This file is indexed.

/usr/share/gir-1.0/GstFft-1.0.gir is in libgstreamer-plugins-base1.0-dev 1.8.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
<?xml version="1.0"?>
<!-- This file was automatically generated from C sources - DO NOT EDIT!
To affect the contents of this file, edit the original C definitions,
and/or use gtk-doc annotations.  -->
<repository version="1.2"
            xmlns="http://www.gtk.org/introspection/core/1.0"
            xmlns:c="http://www.gtk.org/introspection/c/1.0"
            xmlns:glib="http://www.gtk.org/introspection/glib/1.0">
  <include name="Gst" version="1.0"/>
  <package name="gstreamer-fft-1.0"/>
  <c:include name="gst/fft/fft.h"/>
  <namespace name="GstFft"
             version="1.0"
             shared-library="libgstfft-1.0.so.0"
             c:identifier-prefixes="Gst"
             c:symbol-prefixes="gst">
    <record name="FFTF32" c:type="GstFFTF32" disguised="1">
      <doc xml:space="preserve">#GstFFTF32 provides a FFT implementation and related functions for
32 bit float samples. To use this call gst_fft_f32_new() for
allocating a #GstFFTF32 instance with the appropriate parameters and
then call gst_fft_f32_fft() or gst_fft_f32_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.

After use free the #GstFFTF32 instance with gst_fft_f32_free().

For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_f32_new().

The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.

Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_f32_window() can comfortably
be used.

Be aware, that you can't simply run gst_fft_f32_inverse_fft() on the
resulting frequency data of gst_fft_f32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x * nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
      <method name="fft" c:identifier="gst_fft_f32_fft">
        <doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.

@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTF32 instance with gst_fft_f32_new().

@freqdata must be large enough to hold @len/2 + 1 #GstFFTF32Complex frequency
domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
            <type name="FFTF32" c:type="GstFFTF32*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the time domain</doc>
            <type name="gfloat" c:type="const gfloat*"/>
          </parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
            <type name="FFTF32Complex" c:type="GstFFTF32Complex*"/>
          </parameter>
        </parameters>
      </method>
      <method name="free" c:identifier="gst_fft_f32_free">
        <doc xml:space="preserve">This frees the memory allocated for @self.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
            <type name="FFTF32" c:type="GstFFTF32*"/>
          </instance-parameter>
        </parameters>
      </method>
      <method name="inverse_fft" c:identifier="gst_fft_f32_inverse_fft">
        <doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.

@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTF32 instance with gst_fft_f32_new().

@timedata must be large enough to hold @len time domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
            <type name="FFTF32" c:type="GstFFTF32*"/>
          </instance-parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
            <type name="FFTF32Complex" c:type="const GstFFTF32Complex*"/>
          </parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
            <type name="gfloat" c:type="gfloat*"/>
          </parameter>
        </parameters>
      </method>
      <method name="window" c:identifier="gst_fft_f32_window">
        <doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
            <type name="FFTF32" c:type="GstFFTF32*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Time domain samples</doc>
            <type name="gfloat" c:type="gfloat*"/>
          </parameter>
          <parameter name="window" transfer-ownership="none">
            <doc xml:space="preserve">Window function to apply</doc>
            <type name="FFTWindow" c:type="GstFFTWindow"/>
          </parameter>
        </parameters>
      </method>
      <function name="new" c:identifier="gst_fft_f32_new" introspectable="0">
        <doc xml:space="preserve">This returns a new #GstFFTF32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
        <return-value>
          <doc xml:space="preserve">a new #GstFFTF32 instance.</doc>
          <type name="FFTF32" c:type="GstFFTF32*"/>
        </return-value>
        <parameters>
          <parameter name="len" transfer-ownership="none">
            <doc xml:space="preserve">Length of the FFT in the time domain</doc>
            <type name="gint" c:type="gint"/>
          </parameter>
          <parameter name="inverse" transfer-ownership="none">
            <doc xml:space="preserve">%TRUE if the #GstFFTF32 instance should be used for the inverse FFT</doc>
            <type name="gboolean" c:type="gboolean"/>
          </parameter>
        </parameters>
      </function>
    </record>
    <record name="FFTF32Complex" c:type="GstFFTF32Complex">
      <doc xml:space="preserve">Data type for complex numbers composed of
32 bit float.</doc>
      <field name="r" writable="1">
        <doc xml:space="preserve">Real part</doc>
        <type name="gfloat" c:type="gfloat"/>
      </field>
      <field name="i" writable="1">
        <doc xml:space="preserve">Imaginary part</doc>
        <type name="gfloat" c:type="gfloat"/>
      </field>
    </record>
    <record name="FFTF64" c:type="GstFFTF64" disguised="1">
      <doc xml:space="preserve">#GstFFTF64 provides a FFT implementation and related functions for
64 bit float samples. To use this call gst_fft_f64_new() for
allocating a #GstFFTF64 instance with the appropriate parameters and
then call gst_fft_f64_fft() or gst_fft_f64_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.

After use free the #GstFFTF64 instance with gst_fft_f64_free().

For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_f64_new().

The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.

Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_f64_window() can comfortably
be used.

Be aware, that you can't simply run gst_fft_f32_inverse_fft() on the
resulting frequency data of gst_fft_f32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x * nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
      <method name="fft" c:identifier="gst_fft_f64_fft">
        <doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.

@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTF64 instance with gst_fft_f64_new().

@freqdata must be large enough to hold @len/2 + 1 #GstFFTF64Complex frequency
domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
            <type name="FFTF64" c:type="GstFFTF64*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the time domain</doc>
            <type name="gdouble" c:type="const gdouble*"/>
          </parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
            <type name="FFTF64Complex" c:type="GstFFTF64Complex*"/>
          </parameter>
        </parameters>
      </method>
      <method name="free" c:identifier="gst_fft_f64_free">
        <doc xml:space="preserve">This frees the memory allocated for @self.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
            <type name="FFTF64" c:type="GstFFTF64*"/>
          </instance-parameter>
        </parameters>
      </method>
      <method name="inverse_fft" c:identifier="gst_fft_f64_inverse_fft">
        <doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.

@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTF64 instance with gst_fft_f64_new().

@timedata must be large enough to hold @len time domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
            <type name="FFTF64" c:type="GstFFTF64*"/>
          </instance-parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
            <type name="FFTF64Complex" c:type="const GstFFTF64Complex*"/>
          </parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
            <type name="gdouble" c:type="gdouble*"/>
          </parameter>
        </parameters>
      </method>
      <method name="window" c:identifier="gst_fft_f64_window">
        <doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
            <type name="FFTF64" c:type="GstFFTF64*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Time domain samples</doc>
            <type name="gdouble" c:type="gdouble*"/>
          </parameter>
          <parameter name="window" transfer-ownership="none">
            <doc xml:space="preserve">Window function to apply</doc>
            <type name="FFTWindow" c:type="GstFFTWindow"/>
          </parameter>
        </parameters>
      </method>
      <function name="new" c:identifier="gst_fft_f64_new" introspectable="0">
        <doc xml:space="preserve">This returns a new #GstFFTF64 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
        <return-value>
          <doc xml:space="preserve">a new #GstFFTF64 instance.</doc>
          <type name="FFTF64" c:type="GstFFTF64*"/>
        </return-value>
        <parameters>
          <parameter name="len" transfer-ownership="none">
            <doc xml:space="preserve">Length of the FFT in the time domain</doc>
            <type name="gint" c:type="gint"/>
          </parameter>
          <parameter name="inverse" transfer-ownership="none">
            <doc xml:space="preserve">%TRUE if the #GstFFTF64 instance should be used for the inverse FFT</doc>
            <type name="gboolean" c:type="gboolean"/>
          </parameter>
        </parameters>
      </function>
    </record>
    <record name="FFTF64Complex" c:type="GstFFTF64Complex">
      <doc xml:space="preserve">Data type for complex numbers composed of
64 bit float.</doc>
      <field name="r" writable="1">
        <doc xml:space="preserve">Real part</doc>
        <type name="gdouble" c:type="gdouble"/>
      </field>
      <field name="i" writable="1">
        <doc xml:space="preserve">Imaginary part</doc>
        <type name="gdouble" c:type="gdouble"/>
      </field>
    </record>
    <record name="FFTS16" c:type="GstFFTS16" disguised="1">
      <doc xml:space="preserve">#GstFFTS16 provides a FFT implementation and related functions for
signed 16 bit integer samples. To use this call gst_fft_s16_new() for
allocating a #GstFFTS16 instance with the appropriate parameters and
then call gst_fft_s16_fft() or gst_fft_s16_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.

