This file is indexed.

/usr/include/OpenEXR/ImathMath.h is in libilmbase-dev 2.2.0-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHMATH_H
#define INCLUDED_IMATHMATH_H

//----------------------------------------------------------------------------
//
//	ImathMath.h
//
//	This file contains template functions which call the double-
//	precision math functions defined in math.h (sin(), sqrt(),
//	exp() etc.), with specializations that call the faster
//	single-precision versions (sinf(), sqrtf(), expf() etc.)
//	when appropriate.
//
//	Example:
//
//	    double x = Math<double>::sqrt (3);	// calls ::sqrt(double);
//	    float  y = Math<float>::sqrt (3);	// calls ::sqrtf(float);
//
//	When would I want to use this?
//
//	You may be writing a template which needs to call some function
//	defined in math.h, for example to extract a square root, but you
//	don't know whether to call the single- or the double-precision
//	version of this function (sqrt() or sqrtf()):
//
//	    template <class T>
//	    T
//	    glorp (T x)
//	    {
//		return sqrt (x + 1);		// should call ::sqrtf(float)
//	    }					// if x is a float, but we
//						// don't know if it is
//
//	Using the templates in this file, you can make sure that
//	the appropriate version of the math function is called:
//
//	    template <class T>
//	    T
//	    glorp (T x, T y)
//	    {
//		return Math<T>::sqrt (x + 1);	// calls ::sqrtf(float) if x
//	    }					// is a float, ::sqrt(double)
//	    					// otherwise
//
//----------------------------------------------------------------------------

#include "ImathPlatform.h"
#include "ImathLimits.h"
#include "ImathNamespace.h"
#include <math.h>

IMATH_INTERNAL_NAMESPACE_HEADER_ENTER


template <class T>
struct Math
{
   static T	acos  (T x)		{return ::acos (double(x));}	
   static T	asin  (T x)		{return ::asin (double(x));}
   static T	atan  (T x)		{return ::atan (double(x));}
   static T	atan2 (T x, T y)	{return ::atan2 (double(x), double(y));}
   static T	cos   (T x)		{return ::cos (double(x));}
   static T	sin   (T x)		{return ::sin (double(x));}
   static T	tan   (T x)		{return ::tan (double(x));}
   static T	cosh  (T x)		{return ::cosh (double(x));}
   static T	sinh  (T x)		{return ::sinh (double(x));}
   static T	tanh  (T x)		{return ::tanh (double(x));}
   static T	exp   (T x)		{return ::exp (double(x));}
   static T	log   (T x)		{return ::log (double(x));}
   static T	log10 (T x)		{return ::log10 (double(x));}
   static T	modf  (T x, T *iptr)
   {
        double ival;
        T rval( ::modf (double(x),&ival));
	*iptr = ival;
	return rval;
   }
   static T	pow   (T x, T y)	{return ::pow (double(x), double(y));}
   static T	sqrt  (T x)		{return ::sqrt (double(x));}
   static T	ceil  (T x)		{return ::ceil (double(x));}
   static T	fabs  (T x)		{return ::fabs (double(x));}
   static T	floor (T x)		{return ::floor (double(x));}
   static T	fmod  (T x, T y)	{return ::fmod (double(x), double(y));}
   static T	hypot (T x, T y)	{return ::hypot (double(x), double(y));}
};


template <>
struct Math<float>
{
   static float	acos  (float x)			{return ::acosf (x);}	
   static float	asin  (float x)			{return ::asinf (x);}
   static float	atan  (float x)			{return ::atanf (x);}
   static float	atan2 (float x, float y)	{return ::atan2f (x, y);}
   static float	cos   (float x)			{return ::cosf (x);}
   static float	sin   (float x)			{return ::sinf (x);}
   static float	tan   (float x)			{return ::tanf (x);}
   static float	cosh  (float x)			{return ::coshf (x);}
   static float	sinh  (float x)			{return ::sinhf (x);}
   static float	tanh  (float x)			{return ::tanhf (x);}
   static float	exp   (float x)			{return ::expf (x);}
   static float	log   (float x)			{return ::logf (x);}
   static float	log10 (float x)			{return ::log10f (x);}
   static float	modf  (float x, float *y)	{return ::modff (x, y);}
   static float	pow   (float x, float y)	{return ::powf (x, y);}
   static float	sqrt  (float x)			{return ::sqrtf (x);}
   static float	ceil  (float x)			{return ::ceilf (x);}
   static float	fabs  (float x)			{return ::fabsf (x);}
   static float	floor (float x)			{return ::floorf (x);}
   static float	fmod  (float x, float y)	{return ::fmodf (x, y);}
#if !defined(_MSC_VER)
   static float	hypot (float x, float y)	{return ::hypotf (x, y);}
#else
   static float hypot (float x, float y)	{return ::sqrtf(x*x + y*y);}
#endif
};


//--------------------------------------------------------------------------
// Don Hatch's version of sin(x)/x, which is accurate for very small x.
// Returns 1 for x == 0.
//--------------------------------------------------------------------------

template <class T>
inline T
sinx_over_x (T x)
{
    if (x * x < limits<T>::epsilon())
	return T (1);
    else
	return Math<T>::sin (x) / x;
}


//--------------------------------------------------------------------------
// Compare two numbers and test if they are "approximately equal":
//
// equalWithAbsError (x1, x2, e)
//
//	Returns true if x1 is the same as x2 with an absolute error of
//	no more than e,
//	
//	abs (x1 - x2) <= e
//
// equalWithRelError (x1, x2, e)
//
//	Returns true if x1 is the same as x2 with an relative error of
//	no more than e,
//	
//	abs (x1 - x2) <= e * x1
//
//--------------------------------------------------------------------------

template <class T>
inline bool
equalWithAbsError (T x1, T x2, T e)
{
    return ((x1 > x2)? x1 - x2: x2 - x1) <= e;
}


template <class T>
inline bool
equalWithRelError (T x1, T x2, T e)
{
    return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1);
}


IMATH_INTERNAL_NAMESPACE_HEADER_EXIT

#endif // INCLUDED_IMATHMATH_H