This file is indexed.

/usr/include/boost/multiprecision/random.hpp is in libboost1.58-dev 1.58.0+dfsg-5ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
///////////////////////////////////////////////////////////////
//  Copyright Jens Maurer 2006-1011
//  Copyright Steven Watanabe 2011
//  Copyright 2012 John Maddock. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_

#ifndef BOOST_MP_RANDOM_HPP
#define BOOST_MP_RANDOM_HPP

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif

#include <boost/multiprecision/number.hpp>

namespace boost{ namespace random{ namespace detail{
//
// This is a horrible hack: this declaration has to appear before the definition of
// uniform_int_distribution, otherwise it won't be used...
// Need to find a better solution, like make Boost.Random safe to use with
// UDT's and depricate/remove this header altogether.
//
template<class Engine, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
boost::multiprecision::number<Backend, ExpressionTemplates> 
   generate_uniform_int(Engine& eng, const boost::multiprecision::number<Backend, ExpressionTemplates>& min_value, const boost::multiprecision::number<Backend, ExpressionTemplates>& max_value);

}}}

#include <boost/random.hpp>
#include <boost/mpl/eval_if.hpp>

namespace boost{
namespace random{
namespace detail{

template<class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
struct subtract<boost::multiprecision::number<Backend, ExpressionTemplates>, true> 
{ 
  typedef boost::multiprecision::number<Backend, ExpressionTemplates> result_type;
  result_type operator()(result_type const& x, result_type const& y) { return x - y; }
};

}

template<class Engine, std::size_t w, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
class independent_bits_engine<Engine, w, boost::multiprecision::number<Backend, ExpressionTemplates> >
{
public:
    typedef Engine base_type;
    typedef boost::multiprecision::number<Backend, ExpressionTemplates> result_type;

    static result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()
    { return 0; }
    // This is the only function we modify compared to the primary template:
    static result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
    {
       // This expression allows for the possibility that w == std::numeric_limits<result_type>::digits:
       return (((result_type(1) << (w - 1)) - 1) << 1) + 1; 
    }

    independent_bits_engine() { }

    BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(independent_bits_engine,
        result_type, seed_arg)
    {
        _base.seed(seed_arg);
    }

    BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(independent_bits_engine,
        SeedSeq, seq)
    { _base.seed(seq); }

    independent_bits_engine(const base_type& base_arg) : _base(base_arg) {}

    template<class It>
    independent_bits_engine(It& first, It last) : _base(first, last) { }

    void seed() { _base.seed(); }

    BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(independent_bits_engine,
        result_type, seed_arg)
    { _base.seed(seed_arg); }

    BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(independent_bits_engine,
        SeedSeq, seq)
    { _base.seed(seq); }

    template<class It> void seed(It& first, It last)
    { _base.seed(first, last); }

    result_type operator()()
    {
        // While it may seem wasteful to recalculate this
        // every time, both msvc and gcc can propagate
        // constants, resolving this at compile time.
        base_unsigned range =
            detail::subtract<base_result>()((_base.max)(), (_base.min)());
        std::size_t m =
            (range == (std::numeric_limits<base_unsigned>::max)()) ?
                std::numeric_limits<base_unsigned>::digits :
                detail::integer_log2(range + 1);
        std::size_t n = (w + m - 1) / m;
        std::size_t w0, n0;
        base_unsigned y0, y1;
        base_unsigned y0_mask, y1_mask;
        calc_params(n, range, w0, n0, y0, y1, y0_mask, y1_mask);
        if(base_unsigned(range - y0 + 1) > y0 / n) {
            // increment n and try again.
            ++n;
            calc_params(n, range, w0, n0, y0, y1, y0_mask, y1_mask);
        }

        BOOST_ASSERT(n0*w0 + (n - n0)*(w0 + 1) == w);

        result_type S = 0;
        for(std::size_t k = 0; k < n0; ++k) {
            base_unsigned u;
            do {
                u = detail::subtract<base_result>()(_base(), (_base.min)());
            } while(u > base_unsigned(y0 - 1));
            S = (S << w0) + (u & y0_mask);
        }
        for(std::size_t k = 0; k < (n - n0); ++k) {
            base_unsigned u;
            do {
                u = detail::subtract<base_result>()(_base(), (_base.min)());
            } while(u > base_unsigned(y1 - 1));
            S = (S << (w0 + 1)) + (u & y1_mask);
        }
        return S;
    }
  
