/usr/include/boost/graph/subgraph.hpp is in libboost1.58-dev 1.58.0+dfsg-5ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | //=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP
// UNDER CONSTRUCTION
#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <boost/assert.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>
#include <boost/static_assert.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
namespace boost {
struct subgraph_tag { };
/** @name Property Lookup
* The local_property and global_property functions are used to create
* structures that determine the lookup strategy for properties in subgraphs.
* Note that the nested kind member is used to help interoperate with actual
* Property types.
*/
//@{
template <typename T>
struct local_property
{
typedef T kind;
local_property(T x) : value(x) { }
T value;
};
template <typename T>
inline local_property<T> local(T x)
{ return local_property<T>(x); }
template <typename T>
struct global_property
{
typedef T kind;
global_property(T x) : value(x) { }
T value;
};
template <typename T>
inline global_property<T> global(T x)
{ return global_property<T>(x); }
//@}
// Invariants of an induced subgraph:
// - If vertex u is in subgraph g, then u must be in g.parent().
// - If edge e is in subgraph g, then e must be in g.parent().
// - If edge e=(u,v) is in the root graph, then edge e
// is also in any subgraph that contains both vertex u and v.
// The Graph template parameter must have a vertex_index and edge_index
// internal property. It is assumed that the vertex indices are assigned
// automatically by the graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically, they are
// explicitly assigned here.
template <typename Graph>
class subgraph {
typedef graph_traits<Graph> Traits;
typedef std::list<subgraph<Graph>*> ChildrenList;
public:
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
// IncidenceGraph requirements
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// AdjacencyGraph requirements
typedef typename Traits::adjacency_iterator adjacency_iterator;
// VertexListGraph requirements
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
// EdgeListGraph requirements
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::edges_size_type edges_size_type;
typedef typename Traits::in_edge_iterator in_edge_iterator;
typedef typename edge_property_type<Graph>::type edge_property_type;
typedef typename vertex_property_type<Graph>::type vertex_property_type;
typedef subgraph_tag graph_tag;
typedef Graph graph_type;
typedef typename graph_property_type<Graph>::type graph_property_type;
// Create the main graph, the root of the subgraph tree
subgraph()
: m_parent(0), m_edge_counter(0)
{ }
subgraph(const graph_property_type& p)
: m_graph(p), m_parent(0), m_edge_counter(0)
{ }
subgraph(vertices_size_type n, const graph_property_type& p = graph_property_type())
: m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
{
typename Graph::vertex_iterator v, v_end;
vertices_size_type i = 0;
for(boost::tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
m_global_vertex[i++] = *v;
}
// copy constructor
subgraph(const subgraph& x)
: m_parent(x.m_parent), m_edge_counter(x.m_edge_counter)
, m_global_vertex(x.m_global_vertex), m_global_edge(x.m_global_edge)
{
if(x.is_root())
{
m_graph = x.m_graph;
}
// Do a deep copy (recursive).
// Only the root graph is copied, the subgraphs contain
// only references to the global vertices they own.
typename subgraph<Graph>::children_iterator i,i_end;
boost::tie(i,i_end) = x.children();
for(; i != i_end; ++i)
{
subgraph<Graph> child = this->create_subgraph();
child = *i;
vertex_iterator vi,vi_end;
boost::tie(vi,vi_end) = vertices(*i);
for (;vi!=vi_end;++vi)
{
add_vertex(*vi,child);
}
}
}
~subgraph() {
for(typename ChildrenList::iterator i = m_children.begin();
i != m_children.end(); ++i)
{
delete *i;
}
}
// Return a null vertex descriptor for the graph.
static vertex_descriptor null_vertex()
{ return Traits::null_vertex(); }
// Create a subgraph
subgraph<Graph>& create_subgraph() {
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
return *m_children.back();
}
// Create a subgraph with the specified vertex set.
template <typename VertexIterator>
subgraph<Graph>& create_subgraph(VertexIterator first, VertexIterator last) {
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
for(; first != last; ++first) {
add_vertex(*first, *m_children.back());
}
return *m_children.back();
}
// local <-> global descriptor conversion functions
vertex_descriptor local_to_global(vertex_descriptor u_local) const
{ return is_root() ? u_local : m_global_vertex[u_local]; }
vertex_descriptor global_to_local(vertex_descriptor u_global) const {
vertex_descriptor u_local; bool in_subgraph;
if (is_root()) return u_global;
boost::tie(u_local, in_subgraph) = this->find_vertex(u_global);
BOOST_ASSERT(in_subgraph == true);
return u_local;
}
edge_descriptor local_to_global(edge_descriptor e_local) const
{ return is_root() ? e_local : m_global_edge[get(get(edge_index, m_graph), e_local)]; }
edge_descriptor global_to_local(edge_descriptor e_global) const
{ return is_root() ? e_global : (*m_local_edge.find(get(get(edge_index, root().m_graph), e_global))).second; }
// Is vertex u (of the root graph) contained in this subgraph?
// If so, return the matching local vertex.
std::pair<vertex_descriptor, bool>
find_vertex(vertex_descriptor u_global) const {
if (is_root()) return std::make_pair(u_global, true);
typename LocalVertexMap::const_iterator i = m_local_vertex.find(u_global);
bool valid = i != m_local_vertex.end();
return std::make_pair((valid ? (*i).second : null_vertex()), valid);
}
// Is edge e (of the root graph) contained in this subgraph?
// If so, return the matching local edge.
std::pair<edge_descriptor, bool>
find_edge(edge_descriptor e_global) const {
if (is_root()) return std::make_pair(e_global, true);
typename LocalEdgeMap::const_iterator i =
m_local_edge.find(get(get(edge_index, root().m_graph), e_global));
bool valid = i != m_local_edge.end();
return std::make_pair((valid ? (*i).second : edge_descriptor()), valid);
}
// Return the parent graph.
subgraph& parent() { return *m_parent; }
const subgraph& parent() const { return *m_parent; }
// Return true if this is the root subgraph
bool is_root() const { return m_parent == 0; }
// Return the root graph of the subgraph tree.
subgraph& root()
{ return is_root() ? *this : m_parent->root(); }
const subgraph& root() const
{ return is_root() ? *this : m_parent->root(); }
// Return the children subgraphs of this graph/subgraph.
// Use a list of pointers because the VC++ std::list doesn't like
// storing incomplete type.
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph>
, std::bidirectional_iterator_tag
>
children_iterator;
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph> const
, std::bidirectional_iterator_tag
>
const_children_iterator;
std::pair<const_children_iterator, const_children_iterator> children() const {
return std::make_pair(const_children_iterator(m_children.begin()),
const_children_iterator(m_children.end()));
}
std::pair<children_iterator, children_iterator> children() {
return std::make_pair(children_iterator(m_children.begin()),
children_iterator(m_children.end()));
}
std::size_t num_children() const { return m_children.size(); }
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Defualt property access delegates the lookup to global properties.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](Descriptor x)
{ return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](Descriptor x) const
{ return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }
// Local property access returns the local property of the given descripor.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](local_property<Descriptor> x)
{ return m_graph[x.value]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](local_property<Descriptor> x) const
{ return m_graph[x.value]; }
// Global property access returns the global property associated with the
// given descriptor. This is an alias for the default bundled property
// access operations.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](global_property<Descriptor> x)
{ return (*this)[x.value]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](global_property<Descriptor> x) const
{ return (*this)[x.value]; }
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// private:
typedef typename property_map<Graph, edge_index_t>::type EdgeIndexMap;
typedef typename property_traits<EdgeIndexMap>::value_type edge_index_type;
BOOST_STATIC_ASSERT((!is_same<edge_index_type,
boost::detail::error_property_not_found>::value));
private:
typedef std::vector<vertex_descriptor> GlobalVertexList;
typedef std::vector<edge_descriptor> GlobalEdgeList;
typedef std::map<vertex_descriptor, vertex_descriptor> LocalVertexMap;
typedef std::map<edge_index_type, edge_descriptor> LocalEdgeMap;
// TODO: Should the LocalVertexMap be: map<index_type, descriptor>?
// TODO: Can we relax the indexing requirement if both descriptors are
// LessThanComparable?
// TODO: Should we really be using unorderd_map for improved lookup times?
public: // Probably shouldn't be public....
Graph m_graph;
subgraph<Graph>* m_parent;
edge_index_type m_edge_counter; // for generating unique edge indices
ChildrenList m_children;
GlobalVertexList m_global_vertex; // local -> global
LocalVertexMap m_local_vertex; // global -> local
GlobalEdgeList m_global_edge; // local -> global
LocalEdgeMap m_local_edge; // global -> local
edge_descriptor local_add_edge(vertex_descriptor u_local,
vertex_descriptor v_local,
edge_descriptor e_global)
{
edge_descriptor e_local;
bool inserted;
boost::tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
put(edge_index, m_graph, e_local, m_edge_counter++);
m_global_edge.push_back(e_global);
m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
return e_local;
}
};
template <typename Graph>
struct vertex_bundle_type<subgraph<Graph> >
: vertex_bundle_type<Graph>
{ };
template<typename Graph>
struct edge_bundle_type<subgraph<Graph> >
: edge_bundle_type<Graph>
{ };
template<typename Graph>
struct graph_bundle_type<subgraph<Graph> >
: graph_bundle_type<Graph>
{ };
//===========================================================================
// Functions special to the Subgraph Class
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(typename subgraph<G>::vertex_descriptor u_global,
subgraph<G>& g)
{
BOOST_ASSERT(!g.is_root());
typename subgraph<G>::vertex_descriptor u_local, v_global;
typename subgraph<G>::edge_descriptor e_global;
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
subgraph<G>& r = g.root();
// remember edge global and local maps
{
typename subgraph<G>::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(u_global, r);
ei != ei_end; ++ei) {
e_global = *ei;
v_global = target(e_global, r);
if (g.find_vertex(v_global).second == true)
g.local_add_edge(u_local, g.global_to_local(v_global), e_global);
}
}
if (is_directed(g)) { // not necessary for undirected graph
typename subgraph<G>::vertex_iterator vi, vi_end;
typename subgraph<G>::out_edge_iterator ei, ei_end;
for(boost::tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi) {
v_global = *vi;
if (v_global == u_global)
continue; // don't insert self loops twice!
if (!g.find_vertex(v_global).second)
continue; // not a subgraph vertex => try next one
for(boost::tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end; ++ei) {
e_global = *ei;
if(target(e_global, r) == u_global) {
g.local_add_edge(g.global_to_local(v_global), u_local, e_global);
}
}
}
}
return u_local;
}
// NOTE: Descriptors are local unless otherwise noted.
//===========================================================================
// Functions required by the IncidenceGraph concept
template <typename G>
std::pair<typename graph_traits<G>::out_edge_iterator,
typename graph_traits<G>::out_edge_iterator>
out_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_edges(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
out_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_degree(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
source(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return source(e, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
target(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return target(e, g.m_graph); }
//===========================================================================
// Functions required by the BidirectionalGraph concept
template <typename G>
std::pair<typename graph_traits<G>::in_edge_iterator,
typename graph_traits<G>::in_edge_iterator>
in_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_edges(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
in_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_degree(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return degree(v, g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyGraph concept
template <typename G>
std::pair<typename subgraph<G>::adjacency_iterator,
typename subgraph<G>::adjacency_iterator>
adjacent_vertices(typename subgraph<G>::vertex_descriptor v, const subgraph<G>& g)
{ return adjacent_vertices(v, g.m_graph); }
//===========================================================================
// Functions required by the VertexListGraph concept
template <typename G>
std::pair<typename subgraph<G>::vertex_iterator,
typename subgraph<G>::vertex_iterator>
vertices(const subgraph<G>& g)
{ return vertices(g.m_graph); }
template <typename G>
typename subgraph<G>::vertices_size_type
num_vertices(const subgraph<G>& g)
{ return num_vertices(g.m_graph); }
//===========================================================================
// Functions required by the EdgeListGraph concept
template <typename G>
std::pair<typename subgraph<G>::edge_iterator,
typename subgraph<G>::edge_iterator>
edges(const subgraph<G>& g)
{ return edges(g.m_graph); }
template <typename G>
typename subgraph<G>::edges_size_type
num_edges(const subgraph<G>& g)
{ return num_edges(g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyMatrix concept
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
const subgraph<G>& g)
{ return edge(u, v, g.m_graph); }
//===========================================================================
// Functions required by the MutableGraph concept
namespace detail {
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
subgraph<Graph>& g);
template <typename Vertex, typename Edge, typename Children, typename G>
void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
Children& c, subgraph<G>* orig)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
if ((*i)->find_vertex(u_global).second &&
(*i)->find_vertex(v_global).second)
{
add_edge_recur_down(u_global, v_global, e_global, **i, orig);
}
}
}
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
subgraph<Graph>& g, subgraph<Graph>* orig)
{
if(&g != orig ) {
// add local edge only if u_global and v_global are in subgraph g
Vertex u_local, v_local;
bool u_in_subgraph, v_in_subgraph;
boost::tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
boost::tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
if(u_in_subgraph && v_in_subgraph) {
g.local_add_edge(u_local, v_local, e_global);
}
}
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
}
template <typename Vertex, typename Graph>
std::pair<typename subgraph<Graph>::edge_descriptor, bool>
add_edge_recur_up(Vertex u_global, Vertex v_global,
const typename Graph::edge_property_type& ep,
subgraph<Graph>& g, subgraph<Graph>* orig)
{
if(g.is_root()) {
typename subgraph<Graph>::edge_descriptor e_global;
bool inserted;
boost::tie(e_global, inserted) = add_edge(u_global, v_global, ep, g.m_graph);
put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
g.m_global_edge.push_back(e_global);
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
return std::make_pair(e_global, inserted);
} else {
return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
}
}
} // namespace detail
// Add an edge to the subgraph g, specified by the local vertex descriptors u
// and v. In addition, the edge will be added to any (all) other subgraphs that
// contain vertex descriptors u and v.
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
const typename G::edge_property_type& ep,
subgraph<G>& g)
{
if (g.is_root()) {
// u and v are really global
return detail::add_edge_recur_up(u, v, ep, g, &g);
} else {
typename subgraph<G>::edge_descriptor e_local, e_global;
bool inserted;
boost::tie(e_global, inserted) =
detail::add_edge_recur_up(g.local_to_global(u),
g.local_to_global(v),
ep, g, &g);
e_local = g.local_add_edge(u, v, e_global);
return std::make_pair(e_local, inserted);
}
}
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
subgraph<G>& g)
{ return add_edge(u, v, typename G::edge_property_type(), g); }
namespace detail {
//-------------------------------------------------------------------------
// implementation of remove_edge(u,v,g)
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g);
template <typename Vertex, typename Children>
void children_remove_edge(Vertex u_global, Vertex v_global,
Children& c)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
if((*i)->find_vertex(u_global).second &&
(*i)->find_vertex(v_global).second)
{
remove_edge_recur_down(u_global, v_global, **i);
}
}
}
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
Vertex u_local, v_local;
u_local = g.m_local_vertex[u_global];
v_local = g.m_local_vertex[v_global];
remove_edge(u_local, v_local, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
}
template <typename Vertex, typename Graph>
void remove_edge_recur_up(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
if(g.is_root()) {
remove_edge(u_global, v_global, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
} else {
remove_edge_recur_up(u_global, v_global, *g.m_parent);
}
}
//-------------------------------------------------------------------------
// implementation of remove_edge(e,g)
template <typename G, typename Edge, typename Children>
void children_remove_edge(Edge e_global, Children& c)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
std::pair<typename subgraph<G>::edge_descriptor, bool> found =
(*i)->find_edge(e_global);
if (!found.second) {
continue;
}
children_remove_edge<G>(e_global, (*i)->m_children);
remove_edge(found.first, (*i)->m_graph);
}
}
} // namespace detail
template <typename G>
void
remove_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
subgraph<G>& g)
{
if(g.is_root()) {
detail::remove_edge_recur_up(u, v, g);
} else {
detail::remove_edge_recur_up(g.local_to_global(u),
g.local_to_global(v), g);
}
}
template <typename G>
void
remove_edge(typename subgraph<G>::edge_descriptor e, subgraph<G>& g)
{
typename subgraph<G>::edge_descriptor e_global = g.local_to_global(e);
#ifndef NDEBUG
std::pair<typename subgraph<G>::edge_descriptor, bool> fe = g.find_edge(e_global);
BOOST_ASSERT(fe.second && fe.first == e);
#endif //NDEBUG
subgraph<G> &root = g.root(); // chase to root
detail::children_remove_edge<G>(e_global, root.m_children);
remove_edge(e_global, root.m_graph); // kick edge from root
}
// This is slow, but there may not be a good way to do it safely otherwise
template <typename Predicate, typename G>
void
remove_edge_if(Predicate p, subgraph<G>& g) {
while (true) {
bool any_removed = false;
typedef typename subgraph<G>::edge_iterator ei_type;
for (std::pair<ei_type, ei_type> ep = edges(g);
ep.first != ep.second; ++ep.first) {
if (p(*ep.first)) {
any_removed = true;
remove_edge(*ep.first, g);
break; /* Since iterators may be invalidated */
}
}
if (!any_removed) break;
}
}
template <typename G>
void
clear_vertex(typename subgraph<G>::vertex_descriptor v, subgraph<G>& g) {
while (true) {
typedef typename subgraph<G>::out_edge_iterator oei_type;
std::pair<oei_type, oei_type> p = out_edges(v, g);
if (p.first == p.second) break;
remove_edge(*p.first, g);
}
}
namespace detail {
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex_recur_up(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if (g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
} else {
u_global = add_vertex_recur_up(*g.m_parent);
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_global;
}
} // namespace detail
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if(g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
u_local = u_global;
} else {
u_global = detail::add_vertex_recur_up(g.parent());
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_local;
}
#if 0
// TODO: Under Construction
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u, subgraph<G>& g)
{ BOOST_ASSERT(false); }
#endif
//===========================================================================
// Functions required by the PropertyGraph concept
/**
* The global property map returns the global properties associated with local
* descriptors.
*/
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_global_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_global_property_map<GraphPtr, PropertyMap, Tag>
>
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
readable_property_map_tag,
typename Traits::category>::type
category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
subgraph_global_property_map()
{ }
subgraph_global_property_map(GraphPtr g, Tag tag)
: m_g(g), m_tag(tag)
{ }
reference operator[](key_type e) const {
PropertyMap pmap = get(m_tag, m_g->root().m_graph);
return m_g->is_root()
? pmap[e]
: pmap[m_g->local_to_global(e)];
}
GraphPtr m_g;
Tag m_tag;
};
/**
* The local property map returns the local property associated with the local
* descriptors.
*/
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_local_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_local_property_map<GraphPtr, PropertyMap, Tag>
>
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
readable_property_map_tag,
typename Traits::category>::type
category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
typedef Tag tag;
typedef PropertyMap pmap;
subgraph_local_property_map()
{ }
subgraph_local_property_map(GraphPtr g, Tag tag)
: m_g(g), m_tag(tag)
{ }
reference operator[](key_type e) const {
// Get property map on the underlying graph.
PropertyMap pmap = get(m_tag, m_g->m_graph);
return pmap[e];
}
GraphPtr m_g;
Tag m_tag;
};
namespace detail {
// Extract the actual tags from local or global property maps so we don't
// try to find non-properties.
template <typename P> struct extract_lg_tag { typedef P type; };
template <typename P> struct extract_lg_tag< local_property<P> > {
typedef P type;
};
template <typename P> struct extract_lg_tag< global_property<P> > {
typedef P type;
};
// NOTE: Mysterious Property template parameter unused in both metafunction
// classes.
struct subgraph_global_pmap {
template <class Tag, class SubGraph, class Property>
struct bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag<Tag>::type TagType;
typedef typename property_map<Graph, TagType>::type PMap;
typedef typename property_map<Graph, TagType>::const_type const_PMap;
public:
typedef subgraph_global_property_map<SubGraphPtr, PMap, TagType> type;
typedef subgraph_global_property_map<const_SubGraphPtr, const_PMap, TagType>
const_type;
};
};
struct subgraph_local_pmap {
template <class Tag, class SubGraph, class Property>
struct bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag<Tag>::type TagType;
typedef typename property_map<Graph, TagType>::type PMap;
typedef typename property_map<Graph, TagType>::const_type const_PMap;
public:
typedef subgraph_local_property_map<SubGraphPtr, PMap, TagType> type;
typedef subgraph_local_property_map<const_SubGraphPtr, const_PMap, TagType>
const_type;
};
};
// These metafunctions select the corresponding metafunctions above, and
// are used by the choose_pmap metafunction below to specialize the choice
// of local/global property map. By default, we defer to the global
// property.
template <class Tag>
struct subgraph_choose_pmap_helper {
typedef subgraph_global_pmap type;
};
template <class Tag>
struct subgraph_choose_pmap_helper< local_property<Tag> > {
typedef subgraph_local_pmap type;
};
template <class Tag>
struct subgraph_choose_pmap_helper< global_property<Tag> > {
typedef subgraph_global_pmap type;
};
// As above, unless we're requesting vertex_index_t. Then it's always a
// local property map. This enables the correct translation of descriptors
// between local and global layers.
template <>
struct subgraph_choose_pmap_helper<vertex_index_t> {
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< local_property<vertex_index_t> > {
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< global_property<vertex_index_t> > {
typedef subgraph_local_pmap type;
};
// Determine the kind of property. If SameType<Tag, vertex_index_t>, then
// the property lookup is always local. Otherwise, the lookup is global.
// NOTE: Property parameter is basically unused.
template <class Tag, class Graph, class Property>
struct subgraph_choose_pmap {
typedef typename subgraph_choose_pmap_helper<Tag>::type Helper;
typedef typename Helper::template bind_<Tag, Graph, Property> Bind;
typedef typename Bind::type type;
typedef typename Bind::const_type const_type;
};
// Used by the vertex/edge property selectors to determine the kind(s) of
// property maps used by the property_map type generator.
struct subgraph_property_generator {
template <class SubGraph, class Property, class Tag>
struct bind_ {
typedef subgraph_choose_pmap<Tag, SubGraph, Property> Choice;
typedef typename Choice::type type;
typedef typename Choice::const_type const_type;
};
};
} // namespace detail
template <>
struct vertex_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
template <>
struct edge_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
// ==================================================
// get(p, g), get(p, g, k), and put(p, g, k, v)
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::type
get(Property p, subgraph<G>& g) {
typedef typename property_map< subgraph<G>, Property>::type PMap;
return PMap(&g, p);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::const_type
get(Property p, const subgraph<G>& g) {
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
return PMap(&g, p);
}
template <typename G, typename Property, typename Key>
typename property_traits<
typename property_map<subgraph<G>, Property>::const_type
>::value_type
get(Property p, const subgraph<G>& g, const Key& k) {
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
PMap pmap(&g, p);
return pmap[k];
}
template <typename G, typename Property, typename Key, typename Value>
void put(Property p, subgraph<G>& g, const Key& k, const Value& val) {
typedef typename property_map< subgraph<G>, Property>::type PMap;
PMap pmap(&g, p);
pmap[k] = val;
}
// ==================================================
// get(global(p), g)
// NOTE: get(global(p), g, k) and put(global(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::type
get(global_property<Property> p, subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, global_property<Property>
>::type Map;
return Map(&g, p.value);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::const_type
get(global_property<Property> p, const subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, global_property<Property>
>::const_type Map;
return Map(&g, p.value);
}
// ==================================================
// get(local(p), g)
// NOTE: get(local(p), g, k) and put(local(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::type
get(local_property<Property> p, subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, local_property<Property>
>::type Map;
return Map(&g, p.value);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::const_type
get(local_property<Property> p, const subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, local_property<Property>
>::const_type Map;
return Map(&g, p.value);
}
template <typename G, typename Tag>
inline typename graph_property<G, Tag>::type&
get_property(subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
template <typename G, typename Tag>
inline const typename graph_property<G, Tag>::type&
get_property(const subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
//===========================================================================
// Miscellaneous Functions
template <typename G>
typename subgraph<G>::vertex_descriptor
vertex(typename subgraph<G>::vertices_size_type n, const subgraph<G>& g)
{ return vertex(n, g.m_graph); }
//===========================================================================
// Mutability Traits
// Just pull the mutability traits form the underlying graph. Note that this
// will probably fail (badly) for labeled graphs.
template <typename G>
struct graph_mutability_traits< subgraph<G> > {
typedef typename graph_mutability_traits<G>::category category;
};
} // namespace boost
#endif // BOOST_SUBGRAPH_HPP
|