This file is indexed.

/usr/include/boost/lockfree/queue.hpp is in libboost1.58-dev 1.58.0+dfsg-5ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
//  lock-free queue from
//  Michael, M. M. and Scott, M. L.,
//  "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
//
//  Copyright (C) 2008-2013 Tim Blechmann
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#define BOOST_LOCKFREE_FIFO_HPP_INCLUDED

#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>

#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/freelist.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/tagged_ptr.hpp>

#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif


#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4324) // structure was padded due to __declspec(align())
#endif


namespace boost    {
namespace lockfree {
namespace detail   {

typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
                              boost::parameter::optional<tag::capacity>
                             > queue_signature;

} /* namespace detail */


/** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
 *  construction/destruction has to be synchronized. It uses a freelist for memory management,
 *  freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
 *
 *  \b Policies:
 *  - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
 *    Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
 *    If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
 *    by array indexing. This limits the possible size of the queue to the number of elements that can be addressed by the index
 *    type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
 *    to achieve lock-freedom.
 *
 *  - \ref boost::lockfree::capacity, optional \n
 *    If this template argument is passed to the options, the size of the queue is set at compile-time.\n
 *    It this option implies \c fixed_sized<true>
 *
 *  - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
 *    Specifies the allocator that is used for the internal freelist
 *
 *  \b Requirements:
 *   - T must have a copy constructor
 *   - T must have a trivial assignment operator
 *   - T must have a trivial destructor
 *
 * */
#ifndef BOOST_DOXYGEN_INVOKED
template <typename T,
          class A0 = boost::parameter::void_,
          class A1 = boost::parameter::void_,
          class A2 = boost::parameter::void_>
#else
template <typename T, ...Options>
#endif
class queue
{
private:
#ifndef BOOST_DOXYGEN_INVOKED

#ifdef BOOST_HAS_TRIVIAL_DESTRUCTOR
    BOOST_STATIC_ASSERT((boost::has_trivial_destructor<T>::value));
#endif

#ifdef BOOST_HAS_TRIVIAL_ASSIGN
    BOOST_STATIC_ASSERT((boost::has_trivial_assign<T>::value));
#endif

    typedef typename detail::queue_signature::bind<A0, A1, A2>::type bound_args;

    static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
    static const size_t capacity = detail::extract_capacity<bound_args>::capacity + 1; // the queue uses one dummy node
    static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
    static const bool node_based = !(has_capacity || fixed_sized);
    static const bool compile_time_sized = has_capacity;

    struct BOOST_LOCKFREE_CACHELINE_ALIGNMENT node
    {
        typedef typename detail::select_tagged_handle<node, node_based>::tagged_handle_type tagged_node_handle;
        typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;

        node(T const & v, handle_type null_handle):
            data(v)//, next(tagged_node_handle(0, 0))
        {
            /* increment tag to avoid ABA problem */
            tagged_node_handle old_next = next.load(memory_order_relaxed);
            tagged_node_handle new_next (null_handle, old_next.get_next_tag());
            next.store(new_next, memory_order_release);
        }

        node (handle_type null_handle):
            next(tagged_node_handle(null_handle, 0))
        {}

        node(void)
        {}

        atomic<tagged_node_handle> next;
        T data;
    };

    typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
    typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
    typedef typename pool_t::tagged_node_handle tagged_node_handle;
    typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;

    void initialize(void)
    {
        node * n = pool.template construct<true, false>(pool.null_handle());
        tagged_node_handle dummy_node(pool.get_handle(n), 0);
        head_.store(dummy_node, memory_order_relaxed);
        tail_.store(dummy_node, memory_order_release);
    }

    struct implementation_defined
    {
        typedef node_allocator allocator;
        typedef std::size_t size_type;
    };

#endif

    BOOST_DELETED_FUNCTION(queue(queue const&))
    BOOST_DELETED_FUNCTION(queue& operator= (queue const&))

public:
    typedef T value_type;
    typedef typename implementation_defined::allocator allocator;
    typedef typename implementation_defined::size_type size_type;

    /**
     * \return true, if implementation is lock-free.
     *
     * \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
     *       On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there is
     *       no possibility to provide a completely accurate implementation, because one would need to test every internal
     *       node, which is impossible if further nodes will be allocated from the operating system.
     * */
    bool is_lock_free (void) const
    {
        return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
    }