    /** Fills a range with random values */
    template<class Iter>
    void generate(Iter first, Iter last)
    { detail::generate_from_int(*this, first, last); }

    /** Advances the state of the generator by @c z. */
    void discard(boost::uintmax_t z)
    {
        for(boost::uintmax_t i = 0; i < z; ++i) {
            (*this)();
        }
    }

    const base_type& base() const { return _base; }

    /**
     * Writes the textual representation if the generator to a @c std::ostream.
     * The textual representation of the engine is the textual representation
     * of the base engine.
     */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, independent_bits_engine, r)
    {
        os << r._base;
        return os;
    }

    /**
     * Reads the state of an @c independent_bits_engine from a
     * @c std::istream.
     */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, independent_bits_engine, r)
    {
        is >> r._base;
        return is;
    }

    /**
     * Returns: true iff the two @c independent_bits_engines will
     * produce the same sequence of values.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(independent_bits_engine, x, y)
    { return x._base == y._base; }
    /**
     * Returns: true iff the two @c independent_bits_engines will
     * produce different sequences of values.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(independent_bits_engine)

private:

    /// \cond show_private
    typedef typename base_type::result_type base_result;
    typedef typename make_unsigned<base_result>::type base_unsigned;

    void calc_params(
        std::size_t n, base_unsigned range,
        std::size_t& w0, std::size_t& n0,
        base_unsigned& y0, base_unsigned& y1,
        base_unsigned& y0_mask, base_unsigned& y1_mask)
    {
        BOOST_ASSERT(w >= n);
        w0 = w/n;
        n0 = n - w % n;
        y0_mask = (base_unsigned(2) << (w0 - 1)) - 1;
        y1_mask = (y0_mask << 1) | 1;
        y0 = (range + 1) & ~y0_mask;
        y1 = (range + 1) & ~y1_mask;
        BOOST_ASSERT(y0 != 0 || base_unsigned(range + 1) == 0);
    }
    /// \endcond

    Engine _base;
};

template<class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
class uniform_smallint<boost::multiprecision::number<Backend, ExpressionTemplates> >
{
public:
    typedef boost::multiprecision::number<Backend, ExpressionTemplates> input_type;
    typedef boost::multiprecision::number<Backend, ExpressionTemplates> result_type;

    class param_type
    {
    public:

        typedef uniform_smallint distribution_type;

        /** constructs the parameters of a @c uniform_smallint distribution. */
        param_type(result_type const& min_arg = 0, result_type const& max_arg = 9)
          : _min(min_arg), _max(max_arg)
        {
            BOOST_ASSERT(_min <= _max);
        }

        /** Returns the minimum value. */
        result_type a() const { return _min; }
        /** Returns the maximum value. */
        result_type b() const { return _max; }
        

        /** Writes the parameters to a @c std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        {
            os << parm._min << " " << parm._max;
            return os;
        }
    
        /** Reads the parameters from a @c std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        {
            is >> parm._min >> std::ws >> parm._max;
            return is;
        }

        /** Returns true if the two sets of parameters are equal. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        { return lhs._min == rhs._min && lhs._max == rhs._max; }

        /** Returns true if the two sets of parameters are different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)

    private:
        result_type _min;
        result_type _max;
    };

    /**
     * Constructs a @c uniform_smallint. @c min and @c max are the
     * lower and upper bounds of the output range, respectively.
     */
    explicit uniform_smallint(result_type const& min_arg = 0, result_type const& max_arg = 9)
      : _min(min_arg), _max(max_arg) {}

    /**
     * Constructs a @c uniform_smallint from its parameters.
     */
    explicit uniform_smallint(const param_type& parm)
      : _min(parm.a()), _max(parm.b()) {}

