/usr/share/perl/5.22.1/pod/perliol.pod is in perl-doc 5.22.1-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | =head1 NAME
perliol - C API for Perl's implementation of IO in Layers.
=head1 SYNOPSIS
/* Defining a layer ... */
#include <perliol.h>
=head1 DESCRIPTION
This document describes the behavior and implementation of the PerlIO
abstraction described in L<perlapio> when C<USE_PERLIO> is defined.
=head2 History and Background
The PerlIO abstraction was introduced in perl5.003_02 but languished as
just an abstraction until perl5.7.0. However during that time a number
of perl extensions switched to using it, so the API is mostly fixed to
maintain (source) compatibility.
The aim of the implementation is to provide the PerlIO API in a flexible
and platform neutral manner. It is also a trial of an "Object Oriented
C, with vtables" approach which may be applied to Perl 6.
=head2 Basic Structure
PerlIO is a stack of layers.
The low levels of the stack work with the low-level operating system
calls (file descriptors in C) getting bytes in and out, the higher
layers of the stack buffer, filter, and otherwise manipulate the I/O,
and return characters (or bytes) to Perl. Terms I<above> and I<below>
are used to refer to the relative positioning of the stack layers.
A layer contains a "vtable", the table of I/O operations (at C level
a table of function pointers), and status flags. The functions in the
vtable implement operations like "open", "read", and "write".
When I/O, for example "read", is requested, the request goes from Perl
first down the stack using "read" functions of each layer, then at the
bottom the input is requested from the operating system services, then
the result is returned up the stack, finally being interpreted as Perl
data.
The requests do not necessarily go always all the way down to the
operating system: that's where PerlIO buffering comes into play.
When you do an open() and specify extra PerlIO layers to be deployed,
the layers you specify are "pushed" on top of the already existing
default stack. One way to see it is that "operating system is
on the left" and "Perl is on the right".
What exact layers are in this default stack depends on a lot of
things: your operating system, Perl version, Perl compile time
configuration, and Perl runtime configuration. See L<PerlIO>,
L<perlrun/PERLIO>, and L<open> for more information.
binmode() operates similarly to open(): by default the specified
layers are pushed on top of the existing stack.
However, note that even as the specified layers are "pushed on top"
for open() and binmode(), this doesn't mean that the effects are
limited to the "top": PerlIO layers can be very 'active' and inspect
and affect layers also deeper in the stack. As an example there
is a layer called "raw" which repeatedly "pops" layers until
it reaches the first layer that has declared itself capable of
handling binary data. The "pushed" layers are processed in left-to-right
order.
sysopen() operates (unsurprisingly) at a lower level in the stack than
open(). For example in Unix or Unix-like systems sysopen() operates
directly at the level of file descriptors: in the terms of PerlIO
layers, it uses only the "unix" layer, which is a rather thin wrapper
on top of the Unix file descriptors.
=head2 Layers vs Disciplines
Initial discussion of the ability to modify IO streams behaviour used
the term "discipline" for the entities which were added. This came (I
believe) from the use of the term in "sfio", which in turn borrowed it
from "line disciplines" on Unix terminals. However, this document (and
the C code) uses the term "layer".
This is, I hope, a natural term given the implementation, and should
avoid connotations that are inherent in earlier uses of "discipline"
for things which are rather different.
=head2 Data Structures
The basic data structure is a PerlIOl:
typedef struct _PerlIO PerlIOl;
typedef struct _PerlIO_funcs PerlIO_funcs;
typedef PerlIOl *PerlIO;
struct _PerlIO
{
PerlIOl * next; /* Lower layer */
PerlIO_funcs * tab; /* Functions for this layer */
U32 flags; /* Various flags for state */
};
A C<PerlIOl *> is a pointer to the struct, and the I<application>
level C<PerlIO *> is a pointer to a C<PerlIOl *> - i.e. a pointer
to a pointer to the struct. This allows the application level C<PerlIO *>
to remain constant while the actual C<PerlIOl *> underneath
changes. (Compare perl's C<SV *> which remains constant while its
C<sv_any> field changes as the scalar's type changes.) An IO stream is
then in general represented as a pointer to this linked-list of
"layers".
It should be noted that because of the double indirection in a C<PerlIO *>,
a C<< &(perlio->next) >> "is" a C<PerlIO *>, and so to some degree
at least one layer can use the "standard" API on the next layer down.
A "layer" is composed of two parts:
=over 4
=item 1.
The functions and attributes of the "layer class".
=item 2.
The per-instance data for a particular handle.
=back
=head2 Functions and Attributes
The functions and attributes are accessed via the "tab" (for table)
member of C<PerlIOl>. The functions (methods of the layer "class") are
fixed, and are defined by the C<PerlIO_funcs> type. They are broadly the
same as the public C<PerlIO_xxxxx> functions:
struct _PerlIO_funcs
{
Size_t fsize;
char * name;
Size_t size;
IV kind;
IV (*Pushed)(pTHX_ PerlIO *f,const char *mode,SV *arg, PerlIO_funcs *tab);
IV (*Popped)(pTHX_ PerlIO *f);
PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,
PerlIO_list_t *layers, IV n,
const char *mode,
int fd, int imode, int perm,
PerlIO *old,
int narg, SV **args);
IV (*Binmode)(pTHX_ PerlIO *f);
SV * (*Getarg)(pTHX_ PerlIO *f, CLONE_PARAMS *param, int flags)
IV (*Fileno)(pTHX_ PerlIO *f);
PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o, CLONE_PARAMS *param, int flags)
/* Unix-like functions - cf sfio line disciplines */
SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);
SSize_t (*Unread)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);
SSize_t (*Write)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);
IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);
Off_t (*Tell)(pTHX_ PerlIO *f);
IV (*Close)(pTHX_ PerlIO *f);
/* Stdio-like buffered IO functions */
IV (*Flush)(pTHX_ PerlIO *f);
IV (*Fill)(pTHX_ PerlIO *f);
IV (*Eof)(pTHX_ PerlIO *f);
IV (*Error)(pTHX_ PerlIO *f);
void (*Clearerr)(pTHX_ PerlIO *f);
void (*Setlinebuf)(pTHX_ PerlIO *f);
/* Perl's snooping functions */
STDCHAR * (*Get_base)(pTHX_ PerlIO *f);
Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);
STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);
SSize_t (*Get_cnt)(pTHX_ PerlIO *f);
void (*Set_ptrcnt)(pTHX_ PerlIO *f,STDCHAR *ptr,SSize_t cnt);
};
The first few members of the struct give a function table size for
compatibility check "name" for the layer, the size to C<malloc> for the per-instance data,
and some flags which are attributes of the class as whole (such as whether it is a buffering
layer), then follow the functions which fall into four basic groups:
=over 4
=item 1.
Opening and setup functions
=item 2.
Basic IO operations
=item 3.
Stdio class buffering options.
=item 4.
Functions to support Perl's traditional "fast" access to the buffer.
=back
A layer does not have to implement all the functions, but the whole
table has to be present. Unimplemented slots can be NULL (which will
result in an error when called) or can be filled in with stubs to
"inherit" behaviour from a "base class". This "inheritance" is fixed
for all instances of the layer, but as the layer chooses which stubs
to populate the table, limited "multiple inheritance" is possible.
=head2 Per-instance Data
The per-instance data are held in memory beyond the basic PerlIOl
struct, by making a PerlIOl the first member of the layer's struct
thus:
typedef struct
{
struct _PerlIO base; /* Base "class" info */
STDCHAR * buf; /* Start of buffer */
STDCHAR * end; /* End of valid part of buffer */
STDCHAR * ptr; /* Current position in buffer */
Off_t posn; /* Offset of buf into the file */
Size_t bufsiz; /* Real size of buffer */
IV oneword; /* Emergency buffer */
} PerlIOBuf;
In this way (as for perl's scalars) a pointer to a PerlIOBuf can be
treated as a pointer to a PerlIOl.
=head2 Layers in action.
table perlio unix
| |
+-----------+ +----------+ +--------+
PerlIO ->| |--->| next |--->| NULL |
+-----------+ +----------+ +--------+
| | | buffer | | fd |
+-----------+ | | +--------+
| | +----------+
The above attempts to show how the layer scheme works in a simple case.
The application's C<PerlIO *> points to an entry in the table(s)
representing open (allocated) handles. For example the first three slots
in the table correspond to C<stdin>,C<stdout> and C<stderr>. The table
in turn points to the current "top" layer for the handle - in this case
an instance of the generic buffering layer "perlio". That layer in turn
points to the next layer down - in this case the low-level "unix" layer.
The above is roughly equivalent to a "stdio" buffered stream, but with
much more flexibility:
=over 4
=item *
If Unix level C<read>/C<write>/C<lseek> is not appropriate for (say)
sockets then the "unix" layer can be replaced (at open time or even
dynamically) with a "socket" layer.
=item *
Different handles can have different buffering schemes. The "top"
layer could be the "mmap" layer if reading disk files was quicker
using C<mmap> than C<read>. An "unbuffered" stream can be implemented
simply by not having a buffer layer.
=item *
Extra layers can be inserted to process the data as it flows through.
This was the driving need for including the scheme in perl 5.7.0+ - we
needed a mechanism to allow data to be translated between perl's
internal encoding (conceptually at least Unicode as UTF-8), and the
"native" format used by the system. This is provided by the
":encoding(xxxx)" layer which typically sits above the buffering layer.
=item *
A layer can be added that does "\n" to CRLF translation. This layer
can be used on any platform, not just those that normally do such
things.
=back
=head2 Per-instance flag bits
The generic flag bits are a hybrid of C<O_XXXXX> style flags deduced
from the mode string passed to C<PerlIO_open()>, and state bits for
typical buffer layers.
=over 4
=item PERLIO_F_EOF
End of file.
=item PERLIO_F_CANWRITE
Writes are permitted, i.e. opened as "w" or "r+" or "a", etc.
=item PERLIO_F_CANREAD
Reads are permitted i.e. opened "r" or "w+" (or even "a+" - ick).
=item PERLIO_F_ERROR
An error has occurred (for C<PerlIO_error()>).
=item PERLIO_F_TRUNCATE
Truncate file suggested by open mode.
=item PERLIO_F_APPEND
All writes should be appends.
=item PERLIO_F_CRLF
Layer is performing Win32-like "\n" mapped to CR,LF for output and CR,LF
mapped to "\n" for input. Normally the provided "crlf" layer is the only
layer that need bother about this. C<PerlIO_binmode()> will mess with this
flag rather than add/remove layers if the C<PERLIO_K_CANCRLF> bit is set
for the layers class.
=item PERLIO_F_UTF8
Data written to this layer should be UTF-8 encoded; data provided
by this layer should be considered UTF-8 encoded. Can be set on any layer
by ":utf8" dummy layer. Also set on ":encoding" layer.
=item PERLIO_F_UNBUF
Layer is unbuffered - i.e. write to next layer down should occur for
each write to this layer.
=item PERLIO_F_WRBUF
The buffer for this layer currently holds data written to it but not sent
to next layer.
=item PERLIO_F_RDBUF
The buffer for this layer currently holds unconsumed data read from
layer below.
=item PERLIO_F_LINEBUF
Layer is line buffered. Write data should be passed to next layer down
whenever a "\n" is seen. Any data beyond the "\n" should then be
processed.
=item PERLIO_F_TEMP
File has been C<unlink()>ed, or should be deleted on C<close()>.
=item PERLIO_F_OPEN
Handle is open.
=item PERLIO_F_FASTGETS
This instance of this layer supports the "fast C<gets>" interface.
Normally set based on C<PERLIO_K_FASTGETS> for the class and by the
existence of the function(s) in the table. However a class that
normally provides that interface may need to avoid it on a
particular instance. The "pending" layer needs to do this when
it is pushed above a layer which does not support the interface.
(Perl's C<sv_gets()> does not expect the streams fast C<gets> behaviour
to change during one "get".)
=back
=head2 Methods in Detail
=over 4
=item fsize
Size_t fsize;
Size of the function table. This is compared against the value PerlIO
code "knows" as a compatibility check. Future versions I<may> be able
to tolerate layers compiled against an old version of the headers.
=item name
char * name;
The name of the layer whose open() method Perl should invoke on
open(). For example if the layer is called APR, you will call:
open $fh, ">:APR", ...
and Perl knows that it has to invoke the PerlIOAPR_open() method
implemented by the APR layer.
=item size
Size_t size;
The size of the per-instance data structure, e.g.:
sizeof(PerlIOAPR)
If this field is zero then C<PerlIO_pushed> does not malloc anything
and assumes layer's Pushed function will do any required layer stack
manipulation - used to avoid malloc/free overhead for dummy layers.
If the field is non-zero it must be at least the size of C<PerlIOl>,
C<PerlIO_pushed> will allocate memory for the layer's data structures
and link new layer onto the stream's stack. (If the layer's Pushed
method returns an error indication the layer is popped again.)
=item kind
IV kind;
=over 4
=item * PERLIO_K_BUFFERED
The layer is buffered.
=item * PERLIO_K_RAW
The layer is acceptable to have in a binmode(FH) stack - i.e. it does not
(or will configure itself not to) transform bytes passing through it.
=item * PERLIO_K_CANCRLF
Layer can translate between "\n" and CRLF line ends.
=item * PERLIO_K_FASTGETS
Layer allows buffer snooping.
=item * PERLIO_K_MULTIARG
Used when the layer's open() accepts more arguments than usual. The
extra arguments should come not before the C<MODE> argument. When this
flag is used it's up to the layer to validate the args.
=back
=item Pushed
IV (*Pushed)(pTHX_ PerlIO *f,const char *mode, SV *arg);
The only absolutely mandatory method. Called when the layer is pushed
onto the stack. The C<mode> argument may be NULL if this occurs
post-open. The C<arg> will be non-C<NULL> if an argument string was
passed. In most cases this should call C<PerlIOBase_pushed()> to
convert C<mode> into the appropriate C<PERLIO_F_XXXXX> flags in
addition to any actions the layer itself takes. If a layer is not
expecting an argument it need neither save the one passed to it, nor
provide C<Getarg()> (it could perhaps C<Perl_warn> that the argument
was un-expected).
Returns 0 on success. On failure returns -1 and should set errno.
=item Popped
IV (*Popped)(pTHX_ PerlIO *f);
Called when the layer is popped from the stack. A layer will normally
be popped after C<Close()> is called. But a layer can be popped
without being closed if the program is dynamically managing layers on
the stream. In such cases C<Popped()> should free any resources
(buffers, translation tables, ...) not held directly in the layer's
struct. It should also C<Unread()> any unconsumed data that has been
read and buffered from the layer below back to that layer, so that it
can be re-provided to what ever is now above.
Returns 0 on success and failure. If C<Popped()> returns I<true> then
I<perlio.c> assumes that either the layer has popped itself, or the
layer is super special and needs to be retained for other reasons.
In most cases it should return I<false>.
=item Open
PerlIO * (*Open)(...);
The C<Open()> method has lots of arguments because it combines the
functions of perl's C<open>, C<PerlIO_open>, perl's C<sysopen>,
C<PerlIO_fdopen> and C<PerlIO_reopen>. The full prototype is as
follows:
PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,
PerlIO_list_t *layers, IV n,
const char *mode,
int fd, int imode, int perm,
PerlIO *old,
int narg, SV **args);
Open should (perhaps indirectly) call C<PerlIO_allocate()> to allocate
a slot in the table and associate it with the layers information for
the opened file, by calling C<PerlIO_push>. The I<layers> is an
array of all the layers destined for the C<PerlIO *>, and any
arguments passed to them, I<n> is the index into that array of the
layer being called. The macro C<PerlIOArg> will return a (possibly
C<NULL>) SV * for the argument passed to the layer.
The I<mode> string is an "C<fopen()>-like" string which would match
the regular expression C</^[I#]?[rwa]\+?[bt]?$/>.
The C<'I'> prefix is used during creation of C<stdin>..C<stderr> via
special C<PerlIO_fdopen> calls; the C<'#'> prefix means that this is
C<sysopen> and that I<imode> and I<perm> should be passed to
C<PerlLIO_open3>; C<'r'> means B<r>ead, C<'w'> means B<w>rite and
C<'a'> means B<a>ppend. The C<'+'> suffix means that both reading and
writing/appending are permitted. The C<'b'> suffix means file should
be binary, and C<'t'> means it is text. (Almost all layers should do
the IO in binary mode, and ignore the b/t bits. The C<:crlf> layer
should be pushed to handle the distinction.)
If I<old> is not C<NULL> then this is a C<PerlIO_reopen>. Perl itself
does not use this (yet?) and semantics are a little vague.
If I<fd> not negative then it is the numeric file descriptor I<fd>,
which will be open in a manner compatible with the supplied mode
string, the call is thus equivalent to C<PerlIO_fdopen>. In this case
I<nargs> will be zero.
If I<nargs> is greater than zero then it gives the number of arguments
passed to C<open>, otherwise it will be 1 if for example
C<PerlIO_open> was called. In simple cases SvPV_nolen(*args) is the
pathname to open.
If a layer provides C<Open()> it should normally call the C<Open()>
method of next layer down (if any) and then push itself on top if that
succeeds. C<PerlIOBase_open> is provided to do exactly that, so in
most cases you don't have to write your own C<Open()> method. If this
method is not defined, other layers may have difficulty pushing
themselves on top of it during open.
If C<PerlIO_push> was performed and open has failed, it must
C<PerlIO_pop> itself, since if it's not, the layer won't be removed
and may cause bad problems.
Returns C<NULL> on failure.
=item Binmode
IV (*Binmode)(pTHX_ PerlIO *f);
Optional. Used when C<:raw> layer is pushed (explicitly or as a result
of binmode(FH)). If not present layer will be popped. If present
should configure layer as binary (or pop itself) and return 0.
If it returns -1 for error C<binmode> will fail with layer
still on the stack.
=item Getarg
SV * (*Getarg)(pTHX_ PerlIO *f,
CLONE_PARAMS *param, int flags);
Optional. If present should return an SV * representing the string
argument passed to the layer when it was
pushed. e.g. ":encoding(ascii)" would return an SvPV with value
"ascii". (I<param> and I<flags> arguments can be ignored in most
cases)
C<Dup> uses C<Getarg> to retrieve the argument originally passed to
C<Pushed>, so you must implement this function if your layer has an
extra argument to C<Pushed> and will ever be C<Dup>ed.
=item Fileno
IV (*Fileno)(pTHX_ PerlIO *f);
Returns the Unix/Posix numeric file descriptor for the handle. Normally
C<PerlIOBase_fileno()> (which just asks next layer down) will suffice
for this.
Returns -1 on error, which is considered to include the case where the
layer cannot provide such a file descriptor.
=item Dup
PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o,
CLONE_PARAMS *param, int flags);
XXX: Needs more docs.
Used as part of the "clone" process when a thread is spawned (in which
case param will be non-NULL) and when a stream is being duplicated via
'&' in the C<open>.
Similar to C<Open>, returns PerlIO* on success, C<NULL> on failure.
=item Read
SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);
Basic read operation.
Typically will call C<Fill> and manipulate pointers (possibly via the
API). C<PerlIOBuf_read()> may be suitable for derived classes which
provide "fast gets" methods.
Returns actual bytes read, or -1 on an error.
=item Unread
SSize_t (*Unread)(pTHX_ PerlIO *f,
const void *vbuf, Size_t count);
A superset of stdio's C<ungetc()>. Should arrange for future reads to
see the bytes in C<vbuf>. If there is no obviously better implementation
then C<PerlIOBase_unread()> provides the function by pushing a "fake"
"pending" layer above the calling layer.
Returns the number of unread chars.
=item Write
SSize_t (*Write)(PerlIO *f, const void *vbuf, Size_t count);
Basic write operation.
Returns bytes written or -1 on an error.
=item Seek
IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);
Position the file pointer. Should normally call its own C<Flush>
method and then the C<Seek> method of next layer down.
Returns 0 on success, -1 on failure.
=item Tell
Off_t (*Tell)(pTHX_ PerlIO *f);
Return the file pointer. May be based on layers cached concept of
position to avoid overhead.
Returns -1 on failure to get the file pointer.
=item Close
IV (*Close)(pTHX_ PerlIO *f);
Close the stream. Should normally call C<PerlIOBase_close()> to flush
itself and close layers below, and then deallocate any data structures
(buffers, translation tables, ...) not held directly in the data
structure.
Returns 0 on success, -1 on failure.
=item Flush
IV (*Flush)(pTHX_ PerlIO *f);
Should make stream's state consistent with layers below. That is, any
buffered write data should be written, and file position of lower layers
adjusted for data read from below but not actually consumed.
(Should perhaps C<Unread()> such data to the lower layer.)
Returns 0 on success, -1 on failure.
=item Fill
IV (*Fill)(pTHX_ PerlIO *f);
The buffer for this layer should be filled (for read) from layer
below. When you "subclass" PerlIOBuf layer, you want to use its
I<_read> method and to supply your own fill method, which fills the
PerlIOBuf's buffer.
Returns 0 on success, -1 on failure.
=item Eof
IV (*Eof)(pTHX_ PerlIO *f);
Return end-of-file indicator. C<PerlIOBase_eof()> is normally sufficient.
Returns 0 on end-of-file, 1 if not end-of-file, -1 on error.
=item Error
IV (*Error)(pTHX_ PerlIO *f);
Return error indicator. C<PerlIOBase_error()> is normally sufficient.
Returns 1 if there is an error (usually when C<PERLIO_F_ERROR> is set),
0 otherwise.
=item Clearerr
void (*Clearerr)(pTHX_ PerlIO *f);
Clear end-of-file and error indicators. Should call C<PerlIOBase_clearerr()>
to set the C<PERLIO_F_XXXXX> flags, which may suffice.
=item Setlinebuf
void (*Setlinebuf)(pTHX_ PerlIO *f);
Mark the stream as line buffered. C<PerlIOBase_setlinebuf()> sets the
PERLIO_F_LINEBUF flag and is normally sufficient.
=item Get_base
STDCHAR * (*Get_base)(pTHX_ PerlIO *f);
Allocate (if not already done so) the read buffer for this layer and
return pointer to it. Return NULL on failure.
=item Get_bufsiz
Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);
Return the number of bytes that last C<Fill()> put in the buffer.
=item Get_ptr
STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);
Return the current read pointer relative to this layer's buffer.
=item Get_cnt
SSize_t (*Get_cnt)(pTHX_ PerlIO *f);
Return the number of bytes left to be read in the current buffer.
=item Set_ptrcnt
void (*Set_ptrcnt)(pTHX_ PerlIO *f,
STDCHAR *ptr, SSize_t cnt);
Adjust the read pointer and count of bytes to match C<ptr> and/or C<cnt>.
The application (or layer above) must ensure they are consistent.
(Checking is allowed by the paranoid.)
=back
=head2 Utilities
To ask for the next layer down use PerlIONext(PerlIO *f).
To check that a PerlIO* is valid use PerlIOValid(PerlIO *f). (All
this does is really just to check that the pointer is non-NULL and
that the pointer behind that is non-NULL.)
PerlIOBase(PerlIO *f) returns the "Base" pointer, or in other words,
the C<PerlIOl*> pointer.
PerlIOSelf(PerlIO* f, type) return the PerlIOBase cast to a type.
Perl_PerlIO_or_Base(PerlIO* f, callback, base, failure, args) either
calls the I<callback> from the functions of the layer I<f> (just by
the name of the IO function, like "Read") with the I<args>, or if
there is no such callback, calls the I<base> version of the callback
with the same args, or if the f is invalid, set errno to EBADF and
return I<failure>.
Perl_PerlIO_or_fail(PerlIO* f, callback, failure, args) either calls
the I<callback> of the functions of the layer I<f> with the I<args>,
or if there is no such callback, set errno to EINVAL. Or if the f is
invalid, set errno to EBADF and return I<failure>.
Perl_PerlIO_or_Base_void(PerlIO* f, callback, base, args) either calls
the I<callback> of the functions of the layer I<f> with the I<args>,
or if there is no such callback, calls the I<base> version of the
callback with the same args, or if the f is invalid, set errno to
EBADF.
Perl_PerlIO_or_fail_void(PerlIO* f, callback, args) either calls the
I<callback> of the functions of the layer I<f> with the I<args>, or if
there is no such callback, set errno to EINVAL. Or if the f is
invalid, set errno to EBADF.
=head2 Implementing PerlIO Layers
If you find the implementation document unclear or not sufficient,
look at the existing PerlIO layer implementations, which include:
=over
=item * C implementations
The F<perlio.c> and F<perliol.h> in the Perl core implement the
"unix", "perlio", "stdio", "crlf", "utf8", "byte", "raw", "pending"
layers, and also the "mmap" and "win32" layers if applicable.
(The "win32" is currently unfinished and unused, to see what is used
instead in Win32, see L<PerlIO/"Querying the layers of filehandles"> .)
PerlIO::encoding, PerlIO::scalar, PerlIO::via in the Perl core.
PerlIO::gzip and APR::PerlIO (mod_perl 2.0) on CPAN.
=item * Perl implementations
PerlIO::via::QuotedPrint in the Perl core and PerlIO::via::* on CPAN.
=back
If you are creating a PerlIO layer, you may want to be lazy, in other
words, implement only the methods that interest you. The other methods
you can either replace with the "blank" methods
PerlIOBase_noop_ok
PerlIOBase_noop_fail
(which do nothing, and return zero and -1, respectively) or for
certain methods you may assume a default behaviour by using a NULL
method. The Open method looks for help in the 'parent' layer.
The following table summarizes the behaviour:
method behaviour with NULL
Clearerr PerlIOBase_clearerr
Close PerlIOBase_close
Dup PerlIOBase_dup
Eof PerlIOBase_eof
Error PerlIOBase_error
Fileno PerlIOBase_fileno
Fill FAILURE
Flush SUCCESS
Getarg SUCCESS
Get_base FAILURE
Get_bufsiz FAILURE
Get_cnt FAILURE
Get_ptr FAILURE
Open INHERITED
Popped SUCCESS
Pushed SUCCESS
Read PerlIOBase_read
Seek FAILURE
Set_cnt FAILURE
Set_ptrcnt FAILURE
Setlinebuf PerlIOBase_setlinebuf
Tell FAILURE
Unread PerlIOBase_unread
Write FAILURE
FAILURE Set errno (to EINVAL in Unixish, to LIB$_INVARG in VMS) and
return -1 (for numeric return values) or NULL (for pointers)
INHERITED Inherited from the layer below
SUCCESS Return 0 (for numeric return values) or a pointer
=head2 Core Layers
The file C<perlio.c> provides the following layers:
=over 4
=item "unix"
A basic non-buffered layer which calls Unix/POSIX C<read()>, C<write()>,
C<lseek()>, C<close()>. No buffering. Even on platforms that distinguish
between O_TEXT and O_BINARY this layer is always O_BINARY.
=item "perlio"
A very complete generic buffering layer which provides the whole of
PerlIO API. It is also intended to be used as a "base class" for other
layers. (For example its C<Read()> method is implemented in terms of
the C<Get_cnt()>/C<Get_ptr()>/C<Set_ptrcnt()> methods).
"perlio" over "unix" provides a complete replacement for stdio as seen
via PerlIO API. This is the default for USE_PERLIO when system's stdio
does not permit perl's "fast gets" access, and which do not
distinguish between C<O_TEXT> and C<O_BINARY>.
=item "stdio"
A layer which provides the PerlIO API via the layer scheme, but
implements it by calling system's stdio. This is (currently) the default
if system's stdio provides sufficient access to allow perl's "fast gets"
access and which do not distinguish between C<O_TEXT> and C<O_BINARY>.
=item "crlf"
A layer derived using "perlio" as a base class. It provides Win32-like
"\n" to CR,LF translation. Can either be applied above "perlio" or serve
as the buffer layer itself. "crlf" over "unix" is the default if system
distinguishes between C<O_TEXT> and C<O_BINARY> opens. (At some point
"unix" will be replaced by a "native" Win32 IO layer on that platform,
as Win32's read/write layer has various drawbacks.) The "crlf" layer is
a reasonable model for a layer which transforms data in some way.
=item "mmap"
If Configure detects C<mmap()> functions this layer is provided (with
"perlio" as a "base") which does "read" operations by mmap()ing the
file. Performance improvement is marginal on modern systems, so it is
mainly there as a proof of concept. It is likely to be unbundled from
the core at some point. The "mmap" layer is a reasonable model for a
minimalist "derived" layer.
=item "pending"
An "internal" derivative of "perlio" which can be used to provide
Unread() function for layers which have no buffer or cannot be
bothered. (Basically this layer's C<Fill()> pops itself off the stack
and so resumes reading from layer below.)
=item "raw"
A dummy layer which never exists on the layer stack. Instead when
"pushed" it actually pops the stack removing itself, it then calls
Binmode function table entry on all the layers in the stack - normally
this (via PerlIOBase_binmode) removes any layers which do not have
C<PERLIO_K_RAW> bit set. Layers can modify that behaviour by defining
their own Binmode entry.
=item "utf8"
Another dummy layer. When pushed it pops itself and sets the
C<PERLIO_F_UTF8> flag on the layer which was (and now is once more)
the top of the stack.
=back
In addition F<perlio.c> also provides a number of C<PerlIOBase_xxxx()>
functions which are intended to be used in the table slots of classes
which do not need to do anything special for a particular method.
=head2 Extension Layers
Layers can be made available by extension modules. When an unknown layer
is encountered the PerlIO code will perform the equivalent of :
use PerlIO 'layer';
Where I<layer> is the unknown layer. F<PerlIO.pm> will then attempt to:
require PerlIO::layer;
If after that process the layer is still not defined then the C<open>
will fail.
The following extension layers are bundled with perl:
=over 4
=item ":encoding"
use Encoding;
makes this layer available, although F<PerlIO.pm> "knows" where to
find it. It is an example of a layer which takes an argument as it is
called thus:
open( $fh, "<:encoding(iso-8859-7)", $pathname );
=item ":scalar"
Provides support for reading data from and writing data to a scalar.
open( $fh, "+<:scalar", \$scalar );
When a handle is so opened, then reads get bytes from the string value
of I<$scalar>, and writes change the value. In both cases the position
in I<$scalar> starts as zero but can be altered via C<seek>, and
determined via C<tell>.
Please note that this layer is implied when calling open() thus:
open( $fh, "+<", \$scalar );
=item ":via"
Provided to allow layers to be implemented as Perl code. For instance:
use PerlIO::via::StripHTML;
open( my $fh, "<:via(StripHTML)", "index.html" );
See L<PerlIO::via> for details.
=back
=head1 TODO
Things that need to be done to improve this document.
=over
=item *
Explain how to make a valid fh without going through open()(i.e. apply
a layer). For example if the file is not opened through perl, but we
want to get back a fh, like it was opened by Perl.
How PerlIO_apply_layera fits in, where its docs, was it made public?
Currently the example could be something like this:
PerlIO *foo_to_PerlIO(pTHX_ char *mode, ...)
{
char *mode; /* "w", "r", etc */
const char *layers = ":APR"; /* the layer name */
PerlIO *f = PerlIO_allocate(aTHX);
if (!f) {
return NULL;
}
PerlIO_apply_layers(aTHX_ f, mode, layers);
if (f) {
PerlIOAPR *st = PerlIOSelf(f, PerlIOAPR);
/* fill in the st struct, as in _open() */
st->file = file;
PerlIOBase(f)->flags |= PERLIO_F_OPEN;
return f;
}
return NULL;
}
=item *
fix/add the documentation in places marked as XXX.
=item *
The handling of errors by the layer is not specified. e.g. when $!
should be set explicitly, when the error handling should be just
delegated to the top layer.
Probably give some hints on using SETERRNO() or pointers to where they
can be found.
=item *
I think it would help to give some concrete examples to make it easier
to understand the API. Of course I agree that the API has to be
concise, but since there is no second document that is more of a
guide, I think that it'd make it easier to start with the doc which is
an API, but has examples in it in places where things are unclear, to
a person who is not a PerlIO guru (yet).
=back
=cut
|