/usr/share/doc/llvm-3.8-doc/html/SourceLevelDebugging.html is in llvm-3.8-doc 1:3.8-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Source Level Debugging with LLVM — LLVM 3.8 documentation</title>
<link rel="stylesheet" href="_static/llvm-theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '3.8',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<link rel="top" title="LLVM 3.8 documentation" href="index.html" />
<link rel="next" title="Auto-Vectorization in LLVM" href="Vectorizers.html" />
<link rel="prev" title="System Library" href="SystemLibrary.html" />
<style type="text/css">
table.right { float: right; margin-left: 20px; }
table.right td { border: 1px solid #ccc; }
</style>
</head>
<body role="document">
<div class="logo">
<a href="index.html">
<img src="_static/logo.png"
alt="LLVM Logo" width="250" height="88"/></a>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="Vectorizers.html" title="Auto-Vectorization in LLVM"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="SystemLibrary.html" title="System Library"
accesskey="P">previous</a> |</li>
<li><a href="http://llvm.org/">LLVM Home</a> | </li>
<li><a href="index.html">Documentation</a>»</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="body" role="main">
<div class="section" id="source-level-debugging-with-llvm">
<h1>Source Level Debugging with LLVM<a class="headerlink" href="#source-level-debugging-with-llvm" title="Permalink to this headline">¶</a></h1>
<div class="contents local topic" id="contents">
<ul class="simple">
<li><a class="reference internal" href="#introduction" id="id7">Introduction</a><ul>
<li><a class="reference internal" href="#philosophy-behind-llvm-debugging-information" id="id8">Philosophy behind LLVM debugging information</a></li>
<li><a class="reference internal" href="#debug-information-consumers" id="id9">Debug information consumers</a></li>
<li><a class="reference internal" href="#debugging-optimized-code" id="id10">Debugging optimized code</a></li>
</ul>
</li>
<li><a class="reference internal" href="#debugging-information-format" id="id11">Debugging information format</a><ul>
<li><a class="reference internal" href="#debugger-intrinsic-functions" id="id12">Debugger intrinsic functions</a><ul>
<li><a class="reference internal" href="#llvm-dbg-declare" id="id13"><code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code></a></li>
<li><a class="reference internal" href="#llvm-dbg-value" id="id14"><code class="docutils literal"><span class="pre">llvm.dbg.value</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#object-lifetimes-and-scoping" id="id15">Object lifetimes and scoping</a></li>
<li><a class="reference internal" href="#c-c-front-end-specific-debug-information" id="id16">C/C++ front-end specific debug information</a><ul>
<li><a class="reference internal" href="#c-c-source-file-information" id="id17">C/C++ source file information</a></li>
<li><a class="reference internal" href="#c-c-global-variable-information" id="id18">C/C++ global variable information</a></li>
<li><a class="reference internal" href="#c-c-function-information" id="id19">C/C++ function information</a></li>
</ul>
</li>
<li><a class="reference internal" href="#id3" id="id20">Debugging information format</a><ul>
<li><a class="reference internal" href="#debugging-information-extension-for-objective-c-properties" id="id21">Debugging Information Extension for Objective C Properties</a><ul>
<li><a class="reference internal" href="#id4" id="id22">Introduction</a></li>
<li><a class="reference internal" href="#proposal" id="id23">Proposal</a></li>
<li><a class="reference internal" href="#new-dwarf-tags" id="id24">New DWARF Tags</a></li>
<li><a class="reference internal" href="#new-dwarf-attributes" id="id25">New DWARF Attributes</a></li>
<li><a class="reference internal" href="#new-dwarf-constants" id="id26">New DWARF Constants</a></li>
</ul>
</li>
<li><a class="reference internal" href="#name-accelerator-tables" id="id27">Name Accelerator Tables</a><ul>
<li><a class="reference internal" href="#id5" id="id28">Introduction</a></li>
<li><a class="reference internal" href="#hash-tables" id="id29">Hash Tables</a><ul>
<li><a class="reference internal" href="#standard-hash-tables" id="id30">Standard Hash Tables</a></li>
<li><a class="reference internal" href="#name-hash-tables" id="id31">Name Hash Tables</a></li>
</ul>
</li>
<li><a class="reference internal" href="#details" id="id32">Details</a><ul>
<li><a class="reference internal" href="#header-layout" id="id33">Header Layout</a></li>
<li><a class="reference internal" href="#fixed-lookup" id="id34">Fixed Lookup</a></li>
</ul>
</li>
<li><a class="reference internal" href="#id6" id="id35">Contents</a></li>
<li><a class="reference internal" href="#language-extensions-and-file-format-changes" id="id36">Language Extensions and File Format Changes</a><ul>
<li><a class="reference internal" href="#objective-c-extensions" id="id37">Objective-C Extensions</a></li>
<li><a class="reference internal" href="#mach-o-changes" id="id38">Mach-O Changes</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="introduction">
<h2><a class="toc-backref" href="#id7">Introduction</a><a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p>This document is the central repository for all information pertaining to debug
information in LLVM. It describes the <a class="reference internal" href="#format"><span>actual format that the LLVM debug
information takes</span></a>, which is useful for those interested in creating
front-ends or dealing directly with the information. Further, this document
provides specific examples of what debug information for C/C++ looks like.</p>
<div class="section" id="philosophy-behind-llvm-debugging-information">
<h3><a class="toc-backref" href="#id8">Philosophy behind LLVM debugging information</a><a class="headerlink" href="#philosophy-behind-llvm-debugging-information" title="Permalink to this headline">¶</a></h3>
<p>The idea of the LLVM debugging information is to capture how the important
pieces of the source-language’s Abstract Syntax Tree map onto LLVM code.
Several design aspects have shaped the solution that appears here. The
important ones are:</p>
<ul class="simple">
<li>Debugging information should have very little impact on the rest of the
compiler. No transformations, analyses, or code generators should need to
be modified because of debugging information.</li>
<li>LLVM optimizations should interact in <a class="reference internal" href="#intro-debugopt"><span>well-defined and easily described
ways</span></a> with the debugging information.</li>
<li>Because LLVM is designed to support arbitrary programming languages,
LLVM-to-LLVM tools should not need to know anything about the semantics of
the source-level-language.</li>
<li>Source-level languages are often <strong>widely</strong> different from one another.
LLVM should not put any restrictions of the flavor of the source-language,
and the debugging information should work with any language.</li>
<li>With code generator support, it should be possible to use an LLVM compiler
to compile a program to native machine code and standard debugging
formats. This allows compatibility with traditional machine-code level
debuggers, like GDB or DBX.</li>
</ul>
<p>The approach used by the LLVM implementation is to use a small set of
<a class="reference internal" href="#format-common-intrinsics"><span>intrinsic functions</span></a> to define a mapping
between LLVM program objects and the source-level objects. The description of
the source-level program is maintained in LLVM metadata in an
<a class="reference internal" href="#ccxx-frontend"><span>implementation-defined format</span></a> (the C/C++ front-end
currently uses working draft 7 of the <a class="reference external" href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3 standard</a>).</p>
<p>When a program is being debugged, a debugger interacts with the user and turns
the stored debug information into source-language specific information. As
such, a debugger must be aware of the source-language, and is thus tied to a
specific language or family of languages.</p>
</div>
<div class="section" id="debug-information-consumers">
<h3><a class="toc-backref" href="#id9">Debug information consumers</a><a class="headerlink" href="#debug-information-consumers" title="Permalink to this headline">¶</a></h3>
<p>The role of debug information is to provide meta information normally stripped
away during the compilation process. This meta information provides an LLVM
user a relationship between generated code and the original program source
code.</p>
<p>Currently, debug information is consumed by DwarfDebug to produce dwarf
information used by the gdb debugger. Other targets could use the same
information to produce stabs or other debug forms.</p>
<p>It would also be reasonable to use debug information to feed profiling tools
for analysis of generated code, or, tools for reconstructing the original
source from generated code.</p>
<p>TODO - expound a bit more.</p>
</div>
<div class="section" id="debugging-optimized-code">
<span id="intro-debugopt"></span><h3><a class="toc-backref" href="#id10">Debugging optimized code</a><a class="headerlink" href="#debugging-optimized-code" title="Permalink to this headline">¶</a></h3>
<p>An extremely high priority of LLVM debugging information is to make it interact
well with optimizations and analysis. In particular, the LLVM debug
information provides the following guarantees:</p>
<ul class="simple">
<li>LLVM debug information <strong>always provides information to accurately read
the source-level state of the program</strong>, regardless of which LLVM
optimizations have been run, and without any modification to the
optimizations themselves. However, some optimizations may impact the
ability to modify the current state of the program with a debugger, such
as setting program variables, or calling functions that have been
deleted.</li>
<li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
debugging information, allowing them to update the debugging information
as they perform aggressive optimizations. This means that, with effort,
the LLVM optimizers could optimize debug code just as well as non-debug
code.</li>
<li>LLVM debug information does not prevent optimizations from
happening (for example inlining, basic block reordering/merging/cleanup,
tail duplication, etc).</li>
<li>LLVM debug information is automatically optimized along with the rest of
the program, using existing facilities. For example, duplicate
information is automatically merged by the linker, and unused information
is automatically removed.</li>
</ul>
<p>Basically, the debug information allows you to compile a program with
“<code class="docutils literal"><span class="pre">-O0</span> <span class="pre">-g</span></code>” and get full debug information, allowing you to arbitrarily modify
the program as it executes from a debugger. Compiling a program with
“<code class="docutils literal"><span class="pre">-O3</span> <span class="pre">-g</span></code>” gives you full debug information that is always available and
accurate for reading (e.g., you get accurate stack traces despite tail call
elimination and inlining), but you might lose the ability to modify the program
and call functions where were optimized out of the program, or inlined away
completely.</p>
<p><a class="reference internal" href="TestingGuide.html#test-suite-quickstart"><span>LLVM test suite</span></a> provides a framework to test
optimizer’s handling of debugging information. It can be run like this:</p>
<div class="highlight-bash"><div class="highlight"><pre>% <span class="nb">cd</span> llvm/projects/test-suite/MultiSource/Benchmarks <span class="c1"># or some other level</span>
% make <span class="nv">TEST</span><span class="o">=</span>dbgopt
</pre></div>
</div>
<p>This will test impact of debugging information on optimization passes. If
debugging information influences optimization passes then it will be reported
as a failure. See <a class="reference internal" href="TestingGuide.html"><em>LLVM Testing Infrastructure Guide</em></a> for more information on LLVM test
infrastructure and how to run various tests.</p>
</div>
</div>
<div class="section" id="debugging-information-format">
<span id="format"></span><h2><a class="toc-backref" href="#id11">Debugging information format</a><a class="headerlink" href="#debugging-information-format" title="Permalink to this headline">¶</a></h2>
<p>LLVM debugging information has been carefully designed to make it possible for
the optimizer to optimize the program and debugging information without
necessarily having to know anything about debugging information. In
particular, the use of metadata avoids duplicated debugging information from
the beginning, and the global dead code elimination pass automatically deletes
debugging information for a function if it decides to delete the function.</p>
<p>To do this, most of the debugging information (descriptors for types,
variables, functions, source files, etc) is inserted by the language front-end
in the form of LLVM metadata.</p>
<p>Debug information is designed to be agnostic about the target debugger and
debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
pass to decode the information that represents variables, types, functions,
namespaces, etc: this allows for arbitrary source-language semantics and
type-systems to be used, as long as there is a module written for the target
debugger to interpret the information.</p>
<p>To provide basic functionality, the LLVM debugger does have to make some
assumptions about the source-level language being debugged, though it keeps
these to a minimum. The only common features that the LLVM debugger assumes
exist are <a class="reference external" href="LangRef.html#difile">source files</a>, and <a class="reference external" href="LangRef.html#diglobalvariable">program objects</a>. These abstract objects are used by a
debugger to form stack traces, show information about local variables, etc.</p>
<p>This section of the documentation first describes the representation aspects
common to any source-language. <a class="reference internal" href="#ccxx-frontend"><span>C/C++ front-end specific debug information</span></a> describes the data layout
conventions used by the C and C++ front-ends.</p>
<p>Debug information descriptors are <a class="reference external" href="LangRef.html#specialized-metadata">specialized metadata nodes</a>, first-class subclasses of <code class="docutils literal"><span class="pre">Metadata</span></code>.</p>
<div class="section" id="debugger-intrinsic-functions">
<span id="format-common-intrinsics"></span><h3><a class="toc-backref" href="#id12">Debugger intrinsic functions</a><a class="headerlink" href="#debugger-intrinsic-functions" title="Permalink to this headline">¶</a></h3>
<p>LLVM uses several intrinsic functions (name prefixed with “<code class="docutils literal"><span class="pre">llvm.dbg</span></code>”) to
provide debug information at various points in generated code.</p>
<div class="section" id="llvm-dbg-declare">
<h4><a class="toc-backref" href="#id13"><code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code></a><a class="headerlink" href="#llvm-dbg-declare" title="Permalink to this headline">¶</a></h4>
<div class="highlight-llvm"><div class="highlight"><pre><span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">)</span>
</pre></div>
</div>
<p>This intrinsic provides information about a local element (e.g., variable).
The first argument is metadata holding the alloca for the variable. The second
argument is a <a class="reference external" href="LangRef.html#dilocalvariable">local variable</a> containing a
description of the variable. The third argument is a <a class="reference external" href="LangRef.html#diexpression">complex expression</a>.</p>
</div>
<div class="section" id="llvm-dbg-value">
<h4><a class="toc-backref" href="#id14"><code class="docutils literal"><span class="pre">llvm.dbg.value</span></code></a><a class="headerlink" href="#llvm-dbg-value" title="Permalink to this headline">¶</a></h4>
<div class="highlight-llvm"><div class="highlight"><pre><span class="kt">void</span> <span class="vg">@llvm.dbg.value</span><span class="p">(</span><span class="kt">metadata</span><span class="p">,</span> <span class="k">i64</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">,</span> <span class="kt">metadata</span><span class="p">)</span>
</pre></div>
</div>
<p>This intrinsic provides information when a user source variable is set to a new
value. The first argument is the new value (wrapped as metadata). The second
argument is the offset in the user source variable where the new value is
written. The third argument is a <a class="reference external" href="LangRef.html#dilocalvariable">local variable</a> containing a description of the variable. The
third argument is a <a class="reference external" href="LangRef.html#diexpression">complex expression</a>.</p>
</div>
</div>
</div>
<div class="section" id="object-lifetimes-and-scoping">
<h2><a class="toc-backref" href="#id15">Object lifetimes and scoping</a><a class="headerlink" href="#object-lifetimes-and-scoping" title="Permalink to this headline">¶</a></h2>
<p>In many languages, the local variables in functions can have their lifetimes or
scopes limited to a subset of a function. In the C family of languages, for
example, variables are only live (readable and writable) within the source
block that they are defined in. In functional languages, values are only
readable after they have been defined. Though this is a very obvious concept,
it is non-trivial to model in LLVM, because it has no notion of scoping in this
sense, and does not want to be tied to a language’s scoping rules.</p>
<p>In order to handle this, the LLVM debug format uses the metadata attached to
llvm instructions to encode line number and scoping information. Consider the
following C fragment, for example:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="mf">1.</span> <span class="kt">void</span> <span class="n">foo</span><span class="p">()</span> <span class="p">{</span>
<span class="mf">2.</span> <span class="kt">int</span> <span class="n">X</span> <span class="o">=</span> <span class="mi">21</span><span class="p">;</span>
<span class="mf">3.</span> <span class="kt">int</span> <span class="n">Y</span> <span class="o">=</span> <span class="mi">22</span><span class="p">;</span>
<span class="mf">4.</span> <span class="p">{</span>
<span class="mf">5.</span> <span class="kt">int</span> <span class="n">Z</span> <span class="o">=</span> <span class="mi">23</span><span class="p">;</span>
<span class="mf">6.</span> <span class="n">Z</span> <span class="o">=</span> <span class="n">X</span><span class="p">;</span>
<span class="mf">7.</span> <span class="p">}</span>
<span class="mf">8.</span> <span class="n">X</span> <span class="o">=</span> <span class="n">Y</span><span class="p">;</span>
<span class="mf">9.</span> <span class="p">}</span>
</pre></div>
</div>
<p>Compiled to LLVM, this function would be represented like this:</p>
<div class="highlight-llvm"><div class="highlight"><pre>; Function Attrs: nounwind ssp uwtable
define void @foo() #0 !dbg !4 {
entry:
%X = alloca i32, align 4
%Y = alloca i32, align 4
%Z = alloca i32, align 4
call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
store i32 21, i32* %X, align 4, !dbg !14
call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
store i32 22, i32* %Y, align 4, !dbg !16
call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
store i32 23, i32* %Z, align 4, !dbg !19
%0 = load i32, i32* %X, align 4, !dbg !20
store i32 %0, i32* %Z, align 4, !dbg !21
%1 = load i32, i32* %Y, align 4, !dbg !22
store i32 %1, i32* %X, align 4, !dbg !23
ret void, !dbg !24
}
; Function Attrs: nounwind readnone
declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind readnone }
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!7, !8, !9}
!llvm.ident = !{!10}
!0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0, emissionKind: 1, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
!1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-info")
!2 = !{}
!3 = !{!4}
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
!5 = !DISubroutineType(types: !6)
!6 = !{null}
!7 = !{i32 2, !"Dwarf Version", i32 2}
!8 = !{i32 2, !"Debug Info Version", i32 3}
!9 = !{i32 1, !"PIC Level", i32 2}
!10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
!11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
!13 = !DIExpression()
!14 = !DILocation(line: 2, column: 9, scope: !4)
!15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
!16 = !DILocation(line: 3, column: 9, scope: !4)
!17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
!20 = !DILocation(line: 6, column: 11, scope: !18)
!21 = !DILocation(line: 6, column: 9, scope: !18)
!22 = !DILocation(line: 8, column: 9, scope: !4)
!23 = !DILocation(line: 8, column: 7, scope: !4)
!24 = !DILocation(line: 9, column: 3, scope: !4)
</pre></div>
</div>
<p>This example illustrates a few important details about LLVM debugging
information. In particular, it shows how the <code class="docutils literal"><span class="pre">llvm.dbg.declare</span></code> intrinsic and
location information, which are attached to an instruction, are applied
together to allow a debugger to analyze the relationship between statements,
variable definitions, and the code used to implement the function.</p>
<div class="highlight-llvm"><div class="highlight"><pre><span class="k">call</span> <span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span> <span class="k">i32</span><span class="p">*</span> <span class="nv">%X</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!11</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!13</span><span class="p">),</span> <span class="nv">!dbg</span> <span class="nv nv-Anonymous">!14</span>
<span class="c">; [debug line = 2:7] [debug variable = X]</span>
</pre></div>
</div>
<p>The first intrinsic <code class="docutils literal"><span class="pre">%llvm.dbg.declare</span></code> encodes debugging information for the
variable <code class="docutils literal"><span class="pre">X</span></code>. The metadata <code class="docutils literal"><span class="pre">!dbg</span> <span class="pre">!14</span></code> attached to the intrinsic provides
scope information for the variable <code class="docutils literal"><span class="pre">X</span></code>.</p>
<div class="highlight-llvm"><div class="highlight"><pre>!14 = !DILocation(line: 2, column: 9, scope: !4)
!4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
isLocal: false, isDefinition: true, scopeLine: 1,
isOptimized: false, variables: !2)
</pre></div>
</div>
<p>Here <code class="docutils literal"><span class="pre">!14</span></code> is metadata providing <a class="reference external" href="LangRef.html#dilocation">location information</a>. In this example, scope is encoded by <code class="docutils literal"><span class="pre">!4</span></code>, a
<a class="reference external" href="LangRef.html#disubprogram">subprogram descriptor</a>. This way the location
information attached to the intrinsics indicates that the variable <code class="docutils literal"><span class="pre">X</span></code> is
declared at line number 2 at a function level scope in function <code class="docutils literal"><span class="pre">foo</span></code>.</p>
<p>Now lets take another example.</p>
<div class="highlight-llvm"><div class="highlight"><pre><span class="k">call</span> <span class="kt">void</span> <span class="vg">@llvm.dbg.declare</span><span class="p">(</span><span class="kt">metadata</span> <span class="k">i32</span><span class="p">*</span> <span class="nv">%Z</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!17</span><span class="p">,</span> <span class="kt">metadata</span> <span class="nv nv-Anonymous">!13</span><span class="p">),</span> <span class="nv">!dbg</span> <span class="nv nv-Anonymous">!19</span>
<span class="c">; [debug line = 5:9] [debug variable = Z]</span>
</pre></div>
</div>
<p>The third intrinsic <code class="docutils literal"><span class="pre">%llvm.dbg.declare</span></code> encodes debugging information for
variable <code class="docutils literal"><span class="pre">Z</span></code>. The metadata <code class="docutils literal"><span class="pre">!dbg</span> <span class="pre">!19</span></code> attached to the intrinsic provides
scope information for the variable <code class="docutils literal"><span class="pre">Z</span></code>.</p>
<div class="highlight-llvm"><div class="highlight"><pre>!18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
!19 = !DILocation(line: 5, column: 11, scope: !18)
</pre></div>
</div>
<p>Here <code class="docutils literal"><span class="pre">!19</span></code> indicates that <code class="docutils literal"><span class="pre">Z</span></code> is declared at line number 5 and column
number 0 inside of lexical scope <code class="docutils literal"><span class="pre">!18</span></code>. The lexical scope itself resides
inside of subprogram <code class="docutils literal"><span class="pre">!4</span></code> described above.</p>
<p>The scope information attached with each instruction provides a straightforward
way to find instructions covered by a scope.</p>
</div>
<div class="section" id="c-c-front-end-specific-debug-information">
<span id="ccxx-frontend"></span><h2><a class="toc-backref" href="#id16">C/C++ front-end specific debug information</a><a class="headerlink" href="#c-c-front-end-specific-debug-information" title="Permalink to this headline">¶</a></h2>
<p>The C and C++ front-ends represent information about the program in a format
that is effectively identical to <a class="reference external" href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3.0</a> in terms of information
content. This allows code generators to trivially support native debuggers by
generating standard dwarf information, and contains enough information for
non-dwarf targets to translate it as needed.</p>
<p>This section describes the forms used to represent C and C++ programs. Other
languages could pattern themselves after this (which itself is tuned to
representing programs in the same way that DWARF 3 does), or they could choose
to provide completely different forms if they don’t fit into the DWARF model.
As support for debugging information gets added to the various LLVM
source-language front-ends, the information used should be documented here.</p>
<p>The following sections provide examples of a few C/C++ constructs and the debug
information that would best describe those constructs. The canonical
references are the <code class="docutils literal"><span class="pre">DIDescriptor</span></code> classes defined in
<code class="docutils literal"><span class="pre">include/llvm/IR/DebugInfo.h</span></code> and the implementations of the helper functions
in <code class="docutils literal"><span class="pre">lib/IR/DIBuilder.cpp</span></code>.</p>
<div class="section" id="c-c-source-file-information">
<h3><a class="toc-backref" href="#id17">C/C++ source file information</a><a class="headerlink" href="#c-c-source-file-information" title="Permalink to this headline">¶</a></h3>
<p><code class="docutils literal"><span class="pre">llvm::Instruction</span></code> provides easy access to metadata attached with an
instruction. One can extract line number information encoded in LLVM IR using
<code class="docutils literal"><span class="pre">Instruction::getDebugLoc()</span></code> and <code class="docutils literal"><span class="pre">DILocation::getLine()</span></code>.</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="k">if</span> <span class="p">(</span><span class="n">DILocation</span> <span class="o">*</span><span class="n">Loc</span> <span class="o">=</span> <span class="n">I</span><span class="o">-></span><span class="n">getDebugLoc</span><span class="p">())</span> <span class="p">{</span> <span class="c1">// Here I is an LLVM instruction</span>
<span class="kt">unsigned</span> <span class="n">Line</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-></span><span class="n">getLine</span><span class="p">();</span>
<span class="n">StringRef</span> <span class="n">File</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-></span><span class="n">getFilename</span><span class="p">();</span>
<span class="n">StringRef</span> <span class="n">Dir</span> <span class="o">=</span> <span class="n">Loc</span><span class="o">-></span><span class="n">getDirectory</span><span class="p">();</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="c-c-global-variable-information">
<h3><a class="toc-backref" href="#id18">C/C++ global variable information</a><a class="headerlink" href="#c-c-global-variable-information" title="Permalink to this headline">¶</a></h3>
<p>Given an integer global variable declared as follows:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="n">MyGlobal</span> <span class="o">=</span> <span class="mi">100</span><span class="p">;</span>
</pre></div>
</div>
<p>a C/C++ front-end would generate the following descriptors:</p>
<div class="highlight-llvm"><div class="highlight"><pre>;;
;; Define the global itself.
;;
@MyGlobal = global i32 100, align 4
;;
;; List of debug info of globals
;;
!llvm.dbg.cu = !{!0}
;; Some unrelated metadata.
!llvm.module.flags = !{!6, !7}
;; Define the compile unit.
!0 = !DICompileUnit(language: DW_LANG_C99, file: !1,
producer:
"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)",
isOptimized: false, runtimeVersion: 0, emissionKind: 1,
enums: !2, retainedTypes: !2, subprograms: !2, globals:
!3, imports: !2)
;;
;; Define the file
;;
!1 = !DIFile(filename: "/dev/stdin",
directory: "/Users/dexonsmith/data/llvm/debug-info")
;; An empty array.
!2 = !{}
;; The Array of Global Variables
!3 = !{!4}
;;
;; Define the global variable itself.
;;
!4 = !DIGlobalVariable(name: "MyGlobal", scope: !0, file: !1, line: 1,
type: !5, isLocal: false, isDefinition: true,
variable: i32* @MyGlobal)
;;
;; Define the type
;;
!5 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
;; Dwarf version to output.
!6 = !{i32 2, !"Dwarf Version", i32 2}
;; Debug info schema version.
!7 = !{i32 2, !"Debug Info Version", i32 3}
</pre></div>
</div>
</div>
<div class="section" id="c-c-function-information">
<h3><a class="toc-backref" href="#id19">C/C++ function information</a><a class="headerlink" href="#c-c-function-information" title="Permalink to this headline">¶</a></h3>
<p>Given a function declared as follows:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="nf">main</span><span class="p">(</span><span class="kt">int</span> <span class="n">argc</span><span class="p">,</span> <span class="kt">char</span> <span class="o">*</span><span class="n">argv</span><span class="p">[])</span> <span class="p">{</span>
<span class="k">return</span> <span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>a C/C++ front-end would generate the following descriptors:</p>
<div class="highlight-llvm"><div class="highlight"><pre>;;
;; Define the anchor for subprograms.
;;
!4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,
isLocal: false, isDefinition: true, scopeLine: 1,
flags: DIFlagPrototyped, isOptimized: false,
variables: !2)
;;
;; Define the subprogram itself.
;;
define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
...
}
</pre></div>
</div>
</div>
</div>
<div class="section" id="id3">
<h2><a class="toc-backref" href="#id20">Debugging information format</a><a class="headerlink" href="#id3" title="Permalink to this headline">¶</a></h2>
<div class="section" id="debugging-information-extension-for-objective-c-properties">
<h3><a class="toc-backref" href="#id21">Debugging Information Extension for Objective C Properties</a><a class="headerlink" href="#debugging-information-extension-for-objective-c-properties" title="Permalink to this headline">¶</a></h3>
<div class="section" id="id4">
<h4><a class="toc-backref" href="#id22">Introduction</a><a class="headerlink" href="#id4" title="Permalink to this headline">¶</a></h4>
<p>Objective C provides a simpler way to declare and define accessor methods using
declared properties. The language provides features to declare a property and
to let compiler synthesize accessor methods.</p>
<p>The debugger lets developer inspect Objective C interfaces and their instance
variables and class variables. However, the debugger does not know anything
about the properties defined in Objective C interfaces. The debugger consumes
information generated by compiler in DWARF format. The format does not support
encoding of Objective C properties. This proposal describes DWARF extensions to
encode Objective C properties, which the debugger can use to let developers
inspect Objective C properties.</p>
</div>
<div class="section" id="proposal">
<h4><a class="toc-backref" href="#id23">Proposal</a><a class="headerlink" href="#proposal" title="Permalink to this headline">¶</a></h4>
<p>Objective C properties exist separately from class members. A property can be
defined only by “setter” and “getter” selectors, and be calculated anew on each
access. Or a property can just be a direct access to some declared ivar.
Finally it can have an ivar “automatically synthesized” for it by the compiler,
in which case the property can be referred to in user code directly using the
standard C dereference syntax as well as through the property “dot” syntax, but
there is no entry in the <code class="docutils literal"><span class="pre">@interface</span></code> declaration corresponding to this ivar.</p>
<p>To facilitate debugging, these properties we will add a new DWARF TAG into the
<code class="docutils literal"><span class="pre">DW_TAG_structure_type</span></code> definition for the class to hold the description of a
given property, and a set of DWARF attributes that provide said description.
The property tag will also contain the name and declared type of the property.</p>
<p>If there is a related ivar, there will also be a DWARF property attribute placed
in the <code class="docutils literal"><span class="pre">DW_TAG_member</span></code> DIE for that ivar referring back to the property TAG
for that property. And in the case where the compiler synthesizes the ivar
directly, the compiler is expected to generate a <code class="docutils literal"><span class="pre">DW_TAG_member</span></code> for that
ivar (with the <code class="docutils literal"><span class="pre">DW_AT_artificial</span></code> set to 1), whose name will be the name used
to access this ivar directly in code, and with the property attribute pointing
back to the property it is backing.</p>
<p>The following examples will serve as illustration for our discussion:</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="nc">I1</span> <span class="p">{</span>
<span class="kt">int</span> <span class="n">n2</span><span class="p">;</span>
<span class="p">}</span>
<span class="k">@property</span> <span class="kt">int</span> <span class="n">p1</span><span class="p">;</span>
<span class="k">@property</span> <span class="kt">int</span> <span class="n">p2</span><span class="p">;</span>
<span class="k">@end</span>
<span class="k">@implementation</span> <span class="nc">I1</span>
<span class="k">@synthesize</span> <span class="n">p1</span><span class="p">;</span>
<span class="k">@synthesize</span> <span class="n">p2</span> <span class="o">=</span> <span class="n">n2</span><span class="p">;</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>This produces the following DWARF (this is a “pseudo dwarfdump” output):</p>
<div class="highlight-none"><div class="highlight"><pre>0x00000100: TAG_structure_type [7] *
AT_APPLE_runtime_class( 0x10 )
AT_name( "I1" )
AT_decl_file( "Objc_Property.m" )
AT_decl_line( 3 )
0x00000110 TAG_APPLE_property
AT_name ( "p1" )
AT_type ( {0x00000150} ( int ) )
0x00000120: TAG_APPLE_property
AT_name ( "p2" )
AT_type ( {0x00000150} ( int ) )
0x00000130: TAG_member [8]
AT_name( "_p1" )
AT_APPLE_property ( {0x00000110} "p1" )
AT_type( {0x00000150} ( int ) )
AT_artificial ( 0x1 )
0x00000140: TAG_member [8]
AT_name( "n2" )
AT_APPLE_property ( {0x00000120} "p2" )
AT_type( {0x00000150} ( int ) )
0x00000150: AT_type( ( int ) )
</pre></div>
</div>
<p>Note, the current convention is that the name of the ivar for an
auto-synthesized property is the name of the property from which it derives
with an underscore prepended, as is shown in the example. But we actually
don’t need to know this convention, since we are given the name of the ivar
directly.</p>
<p>Also, it is common practice in ObjC to have different property declarations in
the @interface and @implementation - e.g. to provide a read-only property in
the interface,and a read-write interface in the implementation. In that case,
the compiler should emit whichever property declaration will be in force in the
current translation unit.</p>
<p>Developers can decorate a property with attributes which are encoded using
<code class="docutils literal"><span class="pre">DW_AT_APPLE_property_attribute</span></code>.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@property</span> <span class="p">(</span><span class="k">readonly</span><span class="p">,</span> <span class="k">nonatomic</span><span class="p">)</span> <span class="kt">int</span> <span class="n">pr</span><span class="p">;</span>
</pre></div>
</div>
<div class="highlight-none"><div class="highlight"><pre>TAG_APPLE_property [8]
AT_name( "pr" )
AT_type ( {0x00000147} (int) )
AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
</pre></div>
</div>
<p>The setter and getter method names are attached to the property using
<code class="docutils literal"><span class="pre">DW_AT_APPLE_property_setter</span></code> and <code class="docutils literal"><span class="pre">DW_AT_APPLE_property_getter</span></code> attributes.</p>
<div class="highlight-objc"><div class="highlight"><pre><span class="k">@interface</span> <span class="nc">I1</span>
<span class="k">@property</span> <span class="p">(</span><span class="k">setter</span><span class="o">=</span><span class="nl">myOwnP3Setter</span><span class="p">:)</span> <span class="kt">int</span> <span class="n">p3</span><span class="p">;</span>
<span class="p">-(</span><span class="kt">void</span><span class="p">)</span><span class="nf">myOwnP3Setter:</span><span class="p">(</span><span class="kt">int</span><span class="p">)</span><span class="nv">a</span><span class="p">;</span>
<span class="k">@end</span>
<span class="k">@implementation</span> <span class="nc">I1</span>
<span class="k">@synthesize</span> <span class="n">p3</span><span class="p">;</span>
<span class="p">-(</span><span class="kt">void</span><span class="p">)</span><span class="nf">myOwnP3Setter:</span><span class="p">(</span><span class="kt">int</span><span class="p">)</span><span class="nv">a</span><span class="p">{</span> <span class="p">}</span>
<span class="k">@end</span>
</pre></div>
</div>
<p>The DWARF for this would be:</p>
<div class="highlight-none"><div class="highlight"><pre>0x000003bd: TAG_structure_type [7] *
AT_APPLE_runtime_class( 0x10 )
AT_name( "I1" )
AT_decl_file( "Objc_Property.m" )
AT_decl_line( 3 )
0x000003cd TAG_APPLE_property
AT_name ( "p3" )
AT_APPLE_property_setter ( "myOwnP3Setter:" )
AT_type( {0x00000147} ( int ) )
0x000003f3: TAG_member [8]
AT_name( "_p3" )
AT_type ( {0x00000147} ( int ) )
AT_APPLE_property ( {0x000003cd} )
AT_artificial ( 0x1 )
</pre></div>
</div>
</div>
<div class="section" id="new-dwarf-tags">
<h4><a class="toc-backref" href="#id24">New DWARF Tags</a><a class="headerlink" href="#new-dwarf-tags" title="Permalink to this headline">¶</a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="74%" />
<col width="26%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">TAG</th>
<th class="head">Value</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>DW_TAG_APPLE_property</td>
<td>0x4200</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="new-dwarf-attributes">
<h4><a class="toc-backref" href="#id25">New DWARF Attributes</a><a class="headerlink" href="#new-dwarf-attributes" title="Permalink to this headline">¶</a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="63%" />
<col width="16%" />
<col width="22%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Attribute</th>
<th class="head">Value</th>
<th class="head">Classes</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>DW_AT_APPLE_property</td>
<td>0x3fed</td>
<td>Reference</td>
</tr>
<tr class="row-odd"><td>DW_AT_APPLE_property_getter</td>
<td>0x3fe9</td>
<td>String</td>
</tr>
<tr class="row-even"><td>DW_AT_APPLE_property_setter</td>
<td>0x3fea</td>
<td>String</td>
</tr>
<tr class="row-odd"><td>DW_AT_APPLE_property_attribute</td>
<td>0x3feb</td>
<td>Constant</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="new-dwarf-constants">
<h4><a class="toc-backref" href="#id26">New DWARF Constants</a><a class="headerlink" href="#new-dwarf-constants" title="Permalink to this headline">¶</a></h4>
<table border="1" class="docutils">
<colgroup>
<col width="73%" />
<col width="11%" />
<col width="16%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head" colspan="2">Name</th>
<th class="head">Value</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_readonly</td>
<td>0x01</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_getter</td>
<td>0x02</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_assign</td>
<td>0x04</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_readwrite</td>
<td>0x08</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_retain</td>
<td>0x10</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_copy</td>
<td>0x20</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_nonatomic</td>
<td>0x40</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_setter</td>
<td>0x80</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_atomic</td>
<td>0x100</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_weak</td>
<td>0x200</td>
</tr>
<tr class="row-even"><td colspan="2">DW_APPLE_PROPERTY_strong</td>
<td>0x400</td>
</tr>
<tr class="row-odd"><td colspan="2">DW_APPLE_PROPERTY_unsafe_unretained</td>
<td>0x800</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="name-accelerator-tables">
<h3><a class="toc-backref" href="#id27">Name Accelerator Tables</a><a class="headerlink" href="#name-accelerator-tables" title="Permalink to this headline">¶</a></h3>
<div class="section" id="id5">
<h4><a class="toc-backref" href="#id28">Introduction</a><a class="headerlink" href="#id5" title="Permalink to this headline">¶</a></h4>
<p>The “<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>” and “<code class="docutils literal"><span class="pre">.debug_pubtypes</span></code>” formats are not what a
debugger needs. The “<code class="docutils literal"><span class="pre">pub</span></code>” in the section name indicates that the entries
in the table are publicly visible names only. This means no static or hidden
functions show up in the “<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>”. No static variables or private
class variables are in the “<code class="docutils literal"><span class="pre">.debug_pubtypes</span></code>”. Many compilers add different
things to these tables, so we can’t rely upon the contents between gcc, icc, or
clang.</p>
<p>The typical query given by users tends not to match up with the contents of
these tables. For example, the DWARF spec states that “In the case of the name
of a function member or static data member of a C++ structure, class or union,
the name presented in the “<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>” section is not the simple name
given by the <code class="docutils literal"><span class="pre">DW_AT_name</span> <span class="pre">attribute</span></code> of the referenced debugging information
entry, but rather the fully qualified name of the data or function member.”
So the only names in these tables for complex C++ entries is a fully
qualified name. Debugger users tend not to enter their search strings as
“<code class="docutils literal"><span class="pre">a::b::c(int,const</span> <span class="pre">Foo&)</span> <span class="pre">const</span></code>”, but rather as “<code class="docutils literal"><span class="pre">c</span></code>”, “<code class="docutils literal"><span class="pre">b::c</span></code>” , or
“<code class="docutils literal"><span class="pre">a::b::c</span></code>”. So the name entered in the name table must be demangled in
order to chop it up appropriately and additional names must be manually entered
into the table to make it effective as a name lookup table for debuggers to
use.</p>
<p>All debuggers currently ignore the “<code class="docutils literal"><span class="pre">.debug_pubnames</span></code>” table as a result of
its inconsistent and useless public-only name content making it a waste of
space in the object file. These tables, when they are written to disk, are not
sorted in any way, leaving every debugger to do its own parsing and sorting.
These tables also include an inlined copy of the string values in the table
itself making the tables much larger than they need to be on disk, especially
for large C++ programs.</p>
<p>Can’t we just fix the sections by adding all of the names we need to this
table? No, because that is not what the tables are defined to contain and we
won’t know the difference between the old bad tables and the new good tables.
At best we could make our own renamed sections that contain all of the data we
need.</p>
<p>These tables are also insufficient for what a debugger like LLDB needs. LLDB
uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
often asked to look for type “<code class="docutils literal"><span class="pre">foo</span></code>” or namespace “<code class="docutils literal"><span class="pre">bar</span></code>”, or list items in
namespace “<code class="docutils literal"><span class="pre">baz</span></code>”. Namespaces are not included in the pubnames or pubtypes
tables. Since clang asks a lot of questions when it is parsing an expression,
we need to be very fast when looking up names, as it happens a lot. Having new
accelerator tables that are optimized for very quick lookups will benefit this
type of debugging experience greatly.</p>
<p>We would like to generate name lookup tables that can be mapped into memory
from disk, and used as is, with little or no up-front parsing. We would also
be able to control the exact content of these different tables so they contain
exactly what we need. The Name Accelerator Tables were designed to fix these
issues. In order to solve these issues we need to:</p>
<ul class="simple">
<li>Have a format that can be mapped into memory from disk and used as is</li>
<li>Lookups should be very fast</li>
<li>Extensible table format so these tables can be made by many producers</li>
<li>Contain all of the names needed for typical lookups out of the box</li>
<li>Strict rules for the contents of tables</li>
</ul>
<p>Table size is important and the accelerator table format should allow the reuse
of strings from common string tables so the strings for the names are not
duplicated. We also want to make sure the table is ready to be used as-is by
simply mapping the table into memory with minimal header parsing.</p>
<p>The name lookups need to be fast and optimized for the kinds of lookups that
debuggers tend to do. Optimally we would like to touch as few parts of the
mapped table as possible when doing a name lookup and be able to quickly find
the name entry we are looking for, or discover there are no matches. In the
case of debuggers we optimized for lookups that fail most of the time.</p>
<p>Each table that is defined should have strict rules on exactly what is in the
accelerator tables and documented so clients can rely on the content.</p>
</div>
<div class="section" id="hash-tables">
<h4><a class="toc-backref" href="#id29">Hash Tables</a><a class="headerlink" href="#hash-tables" title="Permalink to this headline">¶</a></h4>
<div class="section" id="standard-hash-tables">
<h5><a class="toc-backref" href="#id30">Standard Hash Tables</a><a class="headerlink" href="#standard-hash-tables" title="Permalink to this headline">¶</a></h5>
<p>Typical hash tables have a header, buckets, and each bucket points to the
bucket contents:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| HEADER |
|------------|
| BUCKETS |
|------------|
| DATA |
`------------'
</pre></div>
</div>
<p>The BUCKETS are an array of offsets to DATA for each hash:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001000 | BUCKETS[0]
| 0x00002000 | BUCKETS[1]
| 0x00002200 | BUCKETS[2]
| 0x000034f0 | BUCKETS[3]
| | ...
| 0xXXXXXXXX | BUCKETS[n_buckets]
'------------'
</pre></div>
</div>
<p>So for <code class="docutils literal"><span class="pre">bucket[3]</span></code> in the example above, we have an offset into the table
0x000034f0 which points to a chain of entries for the bucket. Each bucket must
contain a next pointer, full 32 bit hash value, the string itself, and the data
for the current string value.</p>
<div class="highlight-none"><div class="highlight"><pre> .------------.
0x000034f0: | 0x00003500 | next pointer
| 0x12345678 | 32 bit hash
| "erase" | string value
| data[n] | HashData for this bucket
|------------|
0x00003500: | 0x00003550 | next pointer
| 0x29273623 | 32 bit hash
| "dump" | string value
| data[n] | HashData for this bucket
|------------|
0x00003550: | 0x00000000 | next pointer
| 0x82638293 | 32 bit hash
| "main" | string value
| data[n] | HashData for this bucket
`------------'
</pre></div>
</div>
<p>The problem with this layout for debuggers is that we need to optimize for the
negative lookup case where the symbol we’re searching for is not present. So
if we were to lookup “<code class="docutils literal"><span class="pre">printf</span></code>” in the table above, we would make a 32 hash
for “<code class="docutils literal"><span class="pre">printf</span></code>”, it might match <code class="docutils literal"><span class="pre">bucket[3]</span></code>. We would need to go to the
offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
so, we need to read the next pointer, then read the hash, compare it, and skip
to the next bucket. Each time we are skipping many bytes in memory and
touching new cache pages just to do the compare on the full 32 bit hash. All
of these accesses then tell us that we didn’t have a match.</p>
</div>
<div class="section" id="name-hash-tables">
<h5><a class="toc-backref" href="#id31">Name Hash Tables</a><a class="headerlink" href="#name-hash-tables" title="Permalink to this headline">¶</a></h5>
<p>To solve the issues mentioned above we have structured the hash tables a bit
differently: a header, buckets, an array of all unique 32 bit hash values,
followed by an array of hash value data offsets, one for each hash value, then
the data for all hash values:</p>
<div class="highlight-none"><div class="highlight"><pre>.-------------.
| HEADER |
|-------------|
| BUCKETS |
|-------------|
| HASHES |
|-------------|
| OFFSETS |
|-------------|
| DATA |
`-------------'
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">BUCKETS</span></code> in the name tables are an index into the <code class="docutils literal"><span class="pre">HASHES</span></code> array. By
making all of the full 32 bit hash values contiguous in memory, we allow
ourselves to efficiently check for a match while touching as little memory as
possible. Most often checking the 32 bit hash values is as far as the lookup
goes. If it does match, it usually is a match with no collisions. So for a
table with “<code class="docutils literal"><span class="pre">n_buckets</span></code>” buckets, and “<code class="docutils literal"><span class="pre">n_hashes</span></code>” unique 32 bit hash
values, we can clarify the contents of the <code class="docutils literal"><span class="pre">BUCKETS</span></code>, <code class="docutils literal"><span class="pre">HASHES</span></code> and
<code class="docutils literal"><span class="pre">OFFSETS</span></code> as:</p>
<div class="highlight-none"><div class="highlight"><pre>.-------------------------.
| HEADER.magic | uint32_t
| HEADER.version | uint16_t
| HEADER.hash_function | uint16_t
| HEADER.bucket_count | uint32_t
| HEADER.hashes_count | uint32_t
| HEADER.header_data_len | uint32_t
| HEADER_DATA | HeaderData
|-------------------------|
| BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
|-------------------------|
| HASHES | uint32_t[n_hashes] // 32 bit hash values
|-------------------------|
| OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
|-------------------------|
| ALL HASH DATA |
`-------------------------'
</pre></div>
</div>
<p>So taking the exact same data from the standard hash example above we end up
with:</p>
<div class="highlight-none"><div class="highlight"><pre> .------------.
| HEADER |
|------------|
| 0 | BUCKETS[0]
| 2 | BUCKETS[1]
| 5 | BUCKETS[2]
| 6 | BUCKETS[3]
| | ...
| ... | BUCKETS[n_buckets]
|------------|
| 0x........ | HASHES[0]
| 0x........ | HASHES[1]
| 0x........ | HASHES[2]
| 0x........ | HASHES[3]
| 0x........ | HASHES[4]
| 0x........ | HASHES[5]
| 0x12345678 | HASHES[6] hash for BUCKETS[3]
| 0x29273623 | HASHES[7] hash for BUCKETS[3]
| 0x82638293 | HASHES[8] hash for BUCKETS[3]
| 0x........ | HASHES[9]
| 0x........ | HASHES[10]
| 0x........ | HASHES[11]
| 0x........ | HASHES[12]
| 0x........ | HASHES[13]
| 0x........ | HASHES[n_hashes]
|------------|
| 0x........ | OFFSETS[0]
| 0x........ | OFFSETS[1]
| 0x........ | OFFSETS[2]
| 0x........ | OFFSETS[3]
| 0x........ | OFFSETS[4]
| 0x........ | OFFSETS[5]
| 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
| 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
| 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
| 0x........ | OFFSETS[9]
| 0x........ | OFFSETS[10]
| 0x........ | OFFSETS[11]
| 0x........ | OFFSETS[12]
| 0x........ | OFFSETS[13]
| 0x........ | OFFSETS[n_hashes]
|------------|
| |
| |
| |
| |
| |
|------------|
0x000034f0: | 0x00001203 | .debug_str ("erase")
| 0x00000004 | A 32 bit array count - number of HashData with name "erase"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x........ | HashData[3]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
|------------|
0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
| 0x00000002 | A 32 bit array count - number of HashData with name "collision"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x00001203 | String offset into .debug_str ("dump")
| 0x00000003 | A 32 bit array count - number of HashData with name "dump"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
|------------|
0x00003550: | 0x00001203 | String offset into .debug_str ("main")
| 0x00000009 | A 32 bit array count - number of HashData with name "main"
| 0x........ | HashData[0]
| 0x........ | HashData[1]
| 0x........ | HashData[2]
| 0x........ | HashData[3]
| 0x........ | HashData[4]
| 0x........ | HashData[5]
| 0x........ | HashData[6]
| 0x........ | HashData[7]
| 0x........ | HashData[8]
| 0x00000000 | String offset into .debug_str (terminate data for hash)
`------------'
</pre></div>
</div>
<p>So we still have all of the same data, we just organize it more efficiently for
debugger lookup. If we repeat the same “<code class="docutils literal"><span class="pre">printf</span></code>” lookup from above, we
would hash “<code class="docutils literal"><span class="pre">printf</span></code>” and find it matches <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code> by taking the 32 bit
hash value and modulo it by <code class="docutils literal"><span class="pre">n_buckets</span></code>. <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code> contains “6” which
is the index into the <code class="docutils literal"><span class="pre">HASHES</span></code> table. We would then compare any consecutive
32 bit hashes values in the <code class="docutils literal"><span class="pre">HASHES</span></code> array as long as the hashes would be in
<code class="docutils literal"><span class="pre">BUCKETS[3]</span></code>. We do this by verifying that each subsequent hash value modulo
<code class="docutils literal"><span class="pre">n_buckets</span></code> is still 3. In the case of a failed lookup we would access the
memory for <code class="docutils literal"><span class="pre">BUCKETS[3]</span></code>, and then compare a few consecutive 32 bit hashes
before we know that we have no match. We don’t end up marching through
multiple words of memory and we really keep the number of processor data cache
lines being accessed as small as possible.</p>
<p>The string hash that is used for these lookup tables is the Daniel J.
Bernstein hash which is also used in the ELF <code class="docutils literal"><span class="pre">GNU_HASH</span></code> sections. It is a
very good hash for all kinds of names in programs with very few hash
collisions.</p>
<p>Empty buckets are designated by using an invalid hash index of <code class="docutils literal"><span class="pre">UINT32_MAX</span></code>.</p>
</div>
</div>
<div class="section" id="details">
<h4><a class="toc-backref" href="#id32">Details</a><a class="headerlink" href="#details" title="Permalink to this headline">¶</a></h4>
<p>These name hash tables are designed to be generic where specializations of the
table get to define additional data that goes into the header (“<code class="docutils literal"><span class="pre">HeaderData</span></code>”),
how the string value is stored (“<code class="docutils literal"><span class="pre">KeyType</span></code>”) and the content of the data for each
hash value.</p>
<div class="section" id="header-layout">
<h5><a class="toc-backref" href="#id33">Header Layout</a><a class="headerlink" href="#header-layout" title="Permalink to this headline">¶</a></h5>
<p>The header has a fixed part, and the specialized part. The exact format of the
header is:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">Header</span>
<span class="p">{</span>
<span class="kt">uint32_t</span> <span class="n">magic</span><span class="p">;</span> <span class="c1">// 'HASH' magic value to allow endian detection</span>
<span class="kt">uint16_t</span> <span class="n">version</span><span class="p">;</span> <span class="c1">// Version number</span>
<span class="kt">uint16_t</span> <span class="n">hash_function</span><span class="p">;</span> <span class="c1">// The hash function enumeration that was used</span>
<span class="kt">uint32_t</span> <span class="n">bucket_count</span><span class="p">;</span> <span class="c1">// The number of buckets in this hash table</span>
<span class="kt">uint32_t</span> <span class="n">hashes_count</span><span class="p">;</span> <span class="c1">// The total number of unique hash values and hash data offsets in this table</span>
<span class="kt">uint32_t</span> <span class="n">header_data_len</span><span class="p">;</span> <span class="c1">// The bytes to skip to get to the hash indexes (buckets) for correct alignment</span>
<span class="c1">// Specifically the length of the following HeaderData field - this does not</span>
<span class="c1">// include the size of the preceding fields</span>
<span class="n">HeaderData</span> <span class="n">header_data</span><span class="p">;</span> <span class="c1">// Implementation specific header data</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The header starts with a 32 bit “<code class="docutils literal"><span class="pre">magic</span></code>” value which must be <code class="docutils literal"><span class="pre">'HASH'</span></code>
encoded as an ASCII integer. This allows the detection of the start of the
hash table and also allows the table’s byte order to be determined so the table
can be correctly extracted. The “<code class="docutils literal"><span class="pre">magic</span></code>” value is followed by a 16 bit
<code class="docutils literal"><span class="pre">version</span></code> number which allows the table to be revised and modified in the
future. The current version number is 1. <code class="docutils literal"><span class="pre">hash_function</span></code> is a <code class="docutils literal"><span class="pre">uint16_t</span></code>
enumeration that specifies which hash function was used to produce this table.
The current values for the hash function enumerations include:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">enum</span> <span class="n">HashFunctionType</span>
<span class="p">{</span>
<span class="n">eHashFunctionDJB</span> <span class="o">=</span> <span class="mi">0u</span><span class="p">,</span> <span class="c1">// Daniel J Bernstein hash function</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">bucket_count</span></code> is a 32 bit unsigned integer that represents how many buckets
are in the <code class="docutils literal"><span class="pre">BUCKETS</span></code> array. <code class="docutils literal"><span class="pre">hashes_count</span></code> is the number of unique 32 bit
hash values that are in the <code class="docutils literal"><span class="pre">HASHES</span></code> array, and is the same number of offsets
are contained in the <code class="docutils literal"><span class="pre">OFFSETS</span></code> array. <code class="docutils literal"><span class="pre">header_data_len</span></code> specifies the size
in bytes of the <code class="docutils literal"><span class="pre">HeaderData</span></code> that is filled in by specialized versions of
this table.</p>
</div>
<div class="section" id="fixed-lookup">
<h5><a class="toc-backref" href="#id34">Fixed Lookup</a><a class="headerlink" href="#fixed-lookup" title="Permalink to this headline">¶</a></h5>
<p>The header is followed by the buckets, hashes, offsets, and hash value data.</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">FixedTable</span>
<span class="p">{</span>
<span class="kt">uint32_t</span> <span class="n">buckets</span><span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">bucket_count</span><span class="p">];</span> <span class="c1">// An array of hash indexes into the "hashes[]" array below</span>
<span class="kt">uint32_t</span> <span class="n">hashes</span> <span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">hashes_count</span><span class="p">];</span> <span class="c1">// Every unique 32 bit hash for the entire table is in this table</span>
<span class="kt">uint32_t</span> <span class="n">offsets</span><span class="p">[</span><span class="n">Header</span><span class="p">.</span><span class="n">hashes_count</span><span class="p">];</span> <span class="c1">// An offset that corresponds to each item in the "hashes[]" array above</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">buckets</span></code> is an array of 32 bit indexes into the <code class="docutils literal"><span class="pre">hashes</span></code> array. The
<code class="docutils literal"><span class="pre">hashes</span></code> array contains all of the 32 bit hash values for all names in the
hash table. Each hash in the <code class="docutils literal"><span class="pre">hashes</span></code> table has an offset in the <code class="docutils literal"><span class="pre">offsets</span></code>
array that points to the data for the hash value.</p>
<p>This table setup makes it very easy to repurpose these tables to contain
different data, while keeping the lookup mechanism the same for all tables.
This layout also makes it possible to save the table to disk and map it in
later and do very efficient name lookups with little or no parsing.</p>
<p>DWARF lookup tables can be implemented in a variety of ways and can store a lot
of information for each name. We want to make the DWARF tables extensible and
able to store the data efficiently so we have used some of the DWARF features
that enable efficient data storage to define exactly what kind of data we store
for each name.</p>
<p>The <code class="docutils literal"><span class="pre">HeaderData</span></code> contains a definition of the contents of each HashData chunk.
We might want to store an offset to all of the debug information entries (DIEs)
for each name. To keep things extensible, we create a list of items, or
Atoms, that are contained in the data for each name. First comes the type of
the data in each atom:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">enum</span> <span class="n">AtomType</span>
<span class="p">{</span>
<span class="n">eAtomTypeNULL</span> <span class="o">=</span> <span class="mi">0u</span><span class="p">,</span>
<span class="n">eAtomTypeDIEOffset</span> <span class="o">=</span> <span class="mi">1u</span><span class="p">,</span> <span class="c1">// DIE offset, check form for encoding</span>
<span class="n">eAtomTypeCUOffset</span> <span class="o">=</span> <span class="mi">2u</span><span class="p">,</span> <span class="c1">// DIE offset of the compiler unit header that contains the item in question</span>
<span class="n">eAtomTypeTag</span> <span class="o">=</span> <span class="mi">3u</span><span class="p">,</span> <span class="c1">// DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2</span>
<span class="n">eAtomTypeNameFlags</span> <span class="o">=</span> <span class="mi">4u</span><span class="p">,</span> <span class="c1">// Flags from enum NameFlags</span>
<span class="n">eAtomTypeTypeFlags</span> <span class="o">=</span> <span class="mi">5u</span><span class="p">,</span> <span class="c1">// Flags from enum TypeFlags</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The enumeration values and their meanings are:</p>
<div class="highlight-none"><div class="highlight"><pre>eAtomTypeNULL - a termination atom that specifies the end of the atom list
eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
</pre></div>
</div>
<p>Then we allow each atom type to define the atom type and how the data for each
atom type data is encoded:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">Atom</span>
<span class="p">{</span>
<span class="kt">uint16_t</span> <span class="n">type</span><span class="p">;</span> <span class="c1">// AtomType enum value</span>
<span class="kt">uint16_t</span> <span class="n">form</span><span class="p">;</span> <span class="c1">// DWARF DW_FORM_XXX defines</span>
<span class="p">};</span>
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">form</span></code> type above is from the DWARF specification and defines the exact
encoding of the data for the Atom type. See the DWARF specification for the
<code class="docutils literal"><span class="pre">DW_FORM_</span></code> definitions.</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">struct</span> <span class="n">HeaderData</span>
<span class="p">{</span>
<span class="kt">uint32_t</span> <span class="n">die_offset_base</span><span class="p">;</span>
<span class="kt">uint32_t</span> <span class="n">atom_count</span><span class="p">;</span>
<span class="n">Atoms</span> <span class="n">atoms</span><span class="p">[</span><span class="n">atom_count0</span><span class="p">];</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">HeaderData</span></code> defines the base DIE offset that should be added to any atoms
that are encoded using the <code class="docutils literal"><span class="pre">DW_FORM_ref1</span></code>, <code class="docutils literal"><span class="pre">DW_FORM_ref2</span></code>,
<code class="docutils literal"><span class="pre">DW_FORM_ref4</span></code>, <code class="docutils literal"><span class="pre">DW_FORM_ref8</span></code> or <code class="docutils literal"><span class="pre">DW_FORM_ref_udata</span></code>. It also defines
what is contained in each <code class="docutils literal"><span class="pre">HashData</span></code> object – <code class="docutils literal"><span class="pre">Atom.form</span></code> tells us how large
each field will be in the <code class="docutils literal"><span class="pre">HashData</span></code> and the <code class="docutils literal"><span class="pre">Atom.type</span></code> tells us how this data
should be interpreted.</p>
<p>For the current implementations of the “<code class="docutils literal"><span class="pre">.apple_names</span></code>” (all functions +
globals), the “<code class="docutils literal"><span class="pre">.apple_types</span></code>” (names of all types that are defined), and
the “<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>” (all namespaces), we currently set the <code class="docutils literal"><span class="pre">Atom</span></code>
array to be:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="n">HeaderData</span><span class="p">.</span><span class="n">atom_count</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="n">HeaderData</span><span class="p">.</span><span class="n">atoms</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">type</span> <span class="o">=</span> <span class="n">eAtomTypeDIEOffset</span><span class="p">;</span>
<span class="n">HeaderData</span><span class="p">.</span><span class="n">atoms</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">form</span> <span class="o">=</span> <span class="n">DW_FORM_data4</span><span class="p">;</span>
</pre></div>
</div>
<p>This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
multiple matching DIEs in a single file, which could come up with an inlined
function for instance. Future tables could include more information about the
DIE such as flags indicating if the DIE is a function, method, block,
or inlined.</p>
<p>The KeyType for the DWARF table is a 32 bit string table offset into the
”.debug_str” table. The ”.debug_str” is the string table for the DWARF which
may already contain copies of all of the strings. This helps make sure, with
help from the compiler, that we reuse the strings between all of the DWARF
sections and keeps the hash table size down. Another benefit to having the
compiler generate all strings as DW_FORM_strp in the debug info, is that
DWARF parsing can be made much faster.</p>
<p>After a lookup is made, we get an offset into the hash data. The hash data
needs to be able to deal with 32 bit hash collisions, so the chunk of data
at the offset in the hash data consists of a triple:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">uint32_t</span> <span class="n">str_offset</span>
<span class="kt">uint32_t</span> <span class="n">hash_data_count</span>
<span class="n">HashData</span><span class="p">[</span><span class="n">hash_data_count</span><span class="p">]</span>
</pre></div>
</div>
<p>If “str_offset” is zero, then the bucket contents are done. 99.9% of the
hash data chunks contain a single item (no 32 bit hash collision):</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'
</pre></div>
</div>
<p>If there are collisions, you will have multiple valid string offsets:</p>
<div class="highlight-none"><div class="highlight"><pre>.------------.