    /** Returns the minimum value of the distribution. */
    result_type a() const { return _min; }
    /** Returns the maximum value of the distribution. */
    result_type b() const { return _max; }
    /** Returns the minimum value of the distribution. */
    result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; }
    /** Returns the maximum value of the distribution. */
    result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; }

    /** Returns the parameters of the distribution. */
    param_type param() const { return param_type(_min, _max); }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm)
    {
        _min = parm.a();
        _max = parm.b();
    }

    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { }

    /** Returns a value uniformly distributed in the range [min(), max()]. */
    template<class Engine>
    result_type operator()(Engine& eng) const
    {
        typedef typename Engine::result_type base_result;
        return generate(eng, boost::is_integral<base_result>());
    }

    /** Returns a value uniformly distributed in the range [param.a(), param.b()]. */
    template<class Engine>
    result_type operator()(Engine& eng, const param_type& parm) const
    { return uniform_smallint(parm)(eng); }

    /** Writes the distribution to a @c std::ostream. */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, uniform_smallint, ud)
    {
        os << ud._min << " " << ud._max;
        return os;
    }
    
    /** Reads the distribution from a @c std::istream. */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, uniform_smallint, ud)
    {
        is >> ud._min >> std::ws >> ud._max;
        return is;
    }

    /**
     * Returns true if the two distributions will produce identical
     * sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_smallint, lhs, rhs)
    { return lhs._min == rhs._min && lhs._max == rhs._max; }
    
    /**
     * Returns true if the two distributions may produce different
     * sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(uniform_smallint)

private:
    
    // \cond show_private
    template<class Engine>
    result_type generate(Engine& eng, boost::mpl::true_) const
    {
        // equivalent to (eng() - eng.min()) % (_max - _min + 1) + _min,
        // but guarantees no overflow.
        typedef typename Engine::result_type base_result;
        typedef typename boost::make_unsigned<base_result>::type base_unsigned;
        typedef result_type  range_type;
        range_type range = random::detail::subtract<result_type>()(_max, _min);
        base_unsigned base_range =
            random::detail::subtract<result_type>()((eng.max)(), (eng.min)());
        base_unsigned val =
            random::detail::subtract<base_result>()(eng(), (eng.min)());
        if(range >= base_range) {
            return boost::random::detail::add<range_type, result_type>()(
                static_cast<range_type>(val), _min);
        } else {
            base_unsigned modulus = static_cast<base_unsigned>(range) + 1;
            return boost::random::detail::add<range_type, result_type>()(
                static_cast<range_type>(val % modulus), _min);
        }
    }
    
    template<class Engine>
    result_type generate(Engine& eng, boost::mpl::false_) const
    {
        typedef typename Engine::result_type base_result;
        typedef result_type                  range_type;
        range_type range = random::detail::subtract<result_type>()(_max, _min);
        base_result val = boost::uniform_01<base_result>()(eng);
        // what is the worst that can possibly happen here?
        // base_result may not be able to represent all the values in [0, range]
        // exactly.  If this happens, it will cause round off error and we
        // won't be able to produce all the values in the range.  We don't
        // care about this because the user has already told us not to by
        // using uniform_smallint.  However, we do need to be careful
        // to clamp the result, or floating point rounding can produce
        // an out of range result.
        range_type offset = static_cast<range_type>(val * (range + 1));
        if(offset > range) return _max;
        return boost::random::detail::add<range_type, result_type>()(offset , _min);
    }
    // \endcond

    result_type _min;
    result_type _max;
};


namespace detail{

template<class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
struct select_uniform_01<boost::multiprecision::number<Backend, ExpressionTemplates> >
{
  template<class RealType>
  struct apply
  {
    typedef new_uniform_01<boost::multiprecision::number<Backend, ExpressionTemplates> > type;
  };
};

template<class Engine, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
boost::multiprecision::number<Backend, ExpressionTemplates> 
   generate_uniform_int(
    Engine& eng, const boost::multiprecision::number<Backend, ExpressionTemplates>& min_value, const boost::multiprecision::number<Backend, ExpressionTemplates>& max_value,
    boost::mpl::true_ /** is_integral<Engine::result_type> */)
{
    typedef boost::multiprecision::number<Backend, ExpressionTemplates> result_type;
    // Since we're using big-numbers, use the result type for all internal calculations:
    typedef result_type range_type;
    typedef result_type base_result;
    typedef result_type base_unsigned;
    const range_type range = random::detail::subtract<result_type>()(max_value, min_value);
    const base_result bmin = (eng.min)();
    const base_unsigned brange =
      random::detail::subtract<base_result>()((eng.max)(), (eng.min)());

    if(range == 0) {
      return min_value;    
    } else if(brange == range) {
      // this will probably never happen in real life
      // basically nothing to do; just take care we don't overflow / underflow
      base_unsigned v = random::detail::subtract<base_result>()(eng(), bmin);
      return random::detail::add<base_unsigned, result_type>()(v, min_value);
    } else if(brange < range) {
      // use rejection method to handle things like 0..3 --> 0..4
      for(;;) {
        // concatenate several invocations of the base RNG
        // take extra care to avoid overflows

        //  limit == floor((range+1)/(brange+1))
        //  Therefore limit*(brange+1) <= range+1
        range_type limit;
        if(std::numeric_limits<range_type>::is_bounded && (range == (std::numeric_limits<range_type>::max)())) {
          limit = range/(range_type(brange)+1);
          if(range % (range_type(brange)+1) == range_type(brange))
            ++limit;
        } else {
          limit = (range+1)/(range_type(brange)+1);
        }

        // We consider "result" as expressed to base (brange+1):
        // For every power of (brange+1), we determine a random factor
        range_type result = range_type(0);
        range_type mult = range_type(1);

        // loop invariants:
        //  result < mult
        //  mult <= range
        while(mult <= limit) {
          // Postcondition: result <= range, thus no overflow
          //
          // limit*(brange+1)<=range+1                   def. of limit       (1)
          // eng()-bmin<=brange                          eng() post.         (2)
          // and mult<=limit.                            loop condition      (3)
          // Therefore mult*(eng()-bmin+1)<=range+1      by (1),(2),(3)      (4)
          // Therefore mult*(eng()-bmin)+mult<=range+1   rearranging (4)     (5)
          // result<mult                                 loop invariant      (6)
          // Therefore result+mult*(eng()-bmin)<range+1  by (5), (6)         (7)
          //
          // Postcondition: result < mult*(brange+1)
          //
          // result<mult                                 loop invariant      (1)
          // eng()-bmin<=brange                          eng() post.         (2)
          // Therefore result+mult*(eng()-bmin) <
          //           mult+mult*(eng()-bmin)            by (1)              (3)
          // Therefore result+(eng()-bmin)*mult <
          //           mult+mult*brange                  by (2), (3)         (4)
          // Therefore result+(eng()-bmin)*mult <
          //           mult*(brange+1)                   by (4)
          result += static_cast<range_type>(random::detail::subtract<base_result>()(eng(), bmin) * mult);

          // equivalent to (mult * (brange+1)) == range+1, but avoids overflow.
          if(mult * range_type(brange) == range - mult + 1) {
              // The destination range is an integer power of
              // the generator's range.
              return(result);
          }

          // Postcondition: mult <= range
          // 
          // limit*(brange+1)<=range+1                   def. of limit       (1)
          // mult<=limit                                 loop condition      (2)
          // Therefore mult*(brange+1)<=range+1          by (1), (2)         (3)
          // mult*(brange+1)!=range+1                    preceding if        (4)
          // Therefore mult*(brange+1)<range+1           by (3), (4)         (5)
          // 
          // Postcondition: result < mult
          //
          // See the second postcondition on the change to result. 
          mult *= range_type(brange)+range_type(1);
        }
        // loop postcondition: range/mult < brange+1
        //
        // mult > limit                                  loop condition      (1)
        // Suppose range/mult >= brange+1                Assumption          (2)
        // range >= mult*(brange+1)                      by (2)              (3)
        // range+1 > mult*(brange+1)                     by (3)              (4)
        // range+1 > (limit+1)*(brange+1)                by (1), (4)         (5)
        // (range+1)/(brange+1) > limit+1                by (5)              (6)
        // limit < floor((range+1)/(brange+1))           by (6)              (7)
        // limit==floor((range+1)/(brange+1))            def. of limit       (8)
        // not (2)                                       reductio            (9)
        //
        // loop postcondition: (range/mult)*mult+(mult-1) >= range
        //
        // (range/mult)*mult + range%mult == range       identity            (1)
        // range%mult < mult                             def. of %           (2)
        // (range/mult)*mult+mult > range                by (1), (2)         (3)
        // (range/mult)*mult+(mult-1) >= range           by (3)              (4)
        //
        // Note that the maximum value of result at this point is (mult-1),
        // so after this final step, we generate numbers that can be
        // at least as large as range.  We have to really careful to avoid
        // overflow in this final addition and in the rejection.  Anything
        // that overflows is larger than range and can thus be rejected.

        // range/mult < brange+1  -> no endless loop
        range_type result_increment =
            generate_uniform_int(
                eng,
                static_cast<range_type>(0),
                static_cast<range_type>(range/mult),
                boost::mpl::true_());
        if(std::numeric_limits<range_type>::is_bounded && ((std::numeric_limits<range_type>::max)() / mult < result_increment)) {
          // The multiplication would overflow.  Reject immediately.
          continue;
        }
        result_increment *= mult;
        // unsigned integers are guaranteed to wrap on overflow.
        result += result_increment;
        if(result < result_increment) {
          // The addition overflowed.  Reject.
          continue;
        }
        if(result > range) {
          // Too big.  Reject.
          continue;
        }
        return random::detail::add<range_type, result_type>()(result, min_value);
      }
    } else {                   // brange > range
      range_type bucket_size;
      // it's safe to add 1 to range, as long as we cast it first,
      // because we know that it is less than brange.  However,
      // we do need to be careful not to cause overflow by adding 1
      // to brange.
      if(std::numeric_limits<base_unsigned>::is_bounded && (brange == (std::numeric_limits<base_unsigned>::max)())) {
        bucket_size = brange / (range+1);
        if(brange % (range+1) == range) {
          ++bucket_size;
        }
      } else {
        bucket_size = (brange+1) / (range+1);
      }
      for(;;) {
        range_type result =
          random::detail::subtract<base_result>()(eng(), bmin);
        result /= bucket_size;
        // result and range are non-negative, and result is possibly larger
        // than range, so the cast is safe
        if(result <= range)
          return result + min_value;
      }
    }
}

template<class Engine, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<Backend, ExpressionTemplates> 
   generate_uniform_int(Engine& eng, const boost::multiprecision::number<Backend, ExpressionTemplates>& min_value, const boost::multiprecision::number<Backend, ExpressionTemplates>& max_value)
{
    typedef typename Engine::result_type base_result;
    typedef typename mpl::or_<boost::is_integral<base_result>, mpl::bool_<boost::multiprecision::number_category<Backend>::value == boost::multiprecision::number_kind_integer> >::type tag_type;
    return generate_uniform_int(eng, min_value, max_value,
        tag_type());
}

template<class Engine, class Backend, boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<Backend, ExpressionTemplates> generate_uniform_real(Engine& eng, const boost::multiprecision::number<Backend, ExpressionTemplates>& min_value, const boost::multiprecision::number<Backend, ExpressionTemplates>& max_value)
{
   if(max_value / 2 - min_value / 2 > (std::numeric_limits<boost::multiprecision::number<Backend, ExpressionTemplates> >::max)() / 2)
      return 2 * generate_uniform_real(eng, boost::multiprecision::number<Backend, ExpressionTemplates>(min_value / 2), boost::multiprecision::number<Backend, ExpressionTemplates>(max_value / 2));
   typedef typename Engine::result_type base_result;
   return generate_uniform_real(eng, min_value, max_value,
      boost::is_integral<base_result>());
}

} // detail


}} // namespaces

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif