This file is indexed.

/usr/lib/python3/dist-packages/chardet/jpcntx.py is in python3-chardet 2.3.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Communicator client code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 1998
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
#   Mark Pilgrim - port to Python
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301  USA
######################### END LICENSE BLOCK #########################

from .compat import wrap_ord

NUM_OF_CATEGORY = 6
DONT_KNOW = -1
ENOUGH_REL_THRESHOLD = 100
MAX_REL_THRESHOLD = 1000
MINIMUM_DATA_THRESHOLD = 4

# This is hiragana 2-char sequence table, the number in each cell represents its frequency category
jp2CharContext = (
(0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1),
(2,4,0,4,0,3,0,4,0,3,4,4,4,2,4,3,3,4,3,2,3,3,4,2,3,3,3,2,4,1,4,3,3,1,5,4,3,4,3,4,3,5,3,0,3,5,4,2,0,3,1,0,3,3,0,3,3,0,1,1,0,4,3,0,3,3,0,4,0,2,0,3,5,5,5,5,4,0,4,1,0,3,4),
(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2),
(0,4,0,5,0,5,0,4,0,4,5,4,4,3,5,3,5,1,5,3,4,3,4,4,3,4,3,3,4,3,5,4,4,3,5,5,3,5,5,5,3,5,5,3,4,5,5,3,1,3,2,0,3,4,0,4,2,0,4,2,1,5,3,2,3,5,0,4,0,2,0,5,4,4,5,4,5,0,4,0,0,4,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,4,0,3,0,3,0,4,5,4,3,3,3,3,4,3,5,4,4,3,5,4,4,3,4,3,4,4,4,4,5,3,4,4,3,4,5,5,4,5,5,1,4,5,4,3,0,3,3,1,3,3,0,4,4,0,3,3,1,5,3,3,3,5,0,4,0,3,0,4,4,3,4,3,3,0,4,1,1,3,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,4,0,3,0,3,0,4,0,3,4,4,3,2,2,1,2,1,3,1,3,3,3,3,3,4,3,1,3,3,5,3,3,0,4,3,0,5,4,3,3,5,4,4,3,4,4,5,0,1,2,0,1,2,0,2,2,0,1,0,0,5,2,2,1,4,0,3,0,1,0,4,4,3,5,4,3,0,2,1,0,4,3),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,5,0,4,0,2,1,4,4,2,4,1,4,2,4,2,4,3,3,3,4,3,3,3,3,1,4,2,3,3,3,1,4,4,1,1,1,4,3,3,2,0,2,4,3,2,0,3,3,0,3,1,1,0,0,0,3,3,0,4,2,2,3,4,0,4,0,3,0,4,4,5,3,4,4,0,3,0,0,1,4),
(1,4,0,4,0,4,0,4,0,3,5,4,4,3,4,3,5,4,3,3,4,3,5,4,4,4,4,3,4,2,4,3,3,1,5,4,3,2,4,5,4,5,5,4,4,5,4,4,0,3,2,2,3,3,0,4,3,1,3,2,1,4,3,3,4,5,0,3,0,2,0,4,5,5,4,5,4,0,4,0,0,5,4),
(0,5,0,5,0,4,0,3,0,4,4,3,4,3,3,3,4,0,4,4,4,3,4,3,4,3,3,1,4,2,4,3,4,0,5,4,1,4,5,4,4,5,3,2,4,3,4,3,2,4,1,3,3,3,2,3,2,0,4,3,3,4,3,3,3,4,0,4,0,3,0,4,5,4,4,4,3,0,4,1,0,1,3),
(0,3,1,4,0,3,0,2,0,3,4,4,3,1,4,2,3,3,4,3,4,3,4,3,4,4,3,2,3,1,5,4,4,1,4,4,3,5,4,4,3,5,5,4,3,4,4,3,1,2,3,1,2,2,0,3,2,0,3,1,0,5,3,3,3,4,3,3,3,3,4,4,4,4,5,4,2,0,3,3,2,4,3),
(0,2,0,3,0,1,0,1,0,0,3,2,0,0,2,0,1,0,2,1,3,3,3,1,2,3,1,0,1,0,4,2,1,1,3,3,0,4,3,3,1,4,3,3,0,3,3,2,0,0,0,0,1,0,0,2,0,0,0,0,0,4,1,0,2,3,2,2,2,1,3,3,3,4,4,3,2,0,3,1,0,3,3),
(0,4,0,4,0,3,0,3,0,4,4,4,3,3,3,3,3,3,4,3,4,2,4,3,4,3,3,2,4,3,4,5,4,1,4,5,3,5,4,5,3,5,4,0,3,5,5,3,1,3,3,2,2,3,0,3,4,1,3,3,2,4,3,3,3,4,0,4,0,3,0,4,5,4,4,5,3,0,4,1,0,3,4),
(0,2,0,3,0,3,0,0,0,2,2,2,1,0,1,0,0,0,3,0,3,0,3,0,1,3,1,0,3,1,3,3,3,1,3,3,3,0,1,3,1,3,4,0,0,3,1,1,0,3,2,0,0,0,0,1,3,0,1,0,0,3,3,2,0,3,0,0,0,0,0,3,4,3,4,3,3,0,3,0,0,2,3),
(2,3,0,3,0,2,0,1,0,3,3,4,3,1,3,1,1,1,3,1,4,3,4,3,3,3,0,0,3,1,5,4,3,1,4,3,2,5,5,4,4,4,4,3,3,4,4,4,0,2,1,1,3,2,0,1,2,0,0,1,0,4,1,3,3,3,0,3,0,1,0,4,4,4,5,5,3,0,2,0,0,4,4),
(0,2,0,1,0,3,1,3,0,2,3,3,3,0,3,1,0,0,3,0,3,2,3,1,3,2,1,1,0,0,4,2,1,0,2,3,1,4,3,2,0,4,4,3,1,3,1,3,0,1,0,0,1,0,0,0,1,0,0,0,0,4,1,1,1,2,0,3,0,0,0,3,4,2,4,3,2,0,1,0,0,3,3),
(0,1,0,4,0,5,0,4,0,2,4,4,2,3,3,2,3,3,5,3,3,3,4,3,4,2,3,0,4,3,3,3,4,1,4,3,2,1,5,5,3,4,5,1,3,5,4,2,0,3,3,0,1,3,0,4,2,0,1,3,1,4,3,3,3,3,0,3,0,1,0,3,4,4,4,5,5,0,3,0,1,4,5),
(0,2,0,3,0,3,0,0,0,2,3,1,3,0,4,0,1,1,3,0,3,4,3,2,3,1,0,3,3,2,3,1,3,0,2,3,0,2,1,4,1,2,2,0,0,3,3,0,0,2,0,0,0,1,0,0,0,0,2,2,0,3,2,1,3,3,0,2,0,2,0,0,3,3,1,2,4,0,3,0,2,2,3),
(2,4,0,5,0,4,0,4,0,2,4,4,4,3,4,3,3,3,1,2,4,3,4,3,4,4,5,0,3,3,3,3,2,0,4,3,1,4,3,4,1,4,4,3,3,4,4,3,1,2,3,0,4,2,0,4,1,0,3,3,0,4,3,3,3,4,0,4,0,2,0,3,5,3,4,5,2,0,3,0,0,4,5),
(0,3,0,4,0,1,0,1,0,1,3,2,2,1,3,0,3,0,2,0,2,0,3,0,2,0,0,0,1,0,1,1,0,0,3,1,0,0,0,4,0,3,1,0,2,1,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,2,2,3,1,0,3,0,0,0,1,4,4,4,3,0,0,4,0,0,1,4),
(1,4,1,5,0,3,0,3,0,4,5,4,4,3,5,3,3,4,4,3,4,1,3,3,3,3,2,1,4,1,5,4,3,1,4,4,3,5,4,4,3,5,4,3,3,4,4,4,0,3,3,1,2,3,0,3,1,0,3,3,0,5,4,4,4,4,4,4,3,3,5,4,4,3,3,5,4,0,3,2,0,4,4),
(0,2,0,3,0,1,0,0,0,1,3,3,3,2,4,1,3,0,3,1,3,0,2,2,1,1,0,0,2,0,4,3,1,0,4,3,0,4,4,4,1,4,3,1,1,3,3,1,0,2,0,0,1,3,0,0,0,0,2,0,0,4,3,2,4,3,5,4,3,3,3,4,3,3,4,3,3,0,2,1,0,3,3),
(0,2,0,4,0,3,0,2,0,2,5,5,3,4,4,4,4,1,4,3,3,0,4,3,4,3,1,3,3,2,4,3,0,3,4,3,0,3,4,4,2,4,4,0,4,5,3,3,2,2,1,1,1,2,0,1,5,0,3,3,2,4,3,3,3,4,0,3,0,2,0,4,4,3,5,5,0,0,3,0,2,3,3),
(0,3,0,4,0,3,0,1,0,3,4,3,3,1,3,3,3,0,3,1,3,0,4,3,3,1,1,0,3,0,3,3,0,0,4,4,0,1,5,4,3,3,5,0,3,3,4,3,0,2,0,1,1,1,0,1,3,0,1,2,1,3,3,2,3,3,0,3,0,1,0,1,3,3,4,4,1,0,1,2,2,1,3),
(0,1,0,4,0,4,0,3,0,1,3,3,3,2,3,1,1,0,3,0,3,3,4,3,2,4,2,0,1,0,4,3,2,0,4,3,0,5,3,3,2,4,4,4,3,3,3,4,0,1,3,0,0,1,0,0,1,0,0,0,0,4,2,3,3,3,0,3,0,0,0,4,4,4,5,3,2,0,3,3,0,3,5),
(0,2,0,3,0,0,0,3,0,1,3,0,2,0,0,0,1,0,3,1,1,3,3,0,0,3,0,0,3,0,2,3,1,0,3,1,0,3,3,2,0,4,2,2,0,2,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,1,0,1,0,0,0,1,3,1,2,0,0,0,1,0,0,1,4),
(0,3,0,3,0,5,0,1,0,2,4,3,1,3,3,2,1,1,5,2,1,0,5,1,2,0,0,0,3,3,2,2,3,2,4,3,0,0,3,3,1,3,3,0,2,5,3,4,0,3,3,0,1,2,0,2,2,0,3,2,0,2,2,3,3,3,0,2,0,1,0,3,4,4,2,5,4,0,3,0,0,3,5),
(0,3,0,3,0,3,0,1,0,3,3,3,3,0,3,0,2,0,2,1,1,0,2,0,1,0,0,0,2,1,0,0,1,0,3,2,0,0,3,3,1,2,3,1,0,3,3,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,3,1,2,3,0,3,0,1,0,3,2,1,0,4,3,0,1,1,0,3,3),
(0,4,0,5,0,3,0,3,0,4,5,5,4,3,5,3,4,3,5,3,3,2,5,3,4,4,4,3,4,3,4,5,5,3,4,4,3,4,4,5,4,4,4,3,4,5,5,4,2,3,4,2,3,4,0,3,3,1,4,3,2,4,3,3,5,5,0,3,0,3,0,5,5,5,5,4,4,0,4,0,1,4,4),
(0,4,0,4,0,3,0,3,0,3,5,4,4,2,3,2,5,1,3,2,5,1,4,2,3,2,3,3,4,3,3,3,3,2,5,4,1,3,3,5,3,4,4,0,4,4,3,1,1,3,1,0,2,3,0,2,3,0,3,0,0,4,3,1,3,4,0,3,0,2,0,4,4,4,3,4,5,0,4,0,0,3,4),
(0,3,0,3,0,3,1,2,0,3,4,4,3,3,3,0,2,2,4,3,3,1,3,3,3,1,1,0,3,1,4,3,2,3,4,4,2,4,4,4,3,4,4,3,2,4,4,3,1,3,3,1,3,3,0,4,1,0,2,2,1,4,3,2,3,3,5,4,3,3,5,4,4,3,3,0,4,0,3,2,2,4,4),
(0,2,0,1,0,0,0,0,0,1,2,1,3,0,0,0,0,0,2,0,1,2,1,0,0,1,0,0,0,0,3,0,0,1,0,1,1,3,1,0,0,0,1,1,0,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,1,2,2,0,3,4,0,0,0,1,1,0,0,1,0,0,0,0,0,1,1),
(0,1,0,0,0,1,0,0,0,0,4,0,4,1,4,0,3,0,4,0,3,0,4,0,3,0,3,0,4,1,5,1,4,0,0,3,0,5,0,5,2,0,1,0,0,0,2,1,4,0,1,3,0,0,3,0,0,3,1,1,4,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0),
(1,4,0,5,0,3,0,2,0,3,5,4,4,3,4,3,5,3,4,3,3,0,4,3,3,3,3,3,3,2,4,4,3,1,3,4,4,5,4,4,3,4,4,1,3,5,4,3,3,3,1,2,2,3,3,1,3,1,3,3,3,5,3,3,4,5,0,3,0,3,0,3,4,3,4,4,3,0,3,0,2,4,3),
(0,1,0,4,0,0,0,0,0,1,4,0,4,1,4,2,4,0,3,0,1,0,1,0,0,0,0,0,2,0,3,1,1,1,0,3,0,0,0,1,2,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0,3,0,0,0,0,3,2,0,2,2,0,1,0,0,0,2,3,2,3,3,0,0,0,0,2,1,0),
(0,5,1,5,0,3,0,3,0,5,4,4,5,1,5,3,3,0,4,3,4,3,5,3,4,3,3,2,4,3,4,3,3,0,3,3,1,4,4,3,4,4,4,3,4,5,5,3,2,3,1,1,3,3,1,3,1,1,3,3,2,4,5,3,3,5,0,4,0,3,0,4,4,3,5,3,3,0,3,4,0,4,3),
(0,5,0,5,0,3,0,2,0,4,4,3,5,2,4,3,3,3,4,4,4,3,5,3,5,3,3,1,4,0,4,3,3,0,3,3,0,4,4,4,4,5,4,3,3,5,5,3,2,3,1,2,3,2,0,1,0,0,3,2,2,4,4,3,1,5,0,4,0,3,0,4,3,1,3,2,1,0,3,3,0,3,3),
(0,4,0,5,0,5,0,4,0,4,5,5,5,3,4,3,3,2,5,4,4,3,5,3,5,3,4,0,4,3,4,4,3,2,4,4,3,4,5,4,4,5,5,0,3,5,5,4,1,3,3,2,3,3,1,3,1,0,4,3,1,4,4,3,4,5,0,4,0,2,0,4,3,4,4,3,3,0,4,0,0,5,5),
(0,4,0,4,0,5,0,1,1,3,3,4,4,3,4,1,3,0,5,1,3,0,3,1,3,1,1,0,3,0,3,3,4,0,4,3,0,4,4,4,3,4,4,0,3,5,4,1,0,3,0,0,2,3,0,3,1,0,3,1,0,3,2,1,3,5,0,3,0,1,0,3,2,3,3,4,4,0,2,2,0,4,4),
(2,4,0,5,0,4,0,3,0,4,5,5,4,3,5,3,5,3,5,3,5,2,5,3,4,3,3,4,3,4,5,3,2,1,5,4,3,2,3,4,5,3,4,1,2,5,4,3,0,3,3,0,3,2,0,2,3,0,4,1,0,3,4,3,3,5,0,3,0,1,0,4,5,5,5,4,3,0,4,2,0,3,5),
(0,5,0,4,0,4,0,2,0,5,4,3,4,3,4,3,3,3,4,3,4,2,5,3,5,3,4,1,4,3,4,4,4,0,3,5,0,4,4,4,4,5,3,1,3,4,5,3,3,3,3,3,3,3,0,2,2,0,3,3,2,4,3,3,3,5,3,4,1,3,3,5,3,2,0,0,0,0,4,3,1,3,3),
(0,1,0,3,0,3,0,1,0,1,3,3,3,2,3,3,3,0,3,0,0,0,3,1,3,0,0,0,2,2,2,3,0,0,3,2,0,1,2,4,1,3,3,0,0,3,3,3,0,1,0,0,2,1,0,0,3,0,3,1,0,3,0,0,1,3,0,2,0,1,0,3,3,1,3,3,0,0,1,1,0,3,3),
(0,2,0,3,0,2,1,4,0,2,2,3,1,1,3,1,1,0,2,0,3,1,2,3,1,3,0,0,1,0,4,3,2,3,3,3,1,4,2,3,3,3,3,1,0,3,1,4,0,1,1,0,1,2,0,1,1,0,1,1,0,3,1,3,2,2,0,1,0,0,0,2,3,3,3,1,0,0,0,0,0,2,3),
(0,5,0,4,0,5,0,2,0,4,5,5,3,3,4,3,3,1,5,4,4,2,4,4,4,3,4,2,4,3,5,5,4,3,3,4,3,3,5,5,4,5,5,1,3,4,5,3,1,4,3,1,3,3,0,3,3,1,4,3,1,4,5,3,3,5,0,4,0,3,0,5,3,3,1,4,3,0,4,0,1,5,3),
(0,5,0,5,0,4,0,2,0,4,4,3,4,3,3,3,3,3,5,4,4,4,4,4,4,5,3,3,5,2,4,4,4,3,4,4,3,3,4,4,5,5,3,3,4,3,4,3,3,4,3,3,3,3,1,2,2,1,4,3,3,5,4,4,3,4,0,4,0,3,0,4,4,4,4,4,1,0,4,2,0,2,4),
(0,4,0,4,0,3,0,1,0,3,5,2,3,0,3,0,2,1,4,2,3,3,4,1,4,3,3,2,4,1,3,3,3,0,3,3,0,0,3,3,3,5,3,3,3,3,3,2,0,2,0,0,2,0,0,2,0,0,1,0,0,3,1,2,2,3,0,3,0,2,0,4,4,3,3,4,1,0,3,0,0,2,4),
(0,0,0,4,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,3,1,3,0,3,2,0,0,0,1,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,2,0,0,0,0,0,0,2),
(0,2,1,3,0,2,0,2,0,3,3,3,3,1,3,1,3,3,3,3,3,3,4,2,2,1,2,1,4,0,4,3,1,3,3,3,2,4,3,5,4,3,3,3,3,3,3,3,0,1,3,0,2,0,0,1,0,0,1,0,0,4,2,0,2,3,0,3,3,0,3,3,4,2,3,1,4,0,1,2,0,2,3),
(0,3,0,3,0,1,0,3,0,2,3,3,3,0,3,1,2,0,3,3,2,3,3,2,3,2,3,1,3,0,4,3,2,0,3,3,1,4,3,3,2,3,4,3,1,3,3,1,1,0,1,1,0,1,0,1,0,1,0,0,0,4,1,1,0,3,0,3,1,0,2,3,3,3,3,3,1,0,0,2,0,3,3),
(0,0,0,0,0,0,0,0,0,0,3,0,2,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,3,0,3,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,2,3,0,0,0,0,0,0,0,0,3),
(0,2,0,3,1,3,0,3,0,2,3,3,3,1,3,1,3,1,3,1,3,3,3,1,3,0,2,3,1,1,4,3,3,2,3,3,1,2,2,4,1,3,3,0,1,4,2,3,0,1,3,0,3,0,0,1,3,0,2,0,0,3,3,2,1,3,0,3,0,2,0,3,4,4,4,3,1,0,3,0,0,3,3),
(0,2,0,1,0,2,0,0,0,1,3,2,2,1,3,0,1,1,3,0,3,2,3,1,2,0,2,0,1,1,3,3,3,0,3,3,1,1,2,3,2,3,3,1,2,3,2,0,0,1,0,0,0,0,0,0,3,0,1,0,0,2,1,2,1,3,0,3,0,0,0,3,4,4,4,3,2,0,2,0,0,2,4),
(0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,3,1,0,0,0,0,0,0,0,3),
(0,3,0,3,0,2,0,3,0,3,3,3,2,3,2,2,2,0,3,1,3,3,3,2,3,3,0,0,3,0,3,2,2,0,2,3,1,4,3,4,3,3,2,3,1,5,4,4,0,3,1,2,1,3,0,3,1,1,2,0,2,3,1,3,1,3,0,3,0,1,0,3,3,4,4,2,1,0,2,1,0,2,4),
(0,1,0,3,0,1,0,2,0,1,4,2,5,1,4,0,2,0,2,1,3,1,4,0,2,1,0,0,2,1,4,1,1,0,3,3,0,5,1,3,2,3,3,1,0,3,2,3,0,1,0,0,0,0,0,0,1,0,0,0,0,4,0,1,0,3,0,2,0,1,0,3,3,3,4,3,3,0,0,0,0,2,3),
(0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,1,0,0,0,0,0,3),
(0,1,0,3,0,4,0,3,0,2,4,3,1,0,3,2,2,1,3,1,2,2,3,1,1,1,2,1,3,0,1,2,0,1,3,2,1,3,0,5,5,1,0,0,1,3,2,1,0,3,0,0,1,0,0,0,0,0,3,4,0,1,1,1,3,2,0,2,0,1,0,2,3,3,1,2,3,0,1,0,1,0,4),
(0,0,0,1,0,3,0,3,0,2,2,1,0,0,4,0,3,0,3,1,3,0,3,0,3,0,1,0,3,0,3,1,3,0,3,3,0,0,1,2,1,1,1,0,1,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,2,2,1,2,0,0,2,0,0,0,0,2,3,3,3,3,0,0,0,0,1,4),
(0,0,0,3,0,3,0,0,0,0,3,1,1,0,3,0,1,0,2,0,1,0,0,0,0,0,0,0,1,0,3,0,2,0,2,3,0,0,2,2,3,1,2,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0,0,2,3),
(2,4,0,5,0,5,0,4,0,3,4,3,3,3,4,3,3,3,4,3,4,4,5,4,5,5,5,2,3,0,5,5,4,1,5,4,3,1,5,4,3,4,4,3,3,4,3,3,0,3,2,0,2,3,0,3,0,0,3,3,0,5,3,2,3,3,0,3,0,3,0,3,4,5,4,5,3,0,4,3,0,3,4),
(0,3,0,3,0,3,0,3,0,3,3,4,3,2,3,2,3,0,4,3,3,3,3,3,3,3,3,0,3,2,4,3,3,1,3,4,3,4,4,4,3,4,4,3,2,4,4,1,0,2,0,0,1,1,0,2,0,0,3,1,0,5,3,2,1,3,0,3,0,1,2,4,3,2,4,3,3,0,3,2,0,4,4),
(0,3,0,3,0,1,0,0,0,1,4,3,3,2,3,1,3,1,4,2,3,2,4,2,3,4,3,0,2,2,3,3,3,0,3,3,3,0,3,4,1,3,3,0,3,4,3,3,0,1,1,0,1,0,0,0,4,0,3,0,0,3,1,2,1,3,0,4,0,1,0,4,3,3,4,3,3,0,2,0,0,3,3),
(0,3,0,4,0,1,0,3,0,3,4,3,3,0,3,3,3,1,3,1,3,3,4,3,3,3,0,0,3,1,5,3,3,1,3,3,2,5,4,3,3,4,5,3,2,5,3,4,0,1,0,0,0,0,0,2,0,0,1,1,0,4,2,2,1,3,0,3,0,2,0,4,4,3,5,3,2,0,1,1,0,3,4),
(0,5,0,4,0,5,0,2,0,4,4,3,3,2,3,3,3,1,4,3,4,1,5,3,4,3,4,0,4,2,4,3,4,1,5,4,0,4,4,4,4,5,4,1,3,5,4,2,1,4,1,1,3,2,0,3,1,0,3,2,1,4,3,3,3,4,0,4,0,3,0,4,4,4,3,3,3,0,4,2,0,3,4),
(1,4,0,4,0,3,0,1,0,3,3,3,1,1,3,3,2,2,3,3,1,0,3,2,2,1,2,0,3,1,2,1,2,0,3,2,0,2,2,3,3,4,3,0,3,3,1,2,0,1,1,3,1,2,0,0,3,0,1,1,0,3,2,2,3,3,0,3,0,0,0,2,3,3,4,3,3,0,1,0,0,1,4),
(0,4,0,4,0,4,0,0,0,3,4,4,3,1,4,2,3,2,3,3,3,1,4,3,4,0,3,0,4,2,3,3,2,2,5,4,2,1,3,4,3,4,3,1,3,3,4,2,0,2,1,0,3,3,0,0,2,0,3,1,0,4,4,3,4,3,0,4,0,1,0,2,4,4,4,4,4,0,3,2,0,3,3),
(0,0,0,1,0,4,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,3,2,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2),
(0,2,0,3,0,4,0,4,0,1,3,3,3,0,4,0,2,1,2,1,1,1,2,0,3,1,1,0,1,0,3,1,0,0,3,3,2,0,1,1,0,0,0,0,0,1,0,2,0,2,2,0,3,1,0,0,1,0,1,1,0,1,2,0,3,0,0,0,0,1,0,0,3,3,4,3,1,0,1,0,3,0,2),
(0,0,0,3,0,5,0,0,0,0,1,0,2,0,3,1,0,1,3,0,0,0,2,0,0,0,1,0,0,0,1,1,0,0,4,0,0,0,2,3,0,1,4,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,3,0,0,0,0,0,3),
(0,2,0,5,0,5,0,1,0,2,4,3,3,2,5,1,3,2,3,3,3,0,4,1,2,0,3,0,4,0,2,2,1,1,5,3,0,0,1,4,2,3,2,0,3,3,3,2,0,2,4,1,1,2,0,1,1,0,3,1,0,1,3,1,2,3,0,2,0,0,0,1,3,5,4,4,4,0,3,0,0,1,3),
(0,4,0,5,0,4,0,4,0,4,5,4,3,3,4,3,3,3,4,3,4,4,5,3,4,5,4,2,4,2,3,4,3,1,4,4,1,3,5,4,4,5,5,4,4,5,5,5,2,3,3,1,4,3,1,3,3,0,3,3,1,4,3,4,4,4,0,3,0,4,0,3,3,4,4,5,0,0,4,3,0,4,5),
(0,4,0,4,0,3,0,3,0,3,4,4,4,3,3,2,4,3,4,3,4,3,5,3,4,3,2,1,4,2,4,4,3,1,3,4,2,4,5,5,3,4,5,4,1,5,4,3,0,3,2,2,3,2,1,3,1,0,3,3,3,5,3,3,3,5,4,4,2,3,3,4,3,3,3,2,1,0,3,2,1,4,3),
(0,4,0,5,0,4,0,3,0,3,5,5,3,2,4,3,4,0,5,4,4,1,4,4,4,3,3,3,4,3,5,5,2,3,3,4,1,2,5,5,3,5,5,2,3,5,5,4,0,3,2,0,3,3,1,1,5,1,4,1,0,4,3,2,3,5,0,4,0,3,0,5,4,3,4,3,0,0,4,1,0,4,4),
(1,3,0,4,0,2,0,2,0,2,5,5,3,3,3,3,3,0,4,2,3,4,4,4,3,4,0,0,3,4,5,4,3,3,3,3,2,5,5,4,5,5,5,4,3,5,5,5,1,3,1,0,1,0,0,3,2,0,4,2,0,5,2,3,2,4,1,3,0,3,0,4,5,4,5,4,3,0,4,2,0,5,4),
(0,3,0,4,0,5,0,3,0,3,4,4,3,2,3,2,3,3,3,3,3,2,4,3,3,2,2,0,3,3,3,3,3,1,3,3,3,0,4,4,3,4,4,1,1,4,4,2,0,3,1,0,1,1,0,4,1,0,2,3,1,3,3,1,3,4,0,3,0,1,0,3,1,3,0,0,1,0,2,0,0,4,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,3,0,2,0,3,0,1,5,4,3,3,3,1,4,2,1,2,3,4,4,2,4,4,5,0,3,1,4,3,4,0,4,3,3,3,2,3,2,5,3,4,3,2,2,3,0,0,3,0,2,1,0,1,2,0,0,0,0,2,1,1,3,1,0,2,0,4,0,3,4,4,4,5,2,0,2,0,0,1,3),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,4,2,1,1,0,1,0,3,2,0,0,3,1,1,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,2,0,0,0,1,4,0,4,2,1,0,0,0,0,0,1),
(0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,3,1,0,0,0,2,0,2,1,0,0,1,2,1,0,1,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,2),
(0,4,0,4,0,4,0,3,0,4,4,3,4,2,4,3,2,0,4,4,4,3,5,3,5,3,3,2,4,2,4,3,4,3,1,4,0,2,3,4,4,4,3,3,3,4,4,4,3,4,1,3,4,3,2,1,2,1,3,3,3,4,4,3,3,5,0,4,0,3,0,4,3,3,3,2,1,0,3,0,0,3,3),
(0,4,0,3,0,3,0,3,0,3,5,5,3,3,3,3,4,3,4,3,3,3,4,4,4,3,3,3,3,4,3,5,3,3,1,3,2,4,5,5,5,5,4,3,4,5,5,3,2,2,3,3,3,3,2,3,3,1,2,3,2,4,3,3,3,4,0,4,0,2,0,4,3,2,2,1,2,0,3,0,0,4,1),
)

class JapaneseContextAnalysis:
    def __init__(self):
        self.reset()

    def reset(self):
        self._mTotalRel = 0  # total sequence received
        # category counters, each interger counts sequence in its category
        self._mRelSample = [0] * NUM_OF_CATEGORY
        # if last byte in current buffer is not the last byte of a character,
        # we need to know how many bytes to skip in next buffer
        self._mNeedToSkipCharNum = 0
        self._mLastCharOrder = -1  # The order of previous char
        # If this flag is set to True, detection is done and conclusion has
        # been made
        self._mDone = False

    def feed(self, aBuf, aLen):
        if self._mDone:
            return

        # The buffer we got is byte oriented, and a character may span in more than one
        # buffers. In case the last one or two byte in last buffer is not
        # complete, we record how many byte needed to complete that character
        # and skip these bytes here.  We can choose to record those bytes as
        # well and analyse the character once it is complete, but since a
        # character will not make much difference, by simply skipping
        # this character will simply our logic and improve performance.
        i = self._mNeedToSkipCharNum
        while i < aLen:
            order, charLen = self.get_order(aBuf[i:i + 2])
            i += charLen
            if i > aLen:
                self._mNeedToSkipCharNum = i - aLen
                self._mLastCharOrder = -1
            else:
                if (order != -1) and (self._mLastCharOrder != -1):
                    self._mTotalRel += 1
                    if self._mTotalRel > MAX_REL_THRESHOLD:
                        self._mDone = True
                        break
                    self._mRelSample[jp2CharContext[self._mLastCharOrder][order]] += 1
                self._mLastCharOrder = order

    def got_enough_data(self):
        return self._mTotalRel > ENOUGH_REL_THRESHOLD

    def get_confidence(self):
        # This is just one way to calculate confidence. It works well for me.
        if self._mTotalRel > MINIMUM_DATA_THRESHOLD:
            return (self._mTotalRel - self._mRelSample[0]) / self._mTotalRel
        else:
            return DONT_KNOW

    def get_order(self, aBuf):
        return -1, 1

class SJISContextAnalysis(JapaneseContextAnalysis):
    def __init__(self):
        self.charset_name = "SHIFT_JIS"

    def get_charset_name(self):
        return self.charset_name

    def get_order(self, aBuf):
        if not aBuf:
            return -1, 1
        # find out current char's byte length
        first_char = wrap_ord(aBuf[0])
        if ((0x81 <= first_char <= 0x9F) or (0xE0 <= first_char <= 0xFC)):
            charLen = 2
            if (first_char == 0x87) or (0xFA <= first_char <= 0xFC):
                self.charset_name = "CP932"
        else:
            charLen = 1

        # return its order if it is hiragana
        if len(aBuf) > 1:
            second_char = wrap_ord(aBuf[1])
            if (first_char == 202) and (0x9F <= second_char <= 0xF1):
                return second_char - 0x9F, charLen

        return -1, charLen

class EUCJPContextAnalysis(JapaneseContextAnalysis):
    def get_order(self, aBuf):
        if not aBuf:
            return -1, 1
        # find out current char's byte length
        first_char = wrap_ord(aBuf[0])
        if (first_char == 0x8E) or (0xA1 <= first_char <= 0xFE):
            charLen = 2
        elif first_char == 0x8F:
            charLen = 3
        else:
            charLen = 1

        # return its order if it is hiragana
        if len(aBuf) > 1:
            second_char = wrap_ord(aBuf[1])
            if (first_char == 0xA4) and (0xA1 <= second_char <= 0xF3):
                return second_char - 0xA1, charLen

        return -1, charLen

# flake8: noqa