="pre">n_hashes</span></code>&#8221; unique 32 bit hash
values, we can clarify the contents of the <code class="docutils literal"><span class="pre">BUCKETS</span></code>, <code class="docutils literal"><span class="pre">HASHES</span></code> and
<code class="docutils literal"><span class="pre">OFFSETS</span></code> as:</p>
<div class="highlight-none"><div class="highlight"><pre>.-------------------------.
|  HEADER.magic           | uint32_t
|  HEADER.version         | uint16_t
|  HEADER.hash_function   | uint16_t
|  HEADER.bucket_count    | uint32_t
|  HEADER.hashes_count    | uint32_t
|  HEADER.header_data_len | uint32_t
|  HEADER_DATA            | HeaderData
|-------------------------|
|  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
|-------------------------|
|  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
|-------------------------|
|  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
|-------------------------|
|  ALL HASH DATA          |
`-------------------------&#39;
</pre></div>
</div>
<p>So taking the exact same data from the standard hash example above we end up
with:</p>
<div class="highlight-none"><div class="highlight"><pre>            .------------.
            | HEADER     |
            |------------|
            |          0 | BUCKETS[0]
            |          2 | BUCKETS[1]
            |          5 | BUCKETS[2]
            |          6 | BUCKETS[3]
            |            | ...
            |        ... | BUCKETS[n_buckets]
            |------------|
            | 0x........ | HASHES[0]
            | 0x........ | HASHES[1]
            | 0x........ | HASHES[2]
            | 0x........ | HASHES[3]
            | 0x........ | HASHES[4]
            | 0x........ | HASHES[5]
            | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
            | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
            | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
            | 0x........ | HASHES[9]
            | 0x........ | HASHES[10]
            | 0x........ | HASHES[11]
            | 0x........ | HASHES[12]
            | 0x........ | HASHES[13]
            | 0x........ | HASHES[n_hashes]
            |------------|
            | 0x........ | OFFSETS[0]
            | 0x........ | OFFSETS[1]
            | 0x........ | OFFSETS[2]
            | 0x........ | OFFSETS[3]
            | 0x........ | OFFSETS[4]
            | 0x........ | OFFSETS[5]
            | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
            | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
            | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
            | 0x........ | OFFSETS[9]
            | 0x........ | OFFSETS[10]
            | 0x........ | OFFSETS[11]
            | 0x........ | OFFSETS[12]
            | 0x........ | OFFSETS[13]
            | 0x........ | OFFSETS[n_hashes]
            |------------|
            |            |
            |            |
            |            |
            |            |
            |            |
            |------------|
0x000034f0: | 0x00001203 | .debug_str (&quot;erase&quot;)
            | 0x00000004 | A 32 bit array count - number of HashData with name &quot;erase&quot;
            | 0x........ | HashData[0]
            | 0x........ | HashData[1]
            | 0x........ | HashData[2]
            | 0x........ | HashData[3]
            | 0x00000000 | String offset into .debug_str (terminate data for hash)
            |------------|
0x00003500: | 0x00001203 | String offset into .debug_str (&quot;collision&quot;)
            | 0x00000002 | A 32 bit array count - number of HashData with name &quot;collision&quot;
            | 0x........ | HashData[0]
            | 0x........ | HashData[1]
            | 0x00001203 | String offset into .debug_str (&quot;dump&quot;)
            | 0x00000003 | A 32 bit array count - number of HashData with name &quot;dump&quot;
            | 0x........ | HashData[0]
            | 0x........ | HashData[1]
            | 0x........ | HashData[2]
            | 0x00000000 | String offset into .debug_str (terminate data for hash)
            |------------|
0x00003550: | 0x00001203 | String offset into .debug_str (&quot;main&quot;)
            | 0x00000009 | A 32 bit array count - number of HashData with name &quot;main&quot;
            | 0x........ | HashData[0]
            | 0x........ | HashData[1]
            | 0x........ | HashData[2]
            | 0x........ | HashData[3]
            | 0x........ | HashData[4]
            | 0x........ | HashData[5]
            | 0x........ | HashData[6]
            | 0x........ | HashData[7]
            | 0x........ | HashData[8]
            | 0x00000000 | String offset into .debug_str (terminate data for hash)
            `------------&#39;
</pre></div>
</div>
<p>So we still have all of the same data, we just organize it more efficiently for
debugger lookup.  If we repeat the same &#8220;<code class="docutils literal"><span class="pre">printf</span></code>&#8221; lookup from above, we
would hash &#8220;<code class="docutils literal"><span class="pre">printf</span></code>&#8221; and find it matches <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code> by taking the 32 bit
hash value and modulo it by <code class="docutils literal"><span class="pre">n_buckets</span></code>.  <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code> contains &#8220;6&#8221; which
is the index into the <code class="docutils literal"><span class="pre">HASHES</span></code> table.  We would then compare any consecutive
32 bit hashes values in the <code class="docutils literal"><span class="pre">HASHES</span></code> array as long as the hashes would be in
<code class="docutils literal"><span class="pre">BUCKETS[3]</span></code>.  We do this by verifying that each subsequent hash value modulo
<code class="docutils literal"><span class="pre">n_buckets</span></code> is still 3.  In the case of a failed lookup we would access the
memory for <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code>, and then compare a few consecutive 32 bit hashes
before we know that we have no match.  We don&#8217;t end up marching through
multiple words of memory and we really keep the number of processor data cache
lines being accessed as small as possible.</p>
<p>The string hash that is used for these lookup tables is the Daniel J.
Bernstein hash which is also used in the ELF <code class="docutils literal"><span class="pre">GNU_HASH</span></code> sections.  It is a
very good hash for all kinds of names in programs with very few hash
collisions.</p>
<p>Empty buckets are designated by using an invalid hash index of <code class="docutils literal"><span class="pre">UINT32_MAX</span></code>.</p>
</div>
</div>
<div class="section" id="details">
<h4><a class="toc-backref" href="#id32">Details</a><a class="headerlink" href="#details" title="Permalink to this headline"></a></h4>
<p>These name hash tables are designed to be generic where specializations of the
table get to define additional data that goes into the header (&#8220;<code class="docutils literal"><span class="pre">HeaderData</span></code>&#8221;),
how the string value is stored (&#8220;<code class="docutils literal"><span class="pre">KeyType</span></code>&#8221;) and the content of the data for each
hash value.</p>
<div class="section" id="header-layout">
<h5><a class="toc-backref" href="#id33">Header Layout</a><a class="headerlink" href="#header-layout" title="Permalink to this headline"></a></h5>
<p>The header has a fixed part, and the specialized part.  The exact format of the
header is:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">Header</span>
<span class="p">{</span>
  <span class="kt">uint32_t</span>   <span class="n">magic</span><span class="p">;</span>           <span class="c1">// &#39;HASH&#39; magic value to allow endian detection</span>
  <span class="kt">uint16_t</span>   <span class="n">version</span><span class="p">;</span>         <span class="c1">// Version number</span>
  <span class="kt">uint16_t</span>   <span class="n">hash_function</span><span class="p">;</span>   <span class="c1">// The hash function enumeration that was used</span>
  <span class="kt">uint32_t</span>   <span class="n">bucket_count</span><span class="p">;</span>    <span class="c1">// The number of buckets in this hash table</span>
  <span class="kt">uint32_t</span>   <span class="n">hashes_count</span><span class="p">;</span>    <span class="c1">// The total number of unique hash values and hash data offsets in this table</span>
  <span class="kt">uint32_t</span>   <span class="n">header_data_len</span><span class="p">;</span> <span class="c1">// The bytes to skip to get to the hash indexes (buckets) for correct alignment</span>
                              <span class="c1">// Specifically the length of the following HeaderData field - this does not</span>
                              <span class="c1">// include the size of the preceding fields</span>
  <span class="n">HeaderData</span> <span class="n">header_data</span><span class="p">;</span>     <span class="c1">// Implementation specific header data</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The header starts with a 32 bit &#8220;<code class="docutils literal"><span class="pre">magic</span></code>&#8221; value which must be <code class="docutils literal"><span class="pre">'HASH'</span></code>
encoded as an ASCII integer.  This allows the detection of the start of the
hash table and also allows the table&#8217;s byte order to be determined so the table
can be correctly extracted.  The &#8220;<code class="docutils literal"><span class="pre">magic</span></code>&#8221; value is followed by a 16 bit
<code class="docutils literal"><span class="pre">version</span></code> number which allows the table to be revised and modified in the
future.  The current version number is 1. <code class="docutils literal"><span class="pre">hash_function</span></code> is a <code class="docutils literal"><span class="pre">uint16_t</span></code>
enumeration that specifies which hash function was used to produce this table.
The current values for the hash function enumerations include:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">enum</span> <span class="n">HashFunctionType</span>
<span class="p">{</span>
  <span class="n">eHashFunctionDJB</span> <span class="o">=</span> <span class="mi">0u</span><span class="p">,</span> <span class="c1">// Daniel J Bernstein hash function</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">bucket_count</span></code> is a 32 bit unsigned integer that represents how many buckets
are in the <code class="docutils literal"><span class="pre">BUCKETS</span></code> array.  <code class="docutils literal"><span class="pre">hashes_count</span></code> is the number of unique 32 bit
hash values that are in the <code class="docutils literal"><span class="pre">HASHES</span></code> array, and is the same number of offsets
are contained in the <code class="docutils literal"><span class="pre">OFFSETS</span></code> array.  <code class="docutils literal"><span class="pre">header_data_len</span></code> specifies the size
in bytes of the <code class="docutils literal"><span class="pre">HeaderData</span></code> that is filled in by specialized versions of
this table.</p>
</div>
<div class="section" id="fixed-lookup">
<h5><a class="toc-backref" href="#id34">Fixed Lookup</a><a class="headerlink" href="#fixed-lookup" title="Permalink to this headline"></a></h5>
<p>The header is followed by the buckets, hashes, offsets, and hash value data.</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">FixedTable</span>
<span class="p">{</span>
  <span class="kt">uint32_t</span> <span class="n">buckets</span><span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">bucket_count</span><span class="p">];</span>  <span class="c1">// An array of hash indexes into the &quot;hashes[]&quot; array below</span>
  <span class="kt">uint32_t</span> <span class="n">hashes</span> <span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">hashes_count</span><span class="p">];</span>  <span class="c1">// Every unique 32 bit hash for the entire table is in this table</span>
  <span class="kt">uint32_t</span> <span class="n">offsets</span><span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">hashes_count</span><span class="p">];</span>  <span class="c1">// An offset that corresponds to each item in the &quot;hashes[]&quot; array above</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">buckets</span></code> is an array of 32 bit indexes into the <code class="docutils literal"><span class="pre">hashes</span></code> array.  The
<code class="docutils literal"><span class="pre">hashes</span></code> array contains all of the 32 bit hash values for all names in the
hash table.  Each hash in the <code class="docutils literal"><span class="pre">hashes</span></code> table has an offset in the <code class="docutils literal"><span class="pre">offsets</span></code>
array that points to the data for the hash value.</p>
<p>This table setup makes it very easy to repurpose these tables to contain
different data, while keeping the lookup mechanism the same for all tables.
This layout also makes it possible to save the table to disk and map it in
later and do very efficient name lookups with little or no parsing.</p>
<p>DWARF lookup tables can be implemented in a variety of ways and can store a lot
of information for each name.  We want to make the DWARF tables extensible and
able to store the data efficiently so we have used some of the DWARF features
that enable efficient data storage to define exactly what kind of data we store
for each name.</p>
<p>The <code class="docutils literal"><span class="pre">HeaderData</span></code> contains a definition of the contents of each HashData chunk.
We might want to store an offset to all of the debug information entries (DIEs)
for each name.  To keep things extensible, we create a list of items, or
Atoms, that are contained in the data for each name.  First comes the type of
the data in each atom:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">enum</span> <span class="n">AtomType</span>
<span class="p">{</span>
  <span class="n">eAtomTypeNULL</span>       <span class="o">=</span> <span class="mi">0u</span><span class="p">,</span>
  <span class="n">eAtomTypeDIEOffset</span>  <span class="o">=</span> <span class="mi">1u</span><span class="p">,</span>   <span class="c1">// DIE offset, check form for encoding</span>
  <span class="n">eAtomTypeCUOffset</span>   <span class="o">=</span> <span class="mi">2u</span><span class="p">,</span>   <span class="c1">// DIE offset of the compiler unit header that contains the item in question</span>
  <span class="n">eAtomTypeTag</span>        <span class="o">=</span> <span class="mi">3u</span><span class="p">,</span>   <span class="c1">// DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2</span>
  <span class="n">eAtomTypeNameFlags</span>  <span class="o">=</span> <span class="mi">4u</span><span class="p">,</span>   <span class="c1">// Flags from enum NameFlags</span>
  <span class="n">eAtomTypeTypeFlags</span>  <span class="o">=</span> <span class="mi">5u</span><span class="p">,</span>   <span class="c1">// Flags from enum TypeFlags</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The enumeration values and their meanings are:</p>
<div class="highlight-none"><div class="highlight"><pre>eAtomTypeNULL       - a termination atom that specifies the end of the atom list
eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don&#39;t have to parse the DWARF to see what it is
eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
</pre></div>
</div>
<p>Then we allow each atom type to define the atom type and how the data for each
atom type data is encoded:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">Atom</span>
<span class="p">{</span>
  <span class="kt">uint16_t</span> <span class="n">type</span><span class="p">;</span>  <span class="c1">// AtomType enum value</span>
  <span class="kt">uint16_t</span> <span class="n">form</span><span class="p">;</span>  <span class="c1">// DWARF DW_FORM_XXX defines</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">form</span></code> type above is from the DWARF specification and defines the exact
encoding of the data for the Atom type.  See the DWARF specification for the
<code class="docutils literal"><span class="pre">DW_FORM_</span></code> definitions.</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">HeaderData</span>
<span class="p">{</span>
  <span class="kt">uint32_t</span> <span class="n">die_offset_base</span><span class="p">;</span>
  <span class="kt">uint32_t</span> <span class="n">atom_count</span><span class="p">;</span>
  <span class="n">Atoms</span>    <span class="n">atoms</span><span class="p">[</span><span class="n">atom_count0</span><span class="p">];</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">HeaderData</span></code> defines the base DIE offset that should be added to any atoms
that are encoded using the <code class="docutils literal"><span class="pre">DW_FORM_ref1</span></code>, <code class="docutils literal"><span class="pre">DW_FORM_ref2</span></code>,
<code class="docutils literal"><span class="pre">DW_FORM_ref4</span></code>, <code class="docutils literal"><span class="pre">DW_FORM_ref8</span></code> or <code class="docutils literal"><span class="pre">DW_FORM_ref_udata</span></code>.  It also defines
what is contained in each <code class="docutils literal"><span class="pre">HashData</span></code> object &#8211; <code class="docutils literal"><span class="pre">Atom.form</span></code> tells us how large
each field will be in the <code class="docutils literal"><span class="pre">HashData</span></code> and the <code class="docutils literal"><span class="pre">Atom.type</span></code> tells us how this data
should be interpreted.</p>
<p>For the current implementations of the &#8220;<code class="docutils literal"><span class="pre">.apple_names</span></code>&#8221; (all functions +
globals), the &#8220;<code class="docutils literal"><span class="pre">.apple_types</span></code>&#8221; (names of all types that are defined), and
the &#8220;<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>&#8221; (all namespaces), we currently set the <code class="docutils literal"><span class="pre">Atom</span></code>
array to be:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="n">HeaderData</span><span class="p">.</span><span class="n">atom_count</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="n">HeaderData</span><span class="p">.</span><span class="n">atoms</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">type</span> <span class="o">=</span> <span class="n">eAtomTypeDIEOffset</span><span class="p">;</span>
<span class="n">HeaderData</span><span class="p">.</span><span class="n">atoms</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">form</span> <span class="o">=</span> <span class="n">DW_FORM_data4</span><span class="p">;</span>
</pre></div>
</div>
<p>This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
multiple matching DIEs in a single file, which could come up with an inlined
function for instance.  Future tables could include more information about the
DIE such as flags indicating if the DIE is a function, method, block,
or inlined.</p>
<p>The KeyType for the DWARF table is a 32 bit string table offset into the
&#8221;.debug_str&#8221; table.  The &#8221;.debug_str&#8221; is the string table for the DWARF which
may already contain copies of all of the strings.  This helps make sure, with
help from the compiler, that we reuse the strings between all of the DWARF
sections and keeps the hash table size down.  Another benefit to having the
compiler generate all strings as DW_FORM_strp in the debug info, is that
DWARF parsing can be made much faster.</p>
<p>After a lookup is made, we get an offset into the hash data.  The hash data
needs to be able to deal with 32 bit hash collisions, so the chunk of data
at the offset in the hash data consists of a triple:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">uint32_t</span> <span class="n">str_offset</span>
<span class="kt">uint32_t</span> <span class="n">hash_data_count</span>
<span class="n">HashData</span><span class="p">[</span><span class="n">hash_data_count</span><span class="p">]</span>
</pre></div>
</div>
<p>If &#8220;str_offset&#8221; is zero, then the bucket contents are done. 99.9% of the
hash data chunks contain a single item (no 32 bit hash collision):</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] =&gt; &quot;main&quot;)
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------&#39;
</pre></div>
</div>
<p>If there are collisions, you will have multiple valid string offsets:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] =&gt; &quot;main&quot;)
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] =&gt; &quot;print&quot;)
| 0x00000002 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------&#39;
</pre></div>
</div>
<p>Current testing with real world C++ binaries has shown that there is around 1
32 bit hash collision per 100,000 name entries.</p>
</div>
</div>
<div class="section" id="id6">
<h4><a class="toc-backref" href="#id35">Contents</a><a class="headerlink" href="#id6" title="Permalink to this headline"></a></h4>
<p>As we said, we want to strictly define exactly what is included in the
different tables.  For DWARF, we have 3 tables: &#8220;<code class="docutils literal"><span class="pre">.apple_names</span></code>&#8221;,
&#8220;<code class="docutils literal"><span class="pre">.apple_types</span></code>&#8221;, and &#8220;<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>&#8221;.</p>
<p>&#8220;<code class="docutils literal"><span class="pre">.apple_names</span></code>&#8221; sections should contain an entry for each DWARF DIE whose
<code class="docutils literal"><span class="pre">DW_TAG</span></code> is a <code class="docutils literal"><span class="pre">DW_TAG_label</span></code>, <code class="docutils literal"><span class="pre">DW_TAG_inlined_subroutine</span></code>, or
<code class="docutils literal"><span class="pre">DW_TAG_subprogram</span></code> that has address attributes: <code class="docutils literal"><span class="pre">DW_AT_low_pc</span></code>,
<code class="docutils literal"><span class="pre">DW_AT_high_pc</span></code>, <code class="docutils literal"><span class="pre">DW_AT_ranges</span></code> or <code class="docutils literal"><span class="pre">DW_AT_entry_pc</span></code>.  It also contains
<code class="docutils literal"><span class="pre">DW_TAG_variable</span></code> DIEs that have a <code class="docutils literal"><span class="pre">DW_OP_addr</span></code> in the location (global and
static variables).  All global and static variables should be included,
including those scoped within functions and classes.  For example using the
following code:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">static</span> <span class="kt">int</span> <span class="n">var</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>

<span class="kt">void</span> <span class="nf">f</span> <span class="p">()</span>
<span class="p">{</span>
  <span class="k">static</span> <span class="kt">int</span> <span class="n">var</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Both of the static <code class="docutils literal"><span class="pre">var</span></code> variables would be included in the table.  All
functions should emit both their full names and their basenames.  For C or C++,
the full name is the mangled name (if available) which is usually in the
<code class="docutils literal"><span class="pre">DW_AT_MIPS_linkage_name</span></code> attribute, and the <code class="docutils literal"><span class="pre">DW_AT_name</span></code> contains the
function basename.  If global or static variables have a mangled name in a
<code class="docutils literal"><span class="pre">DW_AT_MIPS_linkage_name</span></code> attribute, this should be emitted along with the
simple name found in the <code class="docutils literal"><span class="pre">DW_AT_name</span></code> attribute.</p>
<p>&#8220;<code class="docutils literal"><span class="pre">.apple_types</span></code>&#8221; sections should contain an entry for each DWARF DIE whose
tag is one of:</p>
<ul class="simple">
<li>DW_TAG_array_type</li>
<li>DW_TAG_class_type</li>
<li>DW_TAG_enumeration_type</li>
<li>DW_TAG_pointer_type</li>
<li>DW_TAG_reference_type</li>
<li>DW_TAG_string_type</li>
<li>DW_TAG_structure_type</li>
<li>DW_TAG_subroutine_type</li>
<li>DW_TAG_typedef</li>
<li>DW_TAG_union_type</li>
<li>DW_TAG_ptr_to_member_type</li>
<li>DW_TAG_set_type</li>
<li>DW_TAG_subrange_type</li>
<li>DW_TAG_base_type</li>
<li>DW_TAG_const_type</li>
<li>DW_TAG_file_type</li>
<li>DW_TAG_namelist</li>
<li>DW_TAG_packed_type</li>
<li>DW_TAG_volatile_type</li>
<li>DW_TAG_restrict_type</li>
<li>DW_TAG_interface_type</li>
<li>DW_TAG_unspecified_type</li>
<li>DW_TAG_shared_type</li>
</ul>
<p>Only entries with a <code class="docutils literal"><span class="pre">DW_AT_name</span></code> attribute are included, and the entry must
not be a forward declaration (<code class="docutils literal"><span class="pre">DW_AT_declaration</span></code> attribute with a non-zero
value).  For example, using the following code:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="nf">main</span> <span class="p">()</span>
<span class="p">{</span>
  <span class="kt">int</span> <span class="o">*</span><span class="n">b</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
  <span class="k">return</span> <span class="o">*</span><span class="n">b</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>We get a few type DIEs:</p>
<div class="highlight-none"><div class="highlight"><pre>0x00000067:     TAG_base_type [5]
                AT_encoding( DW_ATE_signed )
                AT_name( &quot;int&quot; )
                AT_byte_size( 0x04 )

0x0000006e:     TAG_pointer_type [6]
                AT_type( {0x00000067} ( int ) )
                AT_byte_size( 0x08 )
</pre></div>
</div>
<p>The DW_TAG_pointer_type is not included because it does not have a <code class="docutils literal"><span class="pre">DW_AT_name</span></code>.</p>
<p>&#8220;<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>&#8221; section should contain all <code class="docutils literal"><span class="pre">DW_TAG_namespace</span></code> DIEs.
If we run into a namespace that has no name this is an anonymous namespace, and
the name should be output as &#8220;<code class="docutils literal"><span class="pre">(anonymous</span> <span class="pre">namespace)</span></code>&#8221; (without the quotes).
Why?  This matches the output of the <code class="docutils literal"><span class="pre">abi::cxa_demangle()</span></code> that is in the
standard C++ library that demangles mangled names.</p>
</div>
<div class="section" id="language-extensions-and-file-format-changes">
<h4><a class="toc-backref" href="#id36">Language Extensions and File Format Changes</a><a class="headerlink" href="#language-extensions-and-file-format-changes" title="Permalink to this headline"></a></h4>
<div class="section" id="objective-c-extensions">
<h5><a class="toc-backref" href="#id37">Objective-C Extensions</a><a class="headerlink" href="#objective-c-extensions" title="Permalink to this headline"></a></h5>
<p>&#8220;<code class="docutils literal"><span class="pre">.apple_objc</span></code>&#8221; section should contain all <code class="docutils literal"><span class="pre">DW_TAG_subprogram</span></code> DIEs for an
Objective-C class.  The name used in the hash table is the name of the
Objective-C class itself.  If the Objective-C class has a category, then an
entry is made for both the class name without the category, and for the class
name with the category.  So if we have a DIE at offset 0x1234 with a name of
method &#8220;<code class="docutils literal"><span class="pre">-[NSString(my_additions)</span> <span class="pre">stringWithSpecialString:]</span></code>&#8221;, we would add
an entry for &#8220;<code class="docutils literal"><span class="pre">NSString</span></code>&#8221; that points to DIE 0x1234, and an entry for
&#8220;<code class="docutils literal"><span class="pre">NSString(my_additions)</span></code>&#8221; that points to 0x1234.  This allows us to quickly
track down all Objective-C methods for an Objective-C class when doing
expressions.  It is needed because of the dynamic nature of Objective-C where
anyone can add methods to a class.  The DWARF for Objective-C methods is also
emitted differently from C++ classes where the methods are not usually
contained in the class definition, they are scattered about across one or more
compile units.  Categories can also be defined in different shared libraries.
So we need to be able to quickly find all of the methods and class functions
given the Objective-C class name, or quickly find all methods and class
functions for a class + category name.  This table does not contain any
selector names, it just maps Objective-C class names (or class names +
category) to all of the methods and class functions.  The selectors are added
as function basenames in the &#8220;<code class="docutils literal"><span class="pre">.debug_names</span></code>&#8221; section.</p>
<p>In the &#8220;<code class="docutils literal"><span class="pre">.apple_names</span></code>&#8221; section for Objective-C functions, the full name is
the entire function name with the brackets (&#8220;<code class="docutils literal"><span class="pre">-[NSString</span>
<span class="pre">stringWithCString:]</span></code>&#8221;) and the basename is the selector only
(&#8220;<code class="docutils literal"><span class="pre">stringWithCString:</span></code>&#8221;).</p>
</div>
<div class="section" id="mach-o-changes">
<h5><a class="toc-backref" href="#id38">Mach-O Changes</a><a class="headerlink" href="#mach-o-changes" title="Permalink to this headline"></a></h5>
<p>The sections names for the apple hash tables are for non-mach-o files.  For
mach-o files, the sections should be contained in the <code class="docutils literal"><span class="pre">__DWARF</span></code> segment with
names as follows:</p>
<ul class="simple">
<li>&#8220;<code class="docutils literal"><span class="pre">.apple_names</span></code>&#8221; -&gt; &#8220;<code class="docutils literal"><span class="pre">__apple_names</span></code>&#8220;</li>
<li>&#8220;<code class="docutils literal"><span class="pre">.apple_types</span></code>&#8221; -&gt; &#8220;<code class="docutils literal"><span class="pre">__apple_types</span></code>&#8220;</li>
<li>&#8220;<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>&#8221; -&gt; &#8220;<code class="docutils literal"><span class="pre">__apple_namespac</span></code>&#8221; (16 character limit)</li>
<li>&#8220;<code class="docutils literal"><span class="pre">.apple_objc</span></code>&#8221; -&gt; &#8220;<code class="docutils literal"><span class="pre">__apple_objc</span></code>&#8220;</li>
</ul>
</div>
</div>
</div>
</div>
</div>


          </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="Vectorizers.html" title="Auto-Vectorization in LLVM"
             >next</a> |</li>
        <li class="right" >
          <a href="SystemLibrary.html" title="System Library"
             >previous</a> |</li>
  <li><a href="http://llvm.org/">LLVM Home</a>&nbsp;|&nbsp;</li>
  <li><a href="index.html">Documentation</a>&raquo;</li>
 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &copy; Copyright 2003-2016, LLVM Project.
      Last updated on 2016-03-08.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.6.
    </div>
  </body>
</html>