/usr/include/boost/rational.hpp is in libboost1.58-dev 1.58.0+dfsg-5ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 | // Boost rational.hpp header file ------------------------------------------//
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or
// implied warranty, and with no claim as to its suitability for any purpose.
// boostinspect:nolicense (don't complain about the lack of a Boost license)
// (Paul Moore hasn't been in contact for years, so there's no way to change the
// license.)
// See http://www.boost.org/libs/rational for documentation.
// Credits:
// Thanks to the boost mailing list in general for useful comments.
// Particular contributions included:
// Andrew D Jewell, for reminding me to take care to avoid overflow
// Ed Brey, for many comments, including picking up on some dreadful typos
// Stephen Silver contributed the test suite and comments on user-defined
// IntType
// Nickolay Mladenov, for the implementation of operator+=
// Revision History
// 02 Sep 13 Remove unneeded forward declarations; tweak private helper
// function (Daryle Walker)
// 30 Aug 13 Improve exception safety of "assign"; start modernizing I/O code
// (Daryle Walker)
// 27 Aug 13 Add cross-version constructor template, plus some private helper
// functions; add constructor to exception class to take custom
// messages (Daryle Walker)
// 25 Aug 13 Add constexpr qualification wherever possible (Daryle Walker)
// 05 May 12 Reduced use of implicit gcd (Mario Lang)
// 05 Nov 06 Change rational_cast to not depend on division between different
// types (Daryle Walker)
// 04 Nov 06 Off-load GCD and LCM to Boost.Math; add some invariant checks;
// add std::numeric_limits<> requirement to help GCD (Daryle Walker)
// 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
// divisions; the rational-value version now uses continued fraction
// expansion to avoid overflows, for bug #798357 (Daryle Walker)
// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
// (Joaquín M López Muñoz)
// 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
// 28 Sep 02 Use _left versions of operators from operators.hpp
// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
// 05 Feb 01 Update operator>> to tighten up input syntax
// 05 Feb 01 Final tidy up of gcd code prior to the new release
// 27 Jan 01 Recode abs() without relying on abs(IntType)
// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
// tidy up a number of areas, use newer features of operators.hpp
// (reduces space overhead to zero), add operator!,
// introduce explicit mixed-mode arithmetic operations
// 12 Jan 01 Include fixes to handle a user-defined IntType better
// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
// affected (Beman Dawes)
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
// 14 Dec 99 Modifications based on comments from the boost list
// 09 Dec 99 Initial Version (Paul Moore)
#ifndef BOOST_RATIONAL_HPP
#define BOOST_RATIONAL_HPP
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
#ifndef BOOST_NO_IOSTREAM
#include <iomanip> // for std::setw
#include <ios> // for std::noskipws, streamsize
#include <istream> // for std::istream
#include <ostream> // for std::ostream
#include <sstream> // for std::ostringstream
#endif
#include <cstddef> // for NULL
#include <stdexcept> // for std::domain_error
#include <string> // for std::string implicit constructor
#include <boost/operators.hpp> // for boost::addable etc
#include <cstdlib> // for std::abs
#include <boost/call_traits.hpp> // for boost::call_traits
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
#include <boost/assert.hpp> // for BOOST_ASSERT
#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
#include <limits> // for std::numeric_limits
#include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
// Control whether depreciated GCD and LCM functions are included (default: yes)
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
#define BOOST_CONTROL_RATIONAL_HAS_GCD 1
#endif
namespace boost {
#if BOOST_CONTROL_RATIONAL_HAS_GCD
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
// Defer to the version in Boost.Math
return integer::gcd( n, m );
}
template <typename IntType>
IntType lcm(IntType n, IntType m)
{
// Defer to the version in Boost.Math
return integer::lcm( n, m );
}
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
class bad_rational : public std::domain_error
{
public:
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
explicit bad_rational( char const *what ) : std::domain_error( what ) {}
};
template <typename IntType>
class rational :
less_than_comparable < rational<IntType>,
equality_comparable < rational<IntType>,
less_than_comparable2 < rational<IntType>, IntType,
equality_comparable2 < rational<IntType>, IntType,
addable < rational<IntType>,
subtractable < rational<IntType>,
multipliable < rational<IntType>,
dividable < rational<IntType>,
addable2 < rational<IntType>, IntType,
subtractable2 < rational<IntType>, IntType,
subtractable2_left < rational<IntType>, IntType,
multipliable2 < rational<IntType>, IntType,
dividable2 < rational<IntType>, IntType,
dividable2_left < rational<IntType>, IntType,
incrementable < rational<IntType>,
decrementable < rational<IntType>
> > > > > > > > > > > > > > > >
{
// Class-wide pre-conditions
BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
// Helper types
typedef typename boost::call_traits<IntType>::param_type param_type;
struct helper { IntType parts[2]; };
typedef IntType (helper::* bool_type)[2];
public:
// Component type
typedef IntType int_type;
BOOST_CONSTEXPR
rational() : num(0), den(1) {}
BOOST_CONSTEXPR
rational(param_type n) : num(n), den(1) {}
rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
#ifndef BOOST_NO_MEMBER_TEMPLATES
template < typename NewType >
BOOST_CONSTEXPR explicit
rational( rational<NewType> const &r )
: num( r.numerator() ), den( is_normalized(int_type( r.numerator() ),
int_type( r.denominator() )) ? r.denominator() :
throw bad_rational("bad rational: denormalized conversion") )
{}
#endif
// Default copy constructor and assignment are fine
// Add assignment from IntType
rational& operator=(param_type i) { num = i; den = 1; return *this; }
// Assign in place
rational& assign(param_type n, param_type d);
// Access to representation
BOOST_CONSTEXPR
IntType numerator() const { return num; }
BOOST_CONSTEXPR
IntType denominator() const { return den; }
// Arithmetic assignment operators
rational& operator+= (const rational& r);
rational& operator-= (const rational& r);
rational& operator*= (const rational& r);
rational& operator/= (const rational& r);
rational& operator+= (param_type i) { num += i * den; return *this; }
rational& operator-= (param_type i) { num -= i * den; return *this; }
rational& operator*= (param_type i);
rational& operator/= (param_type i);
// Increment and decrement
const rational& operator++() { num += den; return *this; }
const rational& operator--() { num -= den; return *this; }
// Operator not
BOOST_CONSTEXPR
bool operator!() const { return !num; }
// Boolean conversion
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
// The "ISO C++ Template Parser" option in CW 8.3 chokes on the
// following, hence we selectively disable that option for the
// offending memfun.
#pragma parse_mfunc_templ off
#endif
BOOST_CONSTEXPR
operator bool_type() const { return operator !() ? 0 : &helper::parts; }
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
#pragma parse_mfunc_templ reset
#endif
// Comparison operators
bool operator< (const rational& r) const;
BOOST_CONSTEXPR
bool operator== (const rational& r) const;
bool operator< (param_type i) const;
bool operator> (param_type i) const;
BOOST_CONSTEXPR
bool operator== (param_type i) const;
private:
// Implementation - numerator and denominator (normalized).
// Other possibilities - separate whole-part, or sign, fields?
IntType num;
IntType den;
// Helper functions
static BOOST_CONSTEXPR
int_type inner_gcd( param_type a, param_type b, int_type const &zero =
int_type(0) )
{ return b == zero ? a : inner_gcd(b, a % b, zero); }
static BOOST_CONSTEXPR
int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
{ return x < zero ? -x : +x; }
// Representation note: Fractions are kept in normalized form at all
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
// In particular, note that the implementation of abs() below relies
// on den always being positive.
bool test_invariant() const;
void normalize();
static BOOST_CONSTEXPR
bool is_normalized( param_type n, param_type d, int_type const &zero =
int_type(0), int_type const &one = int_type(1) )
{
return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
d, zero), zero ) == one;
}
};
// Assign in place
template <typename IntType>
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
{
return *this = rational( n, d );
}
// Unary plus and minus
template <typename IntType>
BOOST_CONSTEXPR
inline rational<IntType> operator+ (const rational<IntType>& r)
{
return r;
}
template <typename IntType>
inline rational<IntType> operator- (const rational<IntType>& r)
{
return rational<IntType>(-r.numerator(), r.denominator());
}
// Arithmetic assignment operators
template <typename IntType>
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
{
// This calculation avoids overflow, and minimises the number of expensive
// calculations. Thanks to Nickolay Mladenov for this algorithm.
//
// Proof:
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
//
// The result is (a*d1 + c*b1) / (b1*d1*g).
// Now we have to normalize this ratio.
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
// But since gcd(a,b1)=1 we have h=1.
// Similarly h|d1 leads to h=1.
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
// Which proves that instead of normalizing the result, it is better to
// divide num and den by gcd((a*d1 + c*b1), g)
// Protect against self-modification
IntType r_num = r.num;
IntType r_den = r.den;
IntType g = integer::gcd(den, r_den);
den /= g; // = b1 from the calculations above
num = num * (r_den / g) + r_num * den;
g = integer::gcd(num, g);
num /= g;
den *= r_den/g;
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
{
// Protect against self-modification
IntType r_num = r.num;
IntType r_den = r.den;
// This calculation avoids overflow, and minimises the number of expensive
// calculations. It corresponds exactly to the += case above
IntType g = integer::gcd(den, r_den);
den /= g;
num = num * (r_den / g) - r_num * den;
g = integer::gcd(num, g);
num /= g;
den *= r_den/g;
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
{
// Protect against self-modification
IntType r_num = r.num;
IntType r_den = r.den;
// Avoid overflow and preserve normalization
IntType gcd1 = integer::gcd(num, r_den);
IntType gcd2 = integer::gcd(r_num, den);
num = (num/gcd1) * (r_num/gcd2);
den = (den/gcd2) * (r_den/gcd1);
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
{
// Protect against self-modification
IntType r_num = r.num;
IntType r_den = r.den;
// Avoid repeated construction
IntType zero(0);
// Trap division by zero
if (r_num == zero)
throw bad_rational();
if (num == zero)
return *this;
// Avoid overflow and preserve normalization
IntType gcd1 = integer::gcd(num, r_num);
IntType gcd2 = integer::gcd(r_den, den);
num = (num/gcd1) * (r_den/gcd2);
den = (den/gcd2) * (r_num/gcd1);
if (den < zero) {
num = -num;
den = -den;
}
return *this;
}
// Mixed-mode operators
template <typename IntType>
inline rational<IntType>&
rational<IntType>::operator*= (param_type i)
{
// Avoid overflow and preserve normalization
IntType gcd = integer::gcd(i, den);
num *= i / gcd;
den /= gcd;
return *this;
}
template <typename IntType>
rational<IntType>&
rational<IntType>::operator/= (param_type i)
{
// Avoid repeated construction
IntType const zero(0);
if (i == zero) throw bad_rational();
if (num == zero) return *this;
// Avoid overflow and preserve normalization
IntType const gcd = integer::gcd(num, i);
num /= gcd;
den *= i / gcd;
if (den < zero) {
num = -num;
den = -den;
}
return *this;
}
// Comparison operators
template <typename IntType>
bool rational<IntType>::operator< (const rational<IntType>& r) const
{
// Avoid repeated construction
int_type const zero( 0 );
// This should really be a class-wide invariant. The reason for these
// checks is that for 2's complement systems, INT_MIN has no corresponding
// positive, so negating it during normalization keeps it INT_MIN, which
// is bad for later calculations that assume a positive denominator.
BOOST_ASSERT( this->den > zero );
BOOST_ASSERT( r.den > zero );
// Determine relative order by expanding each value to its simple continued
// fraction representation using the Euclidian GCD algorithm.
struct { int_type n, d, q, r; }
ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
static_cast<int_type>(this->num % this->den) },
rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
static_cast<int_type>(r.num % r.den) };
unsigned reverse = 0u;
// Normalize negative moduli by repeatedly adding the (positive) denominator
// and decrementing the quotient. Later cycles should have all positive
// values, so this only has to be done for the first cycle. (The rules of
// C++ require a nonnegative quotient & remainder for a nonnegative dividend
// & positive divisor.)
while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
// Loop through and compare each variable's continued-fraction components
for ( ;; )
{
// The quotients of the current cycle are the continued-fraction
// components. Comparing two c.f. is comparing their sequences,
// stopping at the first difference.
if ( ts.q != rs.q )
{
// Since reciprocation changes the relative order of two variables,
// and c.f. use reciprocals, the less/greater-than test reverses
// after each index. (Start w/ non-reversed @ whole-number place.)
return reverse ? ts.q > rs.q : ts.q < rs.q;
}
// Prepare the next cycle
reverse ^= 1u;
if ( (ts.r == zero) || (rs.r == zero) )
{
// At least one variable's c.f. expansion has ended
break;
}
ts.n = ts.d; ts.d = ts.r;
ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
rs.n = rs.d; rs.d = rs.r;
rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
}
// Compare infinity-valued components for otherwise equal sequences
if ( ts.r == rs.r )
{
// Both remainders are zero, so the next (and subsequent) c.f.
// components for both sequences are infinity. Therefore, the sequences
// and their corresponding values are equal.
return false;
}
else
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4800)
#endif
// Exactly one of the remainders is zero, so all following c.f.
// components of that variable are infinity, while the other variable
// has a finite next c.f. component. So that other variable has the
// lesser value (modulo the reversal flag!).
return ( ts.r != zero ) != static_cast<bool>( reverse );
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
}
}
template <typename IntType>
bool rational<IntType>::operator< (param_type i) const
{
// Avoid repeated construction
int_type const zero( 0 );
// Break value into mixed-fraction form, w/ always-nonnegative remainder
BOOST_ASSERT( this->den > zero );
int_type q = this->num / this->den, r = this->num % this->den;
while ( r < zero ) { r += this->den; --q; }
// Compare with just the quotient, since the remainder always bumps the
// value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
// then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
// q >= i + 1 > i; therefore n/d < i iff q < i.]
return q < i;
}
template <typename IntType>
bool rational<IntType>::operator> (param_type i) const
{
return operator==(i)? false: !operator<(i);
}
template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
{
return ((num == r.num) && (den == r.den));
}
template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (param_type i) const
{
return ((den == IntType(1)) && (num == i));
}
// Invariant check
template <typename IntType>
inline bool rational<IntType>::test_invariant() const
{
return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
int_type(1) );
}
// Normalisation
template <typename IntType>
void rational<IntType>::normalize()
{
// Avoid repeated construction
IntType zero(0);
if (den == zero)
throw bad_rational();
// Handle the case of zero separately, to avoid division by zero
if (num == zero) {
den = IntType(1);
return;
}
IntType g = integer::gcd(num, den);
num /= g;
den /= g;
// Ensure that the denominator is positive
if (den < zero) {
num = -num;
den = -den;
}
// ...But acknowledge that the previous step doesn't always work.
// (Nominally, this should be done before the mutating steps, but this
// member function is only called during the constructor, so we never have
// to worry about zombie objects.)
if (den < zero)
throw bad_rational( "bad rational: non-zero singular denominator" );
BOOST_ASSERT( this->test_invariant() );
}
#ifndef BOOST_NO_IOSTREAM
namespace detail {
// A utility class to reset the format flags for an istream at end
// of scope, even in case of exceptions
struct resetter {
resetter(std::istream& is) : is_(is), f_(is.flags()) {}
~resetter() { is_.flags(f_); }
std::istream& is_;
std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
};
}
// Input and output
template <typename IntType>
std::istream& operator>> (std::istream& is, rational<IntType>& r)
{
using std::ios;
IntType n = IntType(0), d = IntType(1);
char c = 0;
detail::resetter sentry(is);
if ( is >> n )
{
if ( is.get(c) )
{
if ( c == '/' )
{
if ( is >> std::noskipws >> d )
try {
r.assign( n, d );
} catch ( bad_rational & ) { // normalization fail
try { is.setstate(ios::failbit); }
catch ( ... ) {} // don't throw ios_base::failure...
if ( is.exceptions() & ios::failbit )
throw; // ...but the original exception instead
// ELSE: suppress the exception, use just error flags
}
}
else
is.setstate( ios::failbit );
}
}
return is;
}
// Add manipulators for output format?
template <typename IntType>
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
{
using namespace std;
// The slash directly precedes the denominator, which has no prefixes.
ostringstream ss;
ss.copyfmt( os );
ss.tie( NULL );
ss.exceptions( ios::goodbit );
ss.width( 0 );
ss << noshowpos << noshowbase << '/' << r.denominator();
// The numerator holds the showpos, internal, and showbase flags.
string const tail = ss.str();
streamsize const w = os.width() - static_cast<streamsize>( tail.size() );
ss.clear();
ss.str( "" );
ss.flags( os.flags() );
ss << setw( w < 0 || (os.flags() & ios::adjustfield) != ios::internal ? 0 :
w ) << r.numerator();
return os << ss.str() + tail;
}
#endif // BOOST_NO_IOSTREAM
// Type conversion
template <typename T, typename IntType>
BOOST_CONSTEXPR
inline T rational_cast(const rational<IntType>& src)
{
return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
}
// Do not use any abs() defined on IntType - it isn't worth it, given the
// difficulties involved (Koenig lookup required, there may not *be* an abs()
// defined, etc etc).
template <typename IntType>
inline rational<IntType> abs(const rational<IntType>& r)
{
return r.numerator() >= IntType(0)? r: -r;
}
} // namespace boost
#endif // BOOST_RATIONAL_HPP
|