After use free the #GstFFTS16 instance with gst_fft_s16_free().

For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_s16_new().

The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.

Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_s16_window() can comfortably
be used.

Be aware, that you can't simply run gst_fft_s16_inverse_fft() on the
resulting frequency data of gst_fft_s16_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x / nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
      <method name="fft" c:identifier="gst_fft_s16_fft">
        <doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.

@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTS16 instance with gst_fft_s16_new().

@freqdata must be large enough to hold @len/2 + 1 #GstFFTS16Complex frequency
domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
            <type name="FFTS16" c:type="GstFFTS16*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the time domain</doc>
            <type name="gint16" c:type="const gint16*"/>
          </parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
            <type name="FFTS16Complex" c:type="GstFFTS16Complex*"/>
          </parameter>
        </parameters>
      </method>
      <method name="free" c:identifier="gst_fft_s16_free">
        <doc xml:space="preserve">This frees the memory allocated for @self.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
            <type name="FFTS16" c:type="GstFFTS16*"/>
          </instance-parameter>
        </parameters>
      </method>
      <method name="inverse_fft" c:identifier="gst_fft_s16_inverse_fft">
        <doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.

@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTS16 instance with gst_fft_s16_new().

@timedata must be large enough to hold @len time domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
            <type name="FFTS16" c:type="GstFFTS16*"/>
          </instance-parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
            <type name="FFTS16Complex" c:type="const GstFFTS16Complex*"/>
          </parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
            <type name="gint16" c:type="gint16*"/>
          </parameter>
        </parameters>
      </method>
      <method name="window" c:identifier="gst_fft_s16_window">
        <doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
            <type name="FFTS16" c:type="GstFFTS16*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Time domain samples</doc>
            <type name="gint16" c:type="gint16*"/>
          </parameter>
          <parameter name="window" transfer-ownership="none">
            <doc xml:space="preserve">Window function to apply</doc>
            <type name="FFTWindow" c:type="GstFFTWindow"/>
          </parameter>
        </parameters>
      </method>
      <function name="new" c:identifier="gst_fft_s16_new" introspectable="0">
        <doc xml:space="preserve">This returns a new #GstFFTS16 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
        <return-value>
          <doc xml:space="preserve">a new #GstFFTS16 instance.</doc>
          <type name="FFTS16" c:type="GstFFTS16*"/>
        </return-value>
        <parameters>
          <parameter name="len" transfer-ownership="none">
            <doc xml:space="preserve">Length of the FFT in the time domain</doc>
            <type name="gint" c:type="gint"/>
          </parameter>
          <parameter name="inverse" transfer-ownership="none">
            <doc xml:space="preserve">%TRUE if the #GstFFTS16 instance should be used for the inverse FFT</doc>
            <type name="gboolean" c:type="gboolean"/>
          </parameter>
        </parameters>
      </function>
    </record>
    <record name="FFTS16Complex" c:type="GstFFTS16Complex">
      <doc xml:space="preserve">Data type for complex numbers composed of
signed 16 bit integers.</doc>
      <field name="r" writable="1">
        <doc xml:space="preserve">Real part</doc>
        <type name="gint16" c:type="gint16"/>
      </field>
      <field name="i" writable="1">
        <doc xml:space="preserve">Imaginary part</doc>
        <type name="gint16" c:type="gint16"/>
      </field>
    </record>
    <record name="FFTS32" c:type="GstFFTS32" disguised="1">
      <doc xml:space="preserve">#GstFFTS32 provides a FFT implementation and related functions for
signed 32 bit integer samples. To use this call gst_fft_s32_new() for
allocating a #GstFFTS32 instance with the appropriate parameters and
then call gst_fft_s32_fft() or gst_fft_s32_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.

After use free the #GstFFTS32 instance with gst_fft_s32_free().

For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_s32_new().

The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.

Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_s32_window() can comfortably
be used.

Be aware, that you can't simply run gst_fft_s32_inverse_fft() on the
resulting frequency data of gst_fft_s32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x / nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
      <method name="fft" c:identifier="gst_fft_s32_fft">
        <doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.

@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTS32 instance with gst_fft_s32_new().

@freqdata must be large enough to hold @len/2 + 1 #GstFFTS32Complex frequency
domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
            <type name="FFTS32" c:type="GstFFTS32*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the time domain</doc>
            <type name="gint32" c:type="const gint32*"/>
          </parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
            <type name="FFTS32Complex" c:type="GstFFTS32Complex*"/>
          </parameter>
        </parameters>
      </method>
      <method name="free" c:identifier="gst_fft_s32_free">
        <doc xml:space="preserve">This frees the memory allocated for @self.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
            <type name="FFTS32" c:type="GstFFTS32*"/>
          </instance-parameter>
        </parameters>
      </method>
      <method name="inverse_fft" c:identifier="gst_fft_s32_inverse_fft">
        <doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.

@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTS32 instance with gst_fft_s32_new().

@timedata must be large enough to hold @len time domain samples.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
            <type name="FFTS32" c:type="GstFFTS32*"/>
          </instance-parameter>
          <parameter name="freqdata" transfer-ownership="none">
            <doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
            <type name="FFTS32Complex" c:type="const GstFFTS32Complex*"/>
          </parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
            <type name="gint32" c:type="gint32*"/>
          </parameter>
        </parameters>
      </method>
      <method name="window" c:identifier="gst_fft_s32_window">
        <doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
        <return-value transfer-ownership="none">
          <type name="none" c:type="void"/>
        </return-value>
        <parameters>
          <instance-parameter name="self" transfer-ownership="none">
            <doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
            <type name="FFTS32" c:type="GstFFTS32*"/>
          </instance-parameter>
          <parameter name="timedata" transfer-ownership="none">
            <doc xml:space="preserve">Time domain samples</doc>
            <type name="gint32" c:type="gint32*"/>
          </parameter>
          <parameter name="window" transfer-ownership="none">
            <doc xml:space="preserve">Window function to apply</doc>
            <type name="FFTWindow" c:type="GstFFTWindow"/>
          </parameter>
        </parameters>
      </method>
      <function name="new" c:identifier="gst_fft_s32_new" introspectable="0">
        <doc xml:space="preserve">This returns a new #GstFFTS32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
        <return-value>
          <doc xml:space="preserve">a new #GstFFTS32 instance.</doc>
          <type name="FFTS32" c:type="GstFFTS32*"/>
        </return-value>
        <parameters>
          <parameter name="len" transfer-ownership="none">
            <doc xml:space="preserve">Length of the FFT in the time domain</doc>
            <type name="gint" c:type="gint"/>
          </parameter>
          <parameter name="inverse" transfer-ownership="none">
            <doc xml:space="preserve">%TRUE if the #GstFFTS32 instance should be used for the inverse FFT</doc>
            <type name="gboolean" c:type="gboolean"/>
          </parameter>
        </parameters>
      </function>
    </record>
    <record name="FFTS32Complex" c:type="GstFFTS32Complex">
      <doc xml:space="preserve">Data type for complex numbers composed of
signed 32 bit integers.</doc>
      <field name="r" writable="1">
        <doc xml:space="preserve">Real part</doc>
        <type name="gint32" c:type="gint32"/>
      </field>
      <field name="i" writable="1">
        <doc xml:space="preserve">Imaginary part</doc>
        <type name="gint32" c:type="gint32"/>
      </field>
    </record>
    <enumeration name="FFTWindow" c:type="GstFFTWindow">
      <doc xml:space="preserve">The various window functions available.</doc>
      <member name="rectangular"
              value="0"
              c:identifier="GST_FFT_WINDOW_RECTANGULAR">
        <doc xml:space="preserve">Rectangular window</doc>
      </member>
      <member name="hamming" value="1" c:identifier="GST_FFT_WINDOW_HAMMING">
        <doc xml:space="preserve">Hamming window</doc>
      </member>
      <member name="hann" value="2" c:identifier="GST_FFT_WINDOW_HANN">
        <doc xml:space="preserve">Hann (sometimes also called Hanning) window</doc>
      </member>
      <member name="bartlett" value="3" c:identifier="GST_FFT_WINDOW_BARTLETT">
        <doc xml:space="preserve">Bartlett window</doc>
      </member>
      <member name="blackman" value="4" c:identifier="GST_FFT_WINDOW_BLACKMAN">
        <doc xml:space="preserve">Blackman window</doc>
      </member>
    </enumeration>
    <function name="fft_f32_new"
              c:identifier="gst_fft_f32_new"
              moved-to="FFTF32.new"
              introspectable="0">
      <doc xml:space="preserve">This returns a new #GstFFTF32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
      <return-value>
        <doc xml:space="preserve">a new #GstFFTF32 instance.</doc>
        <type name="FFTF32" c:type="GstFFTF32*"/>
      </return-value>
      <parameters>
        <parameter name="len" transfer-ownership="none">
          <doc xml:space="preserve">Length of the FFT in the time domain</doc>
          <type name="gint" c:type="gint"/>
        </parameter>
        <parameter name="inverse" transfer-ownership="none">
          <doc xml:space="preserve">%TRUE if the #GstFFTF32 instance should be used for the inverse FFT</doc>
          <type name="gboolean" c:type="gboolean"/>
        </parameter>
      </parameters>
    </function>
    <function name="fft_f64_new"
              c:identifier="gst_fft_f64_new"
              moved-to="FFTF64.new"
              introspectable="0">
      <doc xml:space="preserve">This returns a new #GstFFTF64 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
      <return-value>
        <doc xml:space="preserve">a new #GstFFTF64 instance.</doc>
        <type name="FFTF64" c:type="GstFFTF64*"/>
      </return-value>
      <parameters>
        <parameter name="len" transfer-ownership="none">
          <doc xml:space="preserve">Length of the FFT in the time domain</doc>
          <type name="gint" c:type="gint"/>
        </parameter>
        <parameter name="inverse" transfer-ownership="none">
          <doc xml:space="preserve">%TRUE if the #GstFFTF64 instance should be used for the inverse FFT</doc>
          <type name="gboolean" c:type="gboolean"/>
        </parameter>
      </parameters>
    </function>
    <function name="fft_next_fast_length"
              c:identifier="gst_fft_next_fast_length">
      <doc xml:space="preserve">Returns the next number to @n that is entirely a product
of 2, 3 and 5. Using this as the @len parameter for
the different GstFFT types will provide the best performance.</doc>
      <return-value transfer-ownership="none">
        <doc xml:space="preserve">the next fast FFT length.</doc>
        <type name="gint" c:type="gint"/>
      </return-value>
      <parameters>
        <parameter name="n" transfer-ownership="none">
          <doc xml:space="preserve">Number for which the next fast length should be returned</doc>
          <type name="gint" c:type="gint"/>
        </parameter>
      </parameters>
    </function>
    <function name="fft_s16_new"
              c:identifier="gst_fft_s16_new"
              moved-to="FFTS16.new"
              introspectable="0">
      <doc xml:space="preserve">This returns a new #GstFFTS16 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
      <return-value>
        <doc xml:space="preserve">a new #GstFFTS16 instance.</doc>
        <type name="FFTS16" c:type="GstFFTS16*"/>
      </return-value>
      <parameters>
        <parameter name="len" transfer-ownership="none">
          <doc xml:space="preserve">Length of the FFT in the time domain</doc>
          <type name="gint" c:type="gint"/>
        </parameter>
        <parameter name="inverse" transfer-ownership="none">
          <doc xml:space="preserve">%TRUE if the #GstFFTS16 instance should be used for the inverse FFT</doc>
          <type name="gboolean" c:type="gboolean"/>
        </parameter>
      </parameters>
    </function>
    <function name="fft_s32_new"
              c:identifier="gst_fft_s32_new"
              moved-to="FFTS32.new"
              introspectable="0">
      <doc xml:space="preserve">This returns a new #GstFFTS32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.

@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
      <return-value>
        <doc xml:space="preserve">a new #GstFFTS32 instance.</doc>
        <type name="FFTS32" c:type="GstFFTS32*"/>
      </return-value>
      <parameters>
        <parameter name="len" transfer-ownership="none">
          <doc xml:space="preserve">Length of the FFT in the time domain</doc>
          <type name="gint" c:type="gint"/>
        </parameter>
        <parameter name="inverse" transfer-ownership="none">
          <doc xml:space="preserve">%TRUE if the #GstFFTS32 instance should be used for the inverse FFT</doc>
          <type name="gboolean" c:type="gboolean"/>
        </parameter>
      </parameters>
    </function>
  </namespace>
</repository>