    //! Construct queue
    // @{
    queue(void):
        head_(tagged_node_handle(0, 0)),
        tail_(tagged_node_handle(0, 0)),
        pool(node_allocator(), capacity)
    {
        BOOST_ASSERT(has_capacity);
        initialize();
    }

    template <typename U>
    explicit queue(typename node_allocator::template rebind<U>::other const & alloc):
        head_(tagged_node_handle(0, 0)),
        tail_(tagged_node_handle(0, 0)),
        pool(alloc, capacity)
    {
        BOOST_STATIC_ASSERT(has_capacity);
        initialize();
    }

    explicit queue(allocator const & alloc):
        head_(tagged_node_handle(0, 0)),
        tail_(tagged_node_handle(0, 0)),
        pool(alloc, capacity)
    {
        BOOST_ASSERT(has_capacity);
        initialize();
    }
    // @}

    //! Construct queue, allocate n nodes for the freelist.
    // @{
    explicit queue(size_type n):
        head_(tagged_node_handle(0, 0)),
        tail_(tagged_node_handle(0, 0)),
        pool(node_allocator(), n + 1)
    {
        BOOST_ASSERT(!has_capacity);
        initialize();
    }

    template <typename U>
    queue(size_type n, typename node_allocator::template rebind<U>::other const & alloc):
        head_(tagged_node_handle(0, 0)),
        tail_(tagged_node_handle(0, 0)),
        pool(alloc, n + 1)
    {
        BOOST_STATIC_ASSERT(!has_capacity);
        initialize();
    }
    // @}

    /** \copydoc boost::lockfree::stack::reserve
     * */
    void reserve(size_type n)
    {
        pool.template reserve<true>(n);
    }

    /** \copydoc boost::lockfree::stack::reserve_unsafe
     * */
    void reserve_unsafe(size_type n)
    {
        pool.template reserve<false>(n);
    }

    /** Destroys queue, free all nodes from freelist.
     * */
    ~queue(void)
    {
        T dummy;
        while(unsynchronized_pop(dummy))
        {}

        pool.template destruct<false>(head_.load(memory_order_relaxed));
    }

    /** Check if the queue is empty
     *
     * \return true, if the queue is empty, false otherwise
     * \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use this
     *       value in program logic.
     * */
    bool empty(void) const
    {
        return pool.get_handle(head_.load()) == pool.get_handle(tail_.load());
    }

    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
     *                    from the OS. This may not be lock-free.
     * */
    bool push(T const & t)
    {
        return do_push<false>(t);
    }

    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
     * \throws if memory allocator throws
     * */
    bool bounded_push(T const & t)
    {
        return do_push<true>(t);
    }


private:
#ifndef BOOST_DOXYGEN_INVOKED
    template <bool Bounded>
    bool do_push(T const & t)
    {
        using detail::likely;

        node * n = pool.template construct<true, Bounded>(t, pool.null_handle());
        handle_type node_handle = pool.get_handle(n);

        if (n == NULL)
            return false;

        for (;;) {
            tagged_node_handle tail = tail_.load(memory_order_acquire);
            node * tail_node = pool.get_pointer(tail);
            tagged_node_handle next = tail_node->next.load(memory_order_acquire);
            node * next_ptr = pool.get_pointer(next);

            tagged_node_handle tail2 = tail_.load(memory_order_acquire);
            if (likely(tail == tail2)) {
                if (next_ptr == 0) {
                    tagged_node_handle new_tail_next(node_handle, next.get_next_tag());
                    if ( tail_node->next.compare_exchange_weak(next, new_tail_next) ) {
                        tagged_node_handle new_tail(node_handle, tail.get_next_tag());
                        tail_.compare_exchange_strong(tail, new_tail);
                        return true;
                    }
                }
                else {
                    tagged_node_handle new_tail(pool.get_handle(next_ptr), tail.get_next_tag());
                    tail_.compare_exchange_strong(tail, new_tail);
                }
            }
        }
    }
#endif

public:

    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
     *       from the OS. This may not be lock-free.
     * \throws if memory allocator throws
     * */
    bool unsynchronized_push(T const & t)
    {
        node * n = pool.template construct<false, false>(t, pool.null_handle());

        if (n == NULL)
            return false;

        for (;;) {
            tagged_node_handle tail = tail_.load(memory_order_relaxed);
            tagged_node_handle next = tail->next.load(memory_order_relaxed);
            node * next_ptr = next.get_ptr();

            if (next_ptr == 0) {
                tail->next.store(tagged_node_handle(n, next.get_next_tag()), memory_order_relaxed);
                tail_.store(tagged_node_handle(n, tail.get_next_tag()), memory_order_relaxed);
                return true;
            }
            else
                tail_.store(tagged_node_handle(next_ptr, tail.get_next_tag()), memory_order_relaxed);
        }
    }

    /** Pops object from queue.
     *
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Thread-safe and non-blocking
     * */
    bool pop (T & ret)
    {
        return pop<T>(ret);
    }

    /** Pops object from queue.
     *
     * \pre type U must be constructible by T and copyable, or T must be convertible to U
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Thread-safe and non-blocking
     * */
    template <typename U>
    bool pop (U & ret)
    {
        using detail::likely;
        for (;;) {
            tagged_node_handle head = head_.load(memory_order_acquire);
            node * head_ptr = pool.get_pointer(head);

            tagged_node_handle tail = tail_.load(memory_order_acquire);
            tagged_node_handle next = head_ptr->next.load(memory_order_acquire);
            node * next_ptr = pool.get_pointer(next);

            tagged_node_handle head2 = head_.load(memory_order_acquire);
            if (likely(head == head2)) {
                if (pool.get_handle(head) == pool.get_handle(tail)) {
                    if (next_ptr == 0)
                        return false;

                    tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
                    tail_.compare_exchange_strong(tail, new_tail);

                } else {
                    if (next_ptr == 0)
                        /* this check is not part of the original algorithm as published by michael and scott
                         *
                         * however we reuse the tagged_ptr part for the freelist and clear the next part during node
                         * allocation. we can observe a null-pointer here.
                         * */
                        continue;
                    detail::copy_payload(next_ptr->data, ret);

                    tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
                    if (head_.compare_exchange_weak(head, new_head)) {
                        pool.template destruct<true>(head);
                        return true;
                    }
                }
            }
        }
    }

    /** Pops object from queue.
     *
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Not thread-safe, but non-blocking
     *
     * */
    bool unsynchronized_pop (T & ret)
    {
        return unsynchronized_pop<T>(ret);
    }

    /** Pops object from queue.
     *
     * \pre type U must be constructible by T and copyable, or T must be convertible to U
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Not thread-safe, but non-blocking
     *
     * */
    template <typename U>
    bool unsynchronized_pop (U & ret)
    {
        for (;;) {
            tagged_node_handle head = head_.load(memory_order_relaxed);
            node * head_ptr = pool.get_pointer(head);
            tagged_node_handle tail = tail_.load(memory_order_relaxed);
            tagged_node_handle next = head_ptr->next.load(memory_order_relaxed);
            node * next_ptr = pool.get_pointer(next);

            if (pool.get_handle(head) == pool.get_handle(tail)) {
                if (next_ptr == 0)
                    return false;

                tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
                tail_.store(new_tail);
            } else {
                if (next_ptr == 0)
                    /* this check is not part of the original algorithm as published by michael and scott
                     *
                     * however we reuse the tagged_ptr part for the freelist and clear the next part during node
                     * allocation. we can observe a null-pointer here.
                     * */
                    continue;
                detail::copy_payload(next_ptr->data, ret);
                tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
                head_.store(new_head);
                pool.template destruct<false>(head);
                return true;
            }
        }
    }

    /** consumes one element via a functor
     *
     *  pops one element from the queue and applies the functor on this object
     *
     * \returns true, if one element was consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template <typename Functor>
    bool consume_one(Functor & f)
    {
        T element;
        bool success = pop(element);
        if (success)
            f(element);

        return success;
    }

    /// \copydoc boost::lockfree::queue::consume_one(Functor & rhs)
    template <typename Functor>
    bool consume_one(Functor const & f)
    {
        T element;
        bool success = pop(element);
        if (success)
            f(element);

        return success;
    }

    /** consumes all elements via a functor
     *
     * sequentially pops all elements from the queue and applies the functor on each object
     *
     * \returns number of elements that are consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template <typename Functor>
    size_t consume_all(Functor & f)
    {
        size_t element_count = 0;
        while (consume_one(f))
            element_count += 1;

        return element_count;
    }

    /// \copydoc boost::lockfree::queue::consume_all(Functor & rhs)
    template <typename Functor>
    size_t consume_all(Functor const & f)
    {
        size_t element_count = 0;
        while (consume_one(f))
            element_count += 1;

        return element_count;
    }

private:
#ifndef BOOST_DOXYGEN_INVOKED
    atomic<tagged_node_handle> head_;
    static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
    char padding1[padding_size];
    atomic<tagged_node_handle> tail_;
    char padding2[padding_size];

    pool_t pool;
#endif
};

} /* namespace lockfree */
} /* namespace boost */

#if defined(_MSC_VER)
#pragma warning(pop)
#endif

#endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */