This file is indexed.

/usr/share/perl/5.22.1/pod/perlsyn.pod is in perl-doc 5.22.1-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
=head1 NAME
X<syntax>

perlsyn - Perl syntax

=head1 DESCRIPTION

A Perl program consists of a sequence of declarations and statements
which run from the top to the bottom.  Loops, subroutines, and other
control structures allow you to jump around within the code.

Perl is a B<free-form> language: you can format and indent it however
you like.  Whitespace serves mostly to separate tokens, unlike
languages like Python where it is an important part of the syntax,
or Fortran where it is immaterial.

Many of Perl's syntactic elements are B<optional>.  Rather than
requiring you to put parentheses around every function call and
declare every variable, you can often leave such explicit elements off
and Perl will figure out what you meant.  This is known as B<Do What I
Mean>, abbreviated B<DWIM>.  It allows programmers to be B<lazy> and to
code in a style with which they are comfortable.

Perl B<borrows syntax> and concepts from many languages: awk, sed, C,
Bourne Shell, Smalltalk, Lisp and even English.  Other
languages have borrowed syntax from Perl, particularly its regular
expression extensions.  So if you have programmed in another language
you will see familiar pieces in Perl.  They often work the same, but
see L<perltrap> for information about how they differ.

=head2 Declarations
X<declaration> X<undef> X<undefined> X<uninitialized>

The only things you need to declare in Perl are report formats and
subroutines (and sometimes not even subroutines).  A scalar variable holds
the undefined value (C<undef>) until it has been assigned a defined
value, which is anything other than C<undef>.  When used as a number,
C<undef> is treated as C<0>; when used as a string, it is treated as
the empty string, C<"">; and when used as a reference that isn't being
assigned to, it is treated as an error.  If you enable warnings,
you'll be notified of an uninitialized value whenever you treat
C<undef> as a string or a number.  Well, usually.  Boolean contexts,
such as:

    if ($a) {}

are exempt from warnings (because they care about truth rather than
definedness).  Operators such as C<++>, C<-->, C<+=>,
C<-=>, and C<.=>, that operate on undefined variables such as:

    undef $a;
    $a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on
the execution of the primary sequence of statements: declarations all
take effect at compile time.  All declarations are typically put at
the beginning or the end of the script.  However, if you're using
lexically-scoped private variables created with C<my()>,
C<state()>, or C<our()>, you'll have to make sure
your format or subroutine definition is within the same block scope
as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a
list operator from that point forward in the program.  You can declare a
subroutine without defining it by saying C<sub name>, thus:
X<subroutine, declaration>

    sub myname;
    $me = myname $0             or die "can't get myname";

A bare declaration like that declares the function to be a list operator,
not a unary operator, so you have to be careful to use parentheses (or
C<or> instead of C<||>.)  The C<||> operator binds too tightly to use after
list operators; it becomes part of the last element.  You can always use
parentheses around the list operators arguments to turn the list operator
back into something that behaves more like a function call.  Alternatively,
you can use the prototype C<($)> to turn the subroutine into a unary
operator:

  sub myname ($);
  $me = myname $0             || die "can't get myname";

That now parses as you'd expect, but you still ought to get in the habit of
using parentheses in that situation.  For more on prototypes, see
L<perlsub>.

Subroutines declarations can also be loaded up with the C<require> statement
or both loaded and imported into your namespace with a C<use> statement.
See L<perlmod> for details on this.

A statement sequence may contain declarations of lexically-scoped
variables, but apart from declaring a variable name, the declaration acts
like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement.  That means it actually
has both compile-time and run-time effects.

=head2 Comments
X<comment> X<#>

Text from a C<"#"> character until the end of the line is a comment,
and is ignored.  Exceptions include C<"#"> inside a string or regular
expression.

=head2 Simple Statements
X<statement> X<semicolon> X<expression> X<;>

The only kind of simple statement is an expression evaluated for its
side-effects.  Every simple statement must be terminated with a
semicolon, unless it is the final statement in a block, in which case
the semicolon is optional.  But put the semicolon in anyway if the
block takes up more than one line, because you may eventually add
another line.  Note that there are operators like C<eval {}>, C<sub {}>, and
C<do {}> that I<look> like compound statements, but aren't--they're just
TERMs in an expression--and thus need an explicit termination when used
as the last item in a statement.

=head2 Truth and Falsehood
X<truth> X<falsehood> X<true> X<false> X<!> X<not> X<negation> X<0>

The number 0, the strings C<'0'> and C<"">, the empty list C<()>, and
C<undef> are all false in a boolean context.  All other values are true.
Negation of a true value by C<!> or C<not> returns a special false value.
When evaluated as a string it is treated as C<"">, but as a number, it
is treated as 0.  Most Perl operators
that return true or false behave this way.

=head2 Statement Modifiers
X<statement modifier> X<modifier> X<if> X<unless> X<while>
X<until> X<when> X<foreach> X<for>

Any simple statement may optionally be followed by a I<SINGLE> modifier,
just before the terminating semicolon (or block ending).  The possible
modifiers are:

    if EXPR
    unless EXPR
    while EXPR
    until EXPR
    for LIST
    foreach LIST
    when EXPR

The C<EXPR> following the modifier is referred to as the "condition".
Its truth or falsehood determines how the modifier will behave.

C<if> executes the statement once I<if> and only if the condition is
true.  C<unless> is the opposite, it executes the statement I<unless>
the condition is true (that is, if the condition is false).

    print "Basset hounds got long ears" if length $ear >= 10;
    go_outside() and play() unless $is_raining;

The C<for(each)> modifier is an iterator: it executes the statement once
for each item in the LIST (with C<$_> aliased to each item in turn).

    print "Hello $_!\n" for qw(world Dolly nurse);

C<while> repeats the statement I<while> the condition is true.
C<until> does the opposite, it repeats the statement I<until> the
condition is true (or while the condition is false):

    # Both of these count from 0 to 10.
    print $i++ while $i <= 10;
    print $j++ until $j >  10;

The C<while> and C<until> modifiers have the usual "C<while> loop"
semantics (conditional evaluated first), except when applied to a
C<do>-BLOCK (or to the Perl4 C<do>-SUBROUTINE statement), in
which case the block executes once before the conditional is
evaluated.

This is so that you can write loops like:

    do {
        $line = <STDIN>;
        ...
    } until !defined($line) || $line eq ".\n"

See L<perlfunc/do>.  Note also that the loop control statements described
later will I<NOT> work in this construct, because modifiers don't take
loop labels.  Sorry.  You can always put another block inside of it
(for C<next>) or around it (for C<last>) to do that sort of thing.
For C<next>, just double the braces:
X<next> X<last> X<redo>

    do {{
        next if $x == $y;
        # do something here
    }} until $x++ > $z;

For C<last>, you have to be more elaborate:
X<last>

    LOOP: {
            do {
                last if $x = $y**2;
                # do something here
            } while $x++ <= $z;
    }

B<NOTE:> The behaviour of a C<my>, C<state>, or
C<our> modified with a statement modifier conditional
or loop construct (for example, C<my $x if ...>) is
B<undefined>.  The value of the C<my> variable may be C<undef>, any
previously assigned value, or possibly anything else.  Don't rely on
it.  Future versions of perl might do something different from the
version of perl you try it out on.  Here be dragons.
X<my>

The C<when> modifier is an experimental feature that first appeared in Perl
5.14.  To use it, you should include a C<use v5.14> declaration.
(Technically, it requires only the C<switch> feature, but that aspect of it
was not available before 5.14.)  Operative only from within a C<foreach>
loop or a C<given> block, it executes the statement only if the smartmatch
C<< $_ ~~ I<EXPR> >> is true.  If the statement executes, it is followed by
a C<next> from inside a C<foreach> and C<break> from inside a C<given>.

Under the current implementation, the C<foreach> loop can be
anywhere within the C<when> modifier's dynamic scope, but must be
within the C<given> block's lexical scope.  This restricted may
be relaxed in a future release.  See L<"Switch Statements"> below.

=head2 Compound Statements
X<statement, compound> X<block> X<bracket, curly> X<curly bracket> X<brace>
X<{> X<}> X<if> X<unless> X<given> X<while> X<until> X<foreach> X<for> X<continue>

In Perl, a sequence of statements that defines a scope is called a block.
Sometimes a block is delimited by the file containing it (in the case
of a required file, or the program as a whole), and sometimes a block
is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces.
We will call this syntactic construct a BLOCK.

The following compound statements may be used to control flow:

    if (EXPR) BLOCK
    if (EXPR) BLOCK else BLOCK
    if (EXPR) BLOCK elsif (EXPR) BLOCK ...
    if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

    unless (EXPR) BLOCK
    unless (EXPR) BLOCK else BLOCK
    unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
    unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

    given (EXPR) BLOCK

    LABEL while (EXPR) BLOCK
    LABEL while (EXPR) BLOCK continue BLOCK

    LABEL until (EXPR) BLOCK
    LABEL until (EXPR) BLOCK continue BLOCK

    LABEL for (EXPR; EXPR; EXPR) BLOCK
    LABEL for VAR (LIST) BLOCK
    LABEL for VAR (LIST) BLOCK continue BLOCK

    LABEL foreach (EXPR; EXPR; EXPR) BLOCK
    LABEL foreach VAR (LIST) BLOCK
    LABEL foreach VAR (LIST) BLOCK continue BLOCK

    LABEL BLOCK
    LABEL BLOCK continue BLOCK

    PHASE BLOCK

The experimental C<given> statement is I<not automatically enabled>; see
L</"Switch Statements"> below for how to do so, and the attendant caveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKs,
not statements.  This means that the curly brackets are I<required>--no
dangling statements allowed.  If you want to write conditionals without
curly brackets, there are several other ways to do it.  The following
all do the same thing:

    if (!open(FOO)) { die "Can't open $FOO: $!" }
    die "Can't open $FOO: $!" unless open(FOO);
    open(FOO)  || die "Can't open $FOO: $!";
    open(FOO) ? () : die "Can't open $FOO: $!";
        # a bit exotic, that last one

The C<if> statement is straightforward.  Because BLOCKs are always
bounded by curly brackets, there is never any ambiguity about which
C<if> an C<else> goes with.  If you use C<unless> in place of C<if>,
the sense of the test is reversed.  Like C<if>, C<unless> can be followed
by C<else>.  C<unless> can even be followed by one or more C<elsif>
statements, though you may want to think twice before using that particular
language construct, as everyone reading your code will have to think at least
twice before they can understand what's going on.

The C<while> statement executes the block as long as the expression is
L<true|/"Truth and Falsehood">.
The C<until> statement executes the block as long as the expression is
false.
The LABEL is optional, and if present, consists of an identifier followed
by a colon.  The LABEL identifies the loop for the loop control
statements C<next>, C<last>, and C<redo>.
If the LABEL is omitted, the loop control statement
refers to the innermost enclosing loop.  This may include dynamically
looking back your call-stack at run time to find the LABEL.  Such
desperate behavior triggers a warning if you use the C<use warnings>
pragma or the B<-w> flag.

If there is a C<continue> BLOCK, it is always executed just before the
conditional is about to be evaluated again.  Thus it can be used to
increment a loop variable, even when the loop has been continued via
the C<next> statement.

When a block is preceding by a compilation phase keyword such as C<BEGIN>,
C<END>, C<INIT>, C<CHECK>, or C<UNITCHECK>, then the block will run only
during the corresponding phase of execution.  See L<perlmod> for more details.

Extension modules can also hook into the Perl parser to define new
kinds of compound statements.  These are introduced by a keyword which
the extension recognizes, and the syntax following the keyword is
defined entirely by the extension.  If you are an implementor, see
L<perlapi/PL_keyword_plugin> for the mechanism.  If you are using such
a module, see the module's documentation for details of the syntax that
it defines.

=head2 Loop Control
X<loop control> X<loop, control> X<next> X<last> X<redo> X<continue>

The C<next> command starts the next iteration of the loop:

    LINE: while (<STDIN>) {
        next LINE if /^#/;      # discard comments
        ...
    }

The C<last> command immediately exits the loop in question.  The
C<continue> block, if any, is not executed:

    LINE: while (<STDIN>) {
        last LINE if /^$/;      # exit when done with header
        ...
    }

The C<redo> command restarts the loop block without evaluating the
conditional again.  The C<continue> block, if any, is I<not> executed.
This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file like F</etc/termcap>.
If your input lines might end in backslashes to indicate continuation, you
want to skip ahead and get the next record.

    while (<>) {
        chomp;
        if (s/\\$//) {
            $_ .= <>;
            redo unless eof();
        }
        # now process $_
    }

which is Perl shorthand for the more explicitly written version:

    LINE: while (defined($line = <ARGV>)) {
        chomp($line);
        if ($line =~ s/\\$//) {
            $line .= <ARGV>;
            redo LINE unless eof(); # not eof(ARGV)!
        }
        # now process $line
    }

Note that if there were a C<continue> block on the above code, it would
get executed only on lines discarded by the regex (since redo skips the
continue block).  A continue block is often used to reset line counters
or C<m?pat?> one-time matches:

    # inspired by :1,$g/fred/s//WILMA/
    while (<>) {
        m?(fred)?    && s//WILMA $1 WILMA/;
        m?(barney)?  && s//BETTY $1 BETTY/;
        m?(homer)?   && s//MARGE $1 MARGE/;
    } continue {
        print "$ARGV $.: $_";
        close ARGV  if eof;             # reset $.
        reset       if eof;             # reset ?pat?
    }

If the word C<while> is replaced by the word C<until>, the sense of the
test is reversed, but the conditional is still tested before the first
iteration.

Loop control statements don't work in an C<if> or C<unless>, since
they aren't loops.  You can double the braces to make them such, though.

    if (/pattern/) {{
        last if /fred/;
        next if /barney/; # same effect as "last",
                          # but doesn't document as well
        # do something here
    }}

This is caused by the fact that a block by itself acts as a loop that
executes once, see L<"Basic BLOCKs">.

The form C<while/if BLOCK BLOCK>, available in Perl 4, is no longer
available.   Replace any occurrence of C<if BLOCK> by C<if (do BLOCK)>.

=head2 For Loops
X<for> X<foreach>

Perl's C-style C<for> loop works like the corresponding C<while> loop;
that means that this:

    for ($i = 1; $i < 10; $i++) {
        ...
    }

is the same as this:

    $i = 1;
    while ($i < 10) {
        ...
    } continue {
        $i++;
    }

There is one minor difference: if variables are declared with C<my>
in the initialization section of the C<for>, the lexical scope of
those variables is exactly the C<for> loop (the body of the loop
and the control sections).
X<my>

As a special case, if the test in the C<for> loop (or the corresponding
C<while> loop) is empty, it is treated as true.  That is, both

    for (;;) {
        ...
    }

and

    while () {
        ...
    }

are treated as infinite loops.

Besides the normal array index looping, C<for> can lend itself
to many other interesting applications.  Here's one that avoids the
problem you get into if you explicitly test for end-of-file on
an interactive file descriptor causing your program to appear to
hang.
X<eof> X<end-of-file> X<end of file>

    $on_a_tty = -t STDIN && -t STDOUT;
    sub prompt { print "yes? " if $on_a_tty }
    for ( prompt(); <STDIN>; prompt() ) {
        # do something
    }

Using C<readline> (or the operator form, C<< <EXPR> >>) as the
conditional of a C<for> loop is shorthand for the following.  This
behaviour is the same as a C<while> loop conditional.
X<readline> X<< <> >>

    for ( prompt(); defined( $_ = <STDIN> ); prompt() ) {
        # do something
    }

=head2 Foreach Loops
X<for> X<foreach>

The C<foreach> loop iterates over a normal list value and sets the scalar
variable VAR to be each element of the list in turn.  If the variable
is preceded with the keyword C<my>, then it is lexically scoped, and
is therefore visible only within the loop.  Otherwise, the variable is
implicitly local to the loop and regains its former value upon exiting
the loop.  If the variable was previously declared with C<my>, it uses
that variable instead of the global one, but it's still localized to
the loop.  This implicit localization occurs I<only> in a C<foreach>
loop.
X<my> X<local>

The C<foreach> keyword is actually a synonym for the C<for> keyword, so
you can use either.  If VAR is omitted, C<$_> is set to each value.
X<$_>

If any element of LIST is an lvalue, you can modify it by modifying
VAR inside the loop.  Conversely, if any element of LIST is NOT an
lvalue, any attempt to modify that element will fail.  In other words,
the C<foreach> loop index variable is an implicit alias for each item
in the list that you're looping over.
X<alias>

If any part of LIST is an array, C<foreach> will get very confused if
you add or remove elements within the loop body, for example with
C<splice>.   So don't do that.
X<splice>

C<foreach> probably won't do what you expect if VAR is a tied or other
special variable.   Don't do that either.

As of Perl 5.22, there is an experimental variant of this loop that accepts
a variable preceded by a backslash for VAR, in which case the items in the
LIST must be references.  The backslashed variable will become an alias
to each referenced item in the LIST, which must be of the correct type.
The variable needn't be a scalar in this case, and the backslash may be
followed by C<my>.  To use this form, you must enable the C<refaliasing>
feature via C<use feature>.  (See L<feature>.  See also L<perlref/Assigning
to References>.)

Examples:

    for (@ary) { s/foo/bar/ }

    for my $elem (@elements) {
        $elem *= 2;
    }

    for $count (reverse(1..10), "BOOM") {
        print $count, "\n";
        sleep(1);
    }

    for (1..15) { print "Merry Christmas\n"; }

    foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
        print "Item: $item\n";
    }

    use feature "refaliasing";
    no warnings "experimental::refaliasing";
    foreach \my %hash (@array_of_hash_references) {
        # do something which each %hash
    }

Here's how a C programmer might code up a particular algorithm in Perl:

    for (my $i = 0; $i < @ary1; $i++) {
        for (my $j = 0; $j < @ary2; $j++) {
            if ($ary1[$i] > $ary2[$j]) {
                last; # can't go to outer :-(
            }
            $ary1[$i] += $ary2[$j];
        }
        # this is where that last takes me
    }

Whereas here's how a Perl programmer more comfortable with the idiom might
do it:

    OUTER: for my $wid (@ary1) {
    INNER:   for my $jet (@ary2) {
                next OUTER if $wid > $jet;
                $wid += $jet;
             }
          }

See how much easier this is?  It's cleaner, safer, and faster.  It's
cleaner because it's less noisy.  It's safer because if code gets added
between the inner and outer loops later on, the new code won't be
accidentally executed.  The C<next> explicitly iterates the other loop
rather than merely terminating the inner one.  And it's faster because
Perl executes a C<foreach> statement more rapidly than it would the
equivalent C<for> loop.

Perceptive Perl hackers may have noticed that a C<for> loop has a return
value, and that this value can be captured by wrapping the loop in a C<do>
block.  The reward for this discovery is this cautionary advice:  The
return value of a C<for> loop is unspecified and may change without notice.
Do not rely on it.

=head2 Basic BLOCKs
X<block>

A BLOCK by itself (labeled or not) is semantically equivalent to a
loop that executes once.  Thus you can use any of the loop control
statements in it to leave or restart the block.  (Note that this is
I<NOT> true in C<eval{}>, C<sub{}>, or contrary to popular belief
C<do{}> blocks, which do I<NOT> count as loops.)  The C<continue>
block is optional.

The BLOCK construct can be used to emulate case structures.

    SWITCH: {
        if (/^abc/) { $abc = 1; last SWITCH; }
        if (/^def/) { $def = 1; last SWITCH; }
        if (/^xyz/) { $xyz = 1; last SWITCH; }
        $nothing = 1;
    }

You'll also find that C<foreach> loop used to create a topicalizer
and a switch:

    SWITCH:
    for ($var) {
        if (/^abc/) { $abc = 1; last SWITCH; }
        if (/^def/) { $def = 1; last SWITCH; }
        if (/^xyz/) { $xyz = 1; last SWITCH; }
        $nothing = 1;
    }

Such constructs are quite frequently used, both because older versions of
Perl had no official C<switch> statement, and also because the new version
described immediately below remains experimental and can sometimes be confusing.

=head2 Switch Statements

X<switch> X<case> X<given> X<when> X<default>

Starting from Perl 5.10.1 (well, 5.10.0, but it didn't work
right), you can say

    use feature "switch";

to enable an experimental switch feature.  This is loosely based on an
old version of a Perl 6 proposal, but it no longer resembles the Perl 6
construct.   You also get the switch feature whenever you declare that your
code prefers to run under a version of Perl that is 5.10 or later.  For
example:

    use v5.14;

Under the "switch" feature, Perl gains the experimental keywords
C<given>, C<when>, C<default>, C<continue>, and C<break>.
Starting from Perl 5.16, one can prefix the switch
keywords with C<CORE::> to access the feature without a C<use feature>
statement.  The keywords C<given> and
C<when> are analogous to C<switch> and
C<case> in other languages, so the code in the previous section could be
rewritten as

    use v5.10.1;
    for ($var) {
        when (/^abc/) { $abc = 1 }
        when (/^def/) { $def = 1 }
        when (/^xyz/) { $xyz = 1 }
        default       { $nothing = 1 }
    }

The C<foreach> is the non-experimental way to set a topicalizer.
If you wish to use the highly experimental C<given>, that could be
written like this:

    use v5.10.1;
    given ($var) {
        when (/^abc/) { $abc = 1 }
        when (/^def/) { $def = 1 }
        when (/^xyz/) { $xyz = 1 }
        default       { $nothing = 1 }
    }

As of 5.14, that can also be written this way:

    use v5.14;
    for ($var) {
        $abc = 1 when /^abc/;
        $def = 1 when /^def/;
        $xyz = 1 when /^xyz/;
        default { $nothing = 1 }
    }

Or if you don't care to play it safe, like this:

    use v5.14;
    given ($var) {
        $abc = 1 when /^abc/;
        $def = 1 when /^def/;
        $xyz = 1 when /^xyz/;
        default { $nothing = 1 }
    }

The arguments to C<given> and C<when> are in scalar context,
and C<given> assigns the C<$_> variable its topic value.

Exactly what the I<EXPR> argument to C<when> does is hard to describe
precisely, but in general, it tries to guess what you want done.  Sometimes
it is interpreted as C<< $_ ~~ I<EXPR> >>, and sometimes it is not.  It
also behaves differently when lexically enclosed by a C<given> block than
it does when dynamically enclosed by a C<foreach> loop.  The rules are far
too difficult to understand to be described here.  See L</"Experimental Details
on given and when"> later on.

Due to an unfortunate bug in how C<given> was implemented between Perl 5.10
and 5.16, under those implementations the version of C<$_> governed by
C<given> is merely a lexically scoped copy of the original, not a
dynamically scoped alias to the original, as it would be if it were a
C<foreach> or under both the original and the current Perl 6 language
specification.  This bug was fixed in Perl
5.18.  If you really want a lexical C<$_>,
specify that explicitly, but note that C<my $_>
is now deprecated and will warn unless warnings
have been disabled:

    given(my $_ = EXPR) { ... }

If your code still needs to run on older versions,
stick to C<foreach> for your topicalizer and
you will be less unhappy.

=head2 Goto
X<goto>

Although not for the faint of heart, Perl does support a C<goto>
statement.  There are three forms: C<goto>-LABEL, C<goto>-EXPR, and
C<goto>-&NAME.  A loop's LABEL is not actually a valid target for
a C<goto>; it's just the name of the loop.

The C<goto>-LABEL form finds the statement labeled with LABEL and resumes
execution there.  It may not be used to go into any construct that
requires initialization, such as a subroutine or a C<foreach> loop.  It
also can't be used to go into a construct that is optimized away.  It
can be used to go almost anywhere else within the dynamic scope,
including out of subroutines, but it's usually better to use some other
construct such as C<last> or C<die>.  The author of Perl has never felt the
need to use this form of C<goto> (in Perl, that is--C is another matter).

The C<goto>-EXPR form expects a label name, whose scope will be resolved
dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
necessarily recommended if you're optimizing for maintainability:

    goto(("FOO", "BAR", "GLARCH")[$i]);

The C<goto>-&NAME form is highly magical, and substitutes a call to the
named subroutine for the currently running subroutine.  This is used by
C<AUTOLOAD()> subroutines that wish to load another subroutine and then
pretend that the other subroutine had been called in the first place
(except that any modifications to C<@_> in the current subroutine are
propagated to the other subroutine.)  After the C<goto>, not even C<caller()>
will be able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the
structured control flow mechanisms of C<next>, C<last>, or C<redo> instead of
resorting to a C<goto>.  For certain applications, the catch and throw pair of
C<eval{}> and die() for exception processing can also be a prudent approach.

=head2 The Ellipsis Statement
X<...>
X<... statement>
X<ellipsis operator>
X<elliptical statement>
X<unimplemented statement>
X<unimplemented operator>
X<yada-yada>
X<yada-yada operator>
X<... operator>
X<whatever operator>
X<triple-dot operator>

Beginning in Perl 5.12, Perl accepts an ellipsis, "C<...>", as a
placeholder for code that you haven't implemented yet.  This form of
ellipsis, the unimplemented statement, should not be confused with the
binary flip-flop C<...> operator.  One is a statement and the other an
operator.  (Perl doesn't usually confuse them because usually Perl can tell
whether it wants an operator or a statement, but see below for exceptions.)

When Perl 5.12 or later encounters an ellipsis statement, it parses this
without error, but if and when you should actually try to execute it, Perl
throws an exception with the text C<Unimplemented>:

    use v5.12;
    sub unimplemented { ... }
    eval { unimplemented() };
    if ($@ =~ /^Unimplemented at /) {
        say "I found an ellipsis!";
    }

You can only use the elliptical statement to stand in for a
complete statement.  These examples of how the ellipsis works:

    use v5.12;
    { ... }
    sub foo { ... }
    ...;
    eval { ... };
    sub somemeth {
        my $self = shift;
        ...;
    }
    $x = do {
        my $n;
        ...;
        say "Hurrah!";
        $n;
    };

The elliptical statement cannot stand in for an expression that
is part of a larger statement, since the C<...> is also the three-dot
version of the flip-flop operator (see L<perlop/"Range Operators">).

These examples of attempts to use an ellipsis are syntax errors:

    use v5.12;

    print ...;
    open(my $fh, ">", "/dev/passwd") or ...;
    if ($condition && ... ) { say "Howdy" };

There are some cases where Perl can't immediately tell the difference
between an expression and a statement.  For instance, the syntax for a
block and an anonymous hash reference constructor look the same unless
there's something in the braces to give Perl a hint.  The ellipsis is a
syntax error if Perl doesn't guess that the C<{ ... }> is a block.  In that
case, it doesn't think the C<...> is an ellipsis because it's expecting an
expression instead of a statement:

    @transformed = map { ... } @input;    # syntax error

Inside your block, you can use a C<;> before the ellipsis to denote that the
C<{ ... }> is a block and not a hash reference constructor.  Now the ellipsis
works:

    @transformed = map {; ... } @input;   # ';' disambiguates

Note: Some folks colloquially refer to this bit of punctuation as a
"yada-yada" or "triple-dot", but its true name
is actually an ellipsis.

=head2 PODs: Embedded Documentation
X<POD> X<documentation>

Perl has a mechanism for intermixing documentation with source code.
While it's expecting the beginning of a new statement, if the compiler
encounters a line that begins with an equal sign and a word, like this

    =head1 Here There Be Pods!

Then that text and all remaining text up through and including a line
beginning with C<=cut> will be ignored.  The format of the intervening
text is described in L<perlpod>.

This allows you to intermix your source code
and your documentation text freely, as in

    =item snazzle($)

    The snazzle() function will behave in the most spectacular
    form that you can possibly imagine, not even excepting
    cybernetic pyrotechnics.

    =cut back to the compiler, nuff of this pod stuff!

    sub snazzle($) {
        my $thingie = shift;
        .........
    }

Note that pod translators should look at only paragraphs beginning
with a pod directive (it makes parsing easier), whereas the compiler
actually knows to look for pod escapes even in the middle of a
paragraph.  This means that the following secret stuff will be
ignored by both the compiler and the translators.

    $a=3;
    =secret stuff
     warn "Neither POD nor CODE!?"
    =cut back
    print "got $a\n";

You probably shouldn't rely upon the C<warn()> being podded out forever.
Not all pod translators are well-behaved in this regard, and perhaps
the compiler will become pickier.

One may also use pod directives to quickly comment out a section
of code.

=head2 Plain Old Comments (Not!)
X<comment> X<line> X<#> X<preprocessor> X<eval>

Perl can process line directives, much like the C preprocessor.  Using
this, one can control Perl's idea of filenames and line numbers in
error or warning messages (especially for strings that are processed
with C<eval()>).  The syntax for this mechanism is almost the same as for
most C preprocessors: it matches the regular expression

    # example: '# line 42 "new_filename.plx"'
    /^\#   \s*
      line \s+ (\d+)   \s*
      (?:\s("?)([^"]+)\g2)? \s*
     $/x

with C<$1> being the line number for the next line, and C<$3> being
the optional filename (specified with or without quotes).  Note that
no whitespace may precede the C<< # >>, unlike modern C preprocessors.

There is a fairly obvious gotcha included with the line directive:
Debuggers and profilers will only show the last source line to appear
at a particular line number in a given file.  Care should be taken not
to cause line number collisions in code you'd like to debug later.

Here are some examples that you should be able to type into your command
shell:

    % perl
    # line 200 "bzzzt"
    # the '#' on the previous line must be the first char on line
    die 'foo';
    __END__
    foo at bzzzt line 201.

    % perl
    # line 200 "bzzzt"
    eval qq[\n#line 2001 ""\ndie 'foo']; print $@;
    __END__
    foo at - line 2001.

    % perl
    eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
    __END__
    foo at foo bar line 200.

    % perl
    # line 345 "goop"
    eval "\n#line " . __LINE__ . ' "' . __FILE__ ."\"\ndie 'foo'";
    print $@;
    __END__
    foo at goop line 345.

=head2 Experimental Details on given and when

As previously mentioned, the "switch" feature is considered highly
experimental; it is subject to change with little notice.  In particular,
C<when> has tricky behaviours that are expected to change to become less
tricky in the future.  Do not rely upon its current (mis)implementation.
Before Perl 5.18, C<given> also had tricky behaviours that you should still
beware of if your code must run on older versions of Perl.

Here is a longer example of C<given>:

    use feature ":5.10";
    given ($foo) {
        when (undef) {
            say '$foo is undefined';
        }
        when ("foo") {
            say '$foo is the string "foo"';
        }
        when ([1,3,5,7,9]) {
            say '$foo is an odd digit';
            continue; # Fall through
        }
        when ($_ < 100) {
            say '$foo is numerically less than 100';
        }
        when (\&complicated_check) {
            say 'a complicated check for $foo is true';
        }
        default {
            die q(I don't know what to do with $foo);
        }
    }

Before Perl 5.18, C<given(EXPR)> assigned the value of I<EXPR> to
merely a lexically scoped I<B<copy>> (!) of C<$_>, not a dynamically
scoped alias the way C<foreach> does.  That made it similar to

        do { my $_ = EXPR; ... }

except that the block was automatically broken out of by a successful
C<when> or an explicit C<break>.  Because it was only a copy, and because
it was only lexically scoped, not dynamically scoped, you could not do the
things with it that you are used to in a C<foreach> loop.  In particular,
it did not work for arbitrary function calls if those functions might try
to access $_.  Best stick to C<foreach> for that.

Most of the power comes from the implicit smartmatching that can
sometimes apply.  Most of the time, C<when(EXPR)> is treated as an
implicit smartmatch of C<$_>, that is, C<$_ ~~ EXPR>.  (See
L<perlop/"Smartmatch Operator"> for more information on smartmatching.)
But when I<EXPR> is one of the 10 exceptional cases (or things like them)
listed below, it is used directly as a boolean.

=over 4

=item Z<>1.

A user-defined subroutine call or a method invocation.

=item Z<>2.

A regular expression match in the form of C</REGEX/>, C<$foo =~ /REGEX/>,
or C<$foo =~ EXPR>.  Also, a negated regular expression match in
the form C<!/REGEX/>, C<$foo !~ /REGEX/>, or C<$foo !~ EXPR>.

=item Z<>3.

A smart match that uses an explicit C<~~> operator, such as C<EXPR ~~ EXPR>.

B<NOTE:> You will often have to use C<$c ~~ $_> because the default case
uses C<$_ ~~ $c> , which is frequentlythe opposite of what you want.

=item Z<>4.

A boolean comparison operator such as C<$_ E<lt> 10> or C<$x eq "abc">.  The
relational operators that this applies to are the six numeric comparisons
(C<< < >>, C<< > >>, C<< <= >>, C<< >= >>, C<< == >>, and C<< != >>), and
the six string comparisons (C<lt>, C<gt>, C<le>, C<ge>, C<eq>, and C<ne>).

=item Z<>5.

At least the three builtin functions C<defined(...)>, C<exists(...)>, and
C<eof(...)>.  We might someday add more of these later if we think of them.

=item Z<>6.

A negated expression, whether C<!(EXPR)> or C<not(EXPR)>, or a logical
exclusive-or, C<(EXPR1) xor (EXPR2)>.  The bitwise versions (C<~> and C<^>)
are not included.

=item Z<>7.

A filetest operator, with exactly 4 exceptions: C<-s>, C<-M>, C<-A>, and
C<-C>, as these return numerical values, not boolean ones.  The C<-z>
filetest operator is not included in the exception list.

=item Z<>8.

The C<..> and C<...> flip-flop operators.  Note that the C<...> flip-flop
operator is completely different from the C<...> elliptical statement
just described.

=back

In those 8 cases above, the value of EXPR is used directly as a boolean, so
no smartmatching is done.  You may think of C<when> as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to
decide whether to use smartmatching for each one by applying the
above test to the operands:

=over 4

=item Z<>9.

If EXPR is C<EXPR1 && EXPR2> or C<EXPR1 and EXPR2>, the test is applied
I<recursively> to both EXPR1 and EXPR2.
Only if I<both> operands also pass the
test, I<recursively>, will the expression be treated as boolean.  Otherwise,
smartmatching is used.

=item Z<>10.

If EXPR is C<EXPR1 || EXPR2>, C<EXPR1 // EXPR2>, or C<EXPR1 or EXPR2>, the
test is applied I<recursively> to EXPR1 only (which might itself be a
higher-precedence AND operator, for example, and thus subject to the
previous rule), not to EXPR2.  If EXPR1 is to use smartmatching, then EXPR2
also does so, no matter what EXPR2 contains.  But if EXPR2 does not get to
use smartmatching, then the second argument will not be either.  This is
quite different from the C<&&> case just described, so be careful.

=back

These rules are complicated, but the goal is for them to do what you want
(even if you don't quite understand why they are doing it).  For example:

    when (/^\d+$/ && $_ < 75) { ... }

will be treated as a boolean match because the rules say both
a regex match and an explicit test on C<$_> will be treated
as boolean.

Also:

    when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only I<one> of the operands is a boolean:
the other uses smartmatching, and that wins.

Further:

    when ([qw(foo bar)] || /^baz/) { ... }

will use smart matching (only the first operand is considered), whereas

    when (/^baz/ || [qw(foo bar)]) { ... }

will test only the regex, which causes both operands to be
treated as boolean.  Watch out for this one, then, because an
arrayref is always a true value, which makes it effectively
redundant.  Not a good idea.

Tautologous boolean operators are still going to be optimized
away.  Don't be tempted to write

    when ("foo" or "bar") { ... }

This will optimize down to C<"foo">, so C<"bar"> will never be considered (even
though the rules say to use a smartmatch
on C<"foo">).  For an alternation like
this, an array ref will work, because this will instigate smartmatching:

    when ([qw(foo bar)] { ... }

This is somewhat equivalent to the C-style switch statement's fallthrough
functionality (not to be confused with I<Perl's> fallthrough
functionality--see below), wherein the same block is used for several
C<case> statements.

Another useful shortcut is that, if you use a literal array or hash as the
argument to C<given>, it is turned into a reference.  So C<given(@foo)> is
the same as C<given(\@foo)>, for example.

C<default> behaves exactly like C<when(1 == 1)>, which is
to say that it always matches.

=head3 Breaking out

You can use the C<break> keyword to break out of the enclosing
C<given> block.  Every C<when> block is implicitly ended with
a C<break>.

=head3 Fall-through

You can use the C<continue> keyword to fall through from one
case to the next:

    given($foo) {
        when (/x/) { say '$foo contains an x'; continue }
        when (/y/) { say '$foo contains a y'            }
        default    { say '$foo does not contain a y'    }
    }

=head3 Return value

When a C<given> statement is also a valid expression (for example,
when it's the last statement of a block), it evaluates to:

=over 4

=item *

An empty list as soon as an explicit C<break> is encountered.

=item *

The value of the last evaluated expression of the successful
C<when>/C<default> clause, if there happens to be one.

=item *

The value of the last evaluated expression of the C<given> block if no
condition is true.

=back

In both last cases, the last expression is evaluated in the context that
was applied to the C<given> block.

Note that, unlike C<if> and C<unless>, failed C<when> statements always
evaluate to an empty list.

    my $price = do {
        given ($item) {
            when (["pear", "apple"]) { 1 }
            break when "vote";      # My vote cannot be bought
            1e10  when /Mona Lisa/;
            "unknown";
        }
    };

Currently, C<given> blocks can't always
be used as proper expressions.  This
may be addressed in a future version of Perl.

=head3 Switching in a loop

Instead of using C<given()>, you can use a C<foreach()> loop.
For example, here's one way to count how many times a particular
string occurs in an array:

    use v5.10.1;
    my $count = 0;
    for (@array) {
        when ("foo") { ++$count }
    }
    print "\@array contains $count copies of 'foo'\n";

Or in a more recent version:

    use v5.14;
    my $count = 0;
    for (@array) {
        ++$count when "foo";
    }
    print "\@array contains $count copies of 'foo'\n";

At the end of all C<when> blocks, there is an implicit C<next>.
You can override that with an explicit C<last> if you're
interested in only the first match alone.

This doesn't work if you explicitly specify a loop variable, as
in C<for $item (@array)>.  You have to use the default variable C<$_>.

=head3 Differences from Perl 6

The Perl 5 smartmatch and C<given>/C<when> constructs are not compatible
with their Perl 6 analogues.  The most visible difference and least
important difference is that, in Perl 5, parentheses are required around
the argument to C<given()> and C<when()> (except when this last one is used
as a statement modifier).  Parentheses in Perl 6 are always optional in a
control construct such as C<if()>, C<while()>, or C<when()>; they can't be
made optional in Perl 5 without a great deal of potential confusion,
because Perl 5 would parse the expression

    given $foo {
        ...
    }

as though the argument to C<given> were an element of the hash
C<%foo>, interpreting the braces as hash-element syntax.

However, their are many, many other differences.  For example,
this works in Perl 5:

    use v5.12;
    my @primary = ("red", "blue", "green");

    if (@primary ~~ "red") {
        say "primary smartmatches red";
    }

    if ("red" ~~ @primary) {
        say "red smartmatches primary";
    }

    say "that's all, folks!";

But it doesn't work at all in Perl 6.  Instead, you should
use the (parallelizable) C<any> operator:

   if any(@primary) eq "red" {
       say "primary smartmatches red";
   }

   if "red" eq any(@primary) {
       say "red smartmatches primary";
   }

The table of smartmatches in L<perlop/"Smartmatch Operator"> is not
identical to that proposed by the Perl 6 specification, mainly due to
differences between Perl 6's and Perl 5's data models, but also because
the Perl 6 spec has changed since Perl 5 rushed into early adoption.

In Perl 6, C<when()> will always do an implicit smartmatch with its
argument, while in Perl 5 it is convenient (albeit potentially confusing) to
suppress this implicit smartmatch in various rather loosely-defined
situations, as roughly outlined above.  (The difference is largely because
Perl 5 does not have, even internally, a boolean type.)

=cut