This file is indexed.

/usr/include/OpenEXR/ImathMatrixAlgo.h is in libilmbase-dev 2.2.0-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////


#ifndef INCLUDED_IMATHMATRIXALGO_H
#define INCLUDED_IMATHMATRIXALGO_H

//-------------------------------------------------------------------------
//
//  This file contains algorithms applied to or in conjunction with
//  transformation matrices (Imath::Matrix33 and Imath::Matrix44).
//  The assumption made is that these functions are called much less
//  often than the basic point functions or these functions require
//  more support classes.
//
//  This file also defines a few predefined constant matrices.
//
//-------------------------------------------------------------------------

#include "ImathExport.h"
#include "ImathMatrix.h"
#include "ImathQuat.h"
#include "ImathEuler.h"
#include "ImathExc.h"
#include "ImathVec.h"
#include "ImathLimits.h"
#include "ImathNamespace.h"
#include <math.h>

IMATH_INTERNAL_NAMESPACE_HEADER_ENTER

//------------------
// Identity matrices
//------------------

IMATH_EXPORT_CONST M33f identity33f;
IMATH_EXPORT_CONST M44f identity44f;
IMATH_EXPORT_CONST M33d identity33d;
IMATH_EXPORT_CONST M44d identity44d;

//----------------------------------------------------------------------
// Extract scale, shear, rotation, and translation values from a matrix:
// 
// Notes:
//
// This implementation follows the technique described in the paper by
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
// Matrix into Simple Transformations", p. 320.
//
// - Some of the functions below have an optional exc parameter
//   that determines the functions' behavior when the matrix'
//   scaling is very close to zero:
//
//   If exc is true, the functions throw an Imath::ZeroScale exception.
//
//   If exc is false:
//
//      extractScaling (m, s)            returns false, s is invalid
//	sansScaling (m)		         returns m
//	removeScaling (m)	         returns false, m is unchanged
//      sansScalingAndShear (m)          returns m
//      removeScalingAndShear (m)        returns false, m is unchanged
//      extractAndRemoveScalingAndShear (m, s, h)  
//                                       returns false, m is unchanged, 
//                                                      (sh) are invalid
//      checkForZeroScaleInRow ()        returns false
//	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
//
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() 
//   assume that the matrix does not include shear or non-uniform scaling, 
//   but they do not examine the matrix to verify this assumption.  
//   Matrices with shear or non-uniform scaling are likely to produce 
//   meaningless results.  Therefore, you should use the 
//   removeScalingAndShear() routine, if necessary, prior to calling
//   extractEuler...() .
//
// - All functions assume that the matrix does not include perspective
//   transformation(s), but they do not examine the matrix to verify 
//   this assumption.  Matrices with perspective transformations are 
//   likely to produce meaningless results.
//
//----------------------------------------------------------------------


//
// Declarations for 4x4 matrix.
//

template <class T>  bool        extractScaling 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &scl,
					     bool exc = true);
  
template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScaling 
                                            (Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        extractScalingAndShear 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &scl,
					     Vec3<T> &shr,
					     bool exc = true);
  
template <class T>  Matrix44<T> sansScalingAndShear 
                                            (const Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  void        sansScalingAndShear 
                                            (Matrix44<T> &result,
                                             const Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScalingAndShear 
                                            (Matrix44<T> &mat,
					     bool exc = true);

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix44<T> &mat,
					     Vec3<T>     &scl,
					     Vec3<T>     &shr,
					     bool exc = true);

template <class T>  void	extractEulerXYZ 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &rot);

template <class T>  void	extractEulerZYX 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &rot);

template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Vec3<T> &r,
				     Vec3<T> &t,
				     bool exc /*= true*/,
				     typename Euler<T>::Order rOrder);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Vec3<T> &r,
				     Vec3<T> &t,
				     bool exc = true);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Euler<T> &r,
				     Vec3<T> &t,
				     bool exc = true);

//
// Internal utility function.
//

template <class T>  bool	checkForZeroScaleInRow
                                            (const T       &scl, 
					     const Vec3<T> &row,
					     bool exc = true);

template <class T>  Matrix44<T> outerProduct
                                            ( const Vec4<T> &a,
                                              const Vec4<T> &b);


//
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
// vector.
//

template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
						const Vec3<T> &toDirection);



//
// Returns a matrix that rotates the "fromDir" vector 
// so that it points towards "toDir".  You may also 
// specify that you want the up vector to be pointing 
// in a certain direction "upDir".
//

template <class T> Matrix44<T>	rotationMatrixWithUpDir 
                                            (const Vec3<T> &fromDir,
					     const Vec3<T> &toDir,
					     const Vec3<T> &upDir);


//
// Constructs a matrix that rotates the z-axis so that it 
// points towards "targetDir".  You must also specify 
// that you want the up vector to be pointing in a 
// certain direction "upDir".
//
// Notes: The following degenerate cases are handled:
//        (a) when the directions given by "toDir" and "upDir" 
//            are parallel or opposite;
//            (the direction vectors must have a non-zero cross product)
//        (b) when any of the given direction vectors have zero length
//

template <class T> void	alignZAxisWithTargetDir 
                                            (Matrix44<T> &result,
                                             Vec3<T>      targetDir, 
					     Vec3<T>      upDir);


// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
// Inputs are : 
//     -the position of the frame
//     -the x axis direction of the frame
//     -a normal to the y axis of the frame
// Return is the orthonormal frame
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
                                                  const Vec3<T>& xDir,
                                                  const Vec3<T>& normal);

// Add a translate/rotate/scale offset to an input frame
// and put it in another frame of reference
// Inputs are :
//     - input frame
//     - translate offset
//     - rotate    offset in