| 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
| 0x00000004 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x........ | uint32_t HashData[2] DIE offset
| 0x........ | uint32_t HashData[3] DIE offset
| 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
| 0x00000002 | uint32_t HashData count
| 0x........ | uint32_t HashData[0] DIE offset
| 0x........ | uint32_t HashData[1] DIE offset
| 0x00000000 | uint32_t KeyType (end of hash chain)
`------------'
</pre></div>
</div>
<p>Current testing with real world C++ binaries has shown that there is around 1
32 bit hash collision per 100,000 name entries.</p>
</div>
</div>
<div class="section" id="id6">
<h4><a class="toc-backref" href="#id35">Contents</a><a class="headerlink" href="#id6" title="Permalink to this headline">¶</a></h4>
<p>As we said, we want to strictly define exactly what is included in the
different tables. For DWARF, we have 3 tables: “<code class="docutils literal"><span class="pre">.apple_names</span></code>”,
“<code class="docutils literal"><span class="pre">.apple_types</span></code>”, and “<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>”.</p>
<p>“<code class="docutils literal"><span class="pre">.apple_names</span></code>” sections should contain an entry for each DWARF DIE whose
<code class="docutils literal"><span class="pre">DW_TAG</span></code> is a <code class="docutils literal"><span class="pre">DW_TAG_label</span></code>, <code class="docutils literal"><span class="pre">DW_TAG_inlined_subroutine</span></code>, or
<code class="docutils literal"><span class="pre">DW_TAG_subprogram</span></code> that has address attributes: <code class="docutils literal"><span class="pre">DW_AT_low_pc</span></code>,
<code class="docutils literal"><span class="pre">DW_AT_high_pc</span></code>, <code class="docutils literal"><span class="pre">DW_AT_ranges</span></code> or <code class="docutils literal"><span class="pre">DW_AT_entry_pc</span></code>. It also contains
<code class="docutils literal"><span class="pre">DW_TAG_variable</span></code> DIEs that have a <code class="docutils literal"><span class="pre">DW_OP_addr</span></code> in the location (global and
static variables). All global and static variables should be included,
including those scoped within functions and classes. For example using the
following code:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="k">static</span> <span class="kt">int</span> <span class="n">var</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="kt">void</span> <span class="nf">f</span> <span class="p">()</span>
<span class="p">{</span>
<span class="k">static</span> <span class="kt">int</span> <span class="n">var</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Both of the static <code class="docutils literal"><span class="pre">var</span></code> variables would be included in the table. All
functions should emit both their full names and their basenames. For C or C++,
the full name is the mangled name (if available) which is usually in the
<code class="docutils literal"><span class="pre">DW_AT_MIPS_linkage_name</span></code> attribute, and the <code class="docutils literal"><span class="pre">DW_AT_name</span></code> contains the
function basename. If global or static variables have a mangled name in a
<code class="docutils literal"><span class="pre">DW_AT_MIPS_linkage_name</span></code> attribute, this should be emitted along with the
simple name found in the <code class="docutils literal"><span class="pre">DW_AT_name</span></code> attribute.</p>
<p>“<code class="docutils literal"><span class="pre">.apple_types</span></code>” sections should contain an entry for each DWARF DIE whose
tag is one of:</p>
<ul class="simple">
<li>DW_TAG_array_type</li>
<li>DW_TAG_class_type</li>
<li>DW_TAG_enumeration_type</li>
<li>DW_TAG_pointer_type</li>
<li>DW_TAG_reference_type</li>
<li>DW_TAG_string_type</li>
<li>DW_TAG_structure_type</li>
<li>DW_TAG_subroutine_type</li>
<li>DW_TAG_typedef</li>
<li>DW_TAG_union_type</li>
<li>DW_TAG_ptr_to_member_type</li>
<li>DW_TAG_set_type</li>
<li>DW_TAG_subrange_type</li>
<li>DW_TAG_base_type</li>
<li>DW_TAG_const_type</li>
<li>DW_TAG_file_type</li>
<li>DW_TAG_namelist</li>
<li>DW_TAG_packed_type</li>
<li>DW_TAG_volatile_type</li>
<li>DW_TAG_restrict_type</li>
<li>DW_TAG_interface_type</li>
<li>DW_TAG_unspecified_type</li>
<li>DW_TAG_shared_type</li>
</ul>
<p>Only entries with a <code class="docutils literal"><span class="pre">DW_AT_name</span></code> attribute are included, and the entry must
not be a forward declaration (<code class="docutils literal"><span class="pre">DW_AT_declaration</span></code> attribute with a non-zero
value). For example, using the following code:</p>
<div class="highlight-c"><div class="highlight"><pre><span class="kt">int</span> <span class="nf">main</span> <span class="p">()</span>
<span class="p">{</span>
<span class="kt">int</span> <span class="o">*</span><span class="n">b</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="k">return</span> <span class="o">*</span><span class="n">b</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>We get a few type DIEs:</p>
<div class="highlight-none"><div class="highlight"><pre>0x00000067: TAG_base_type [5]
AT_encoding( DW_ATE_signed )
AT_name( "int" )
AT_byte_size( 0x04 )
0x0000006e: TAG_pointer_type [6]
AT_type( {0x00000067} ( int ) )
AT_byte_size( 0x08 )
</pre></div>
</div>
<p>The DW_TAG_pointer_type is not included because it does not have a <code class="docutils literal"><span class="pre">DW_AT_name</span></code>.</p>
<p>“<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>” section should contain all <code class="docutils literal"><span class="pre">DW_TAG_namespace</span></code> DIEs.
If we run into a namespace that has no name this is an anonymous namespace, and
the name should be output as “<code class="docutils literal"><span class="pre">(anonymous</span> <span class="pre">namespace)</span></code>” (without the quotes).
Why? This matches the output of the <code class="docutils literal"><span class="pre">abi::cxa_demangle()</span></code> that is in the
standard C++ library that demangles mangled names.</p>
</div>
<div class="section" id="language-extensions-and-file-format-changes">
<h4><a class="toc-backref" href="#id36">Language Extensions and File Format Changes</a><a class="headerlink" href="#language-extensions-and-file-format-changes" title="Permalink to this headline">¶</a></h4>
<div class="section" id="objective-c-extensions">
<h5><a class="toc-backref" href="#id37">Objective-C Extensions</a><a class="headerlink" href="#objective-c-extensions" title="Permalink to this headline">¶</a></h5>
<p>“<code class="docutils literal"><span class="pre">.apple_objc</span></code>” section should contain all <code class="docutils literal"><span class="pre">DW_TAG_subprogram</span></code> DIEs for an
Objective-C class. The name used in the hash table is the name of the
Objective-C class itself. If the Objective-C class has a category, then an
entry is made for both the class name without the category, and for the class
name with the category. So if we have a DIE at offset 0x1234 with a name of
method “<code class="docutils literal"><span class="pre">-[NSString(my_additions)</span> <span class="pre">stringWithSpecialString:]</span></code>”, we would add
an entry for “<code class="docutils literal"><span class="pre">NSString</span></code>” that points to DIE 0x1234, and an entry for
“<code class="docutils literal"><span class="pre">NSString(my_additions)</span></code>” that points to 0x1234. This allows us to quickly
track down all Objective-C methods for an Objective-C class when doing
expressions. It is needed because of the dynamic nature of Objective-C where
anyone can add methods to a class. The DWARF for Objective-C methods is also
emitted differently from C++ classes where the methods are not usually
contained in the class definition, they are scattered about across one or more
compile units. Categories can also be defined in different shared libraries.
So we need to be able to quickly find all of the methods and class functions
given the Objective-C class name, or quickly find all methods and class
functions for a class + category name. This table does not contain any
selector names, it just maps Objective-C class names (or class names +
category) to all of the methods and class functions. The selectors are added
as function basenames in the “<code class="docutils literal"><span class="pre">.debug_names</span></code>” section.</p>
<p>In the “<code class="docutils literal"><span class="pre">.apple_names</span></code>” section for Objective-C functions, the full name is
the entire function name with the brackets (“<code class="docutils literal"><span class="pre">-[NSString</span>
<span class="pre">stringWithCString:]</span></code>”) and the basename is the selector only
(“<code class="docutils literal"><span class="pre">stringWithCString:</span></code>”).</p>
</div>
<div class="section" id="mach-o-changes">
<h5><a class="toc-backref" href="#id38">Mach-O Changes</a><a class="headerlink" href="#mach-o-changes" title="Permalink to this headline">¶</a></h5>
<p>The sections names for the apple hash tables are for non-mach-o files. For
mach-o files, the sections should be contained in the <code class="docutils literal"><span class="pre">__DWARF</span></code> segment with
names as follows:</p>
<ul class="simple">
<li>“<code class="docutils literal"><span class="pre">.apple_names</span></code>” -> “<code class="docutils literal"><span class="pre">__apple_names</span></code>“</li>
<li>“<code class="docutils literal"><span class="pre">.apple_types</span></code>” -> “<code class="docutils literal"><span class="pre">__apple_types</span></code>“</li>
<li>“<code class="docutils literal"><span class="pre">.apple_namespaces</span></code>” -> “<code class="docutils literal"><span class="pre">__apple_namespac</span></code>” (16 character limit)</li>
<li>“<code class="docutils literal"><span class="pre">.apple_objc</span></code>” -> “<code class="docutils literal"><span class="pre">__apple_objc</span></code>“</li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="Vectorizers.html" title="Auto-Vectorization in LLVM"
>next</a> |</li>
<li class="right" >
<a href="SystemLibrary.html" title="System Library"
>previous</a> |</li>
<li><a href="http://llvm.org/">LLVM Home</a> | </li>
<li><a href="index.html">Documentation</a>»</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 2003-2016, LLVM Project.
Last updated on 2016-03-08.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.6.
</div>
</body>
</html>
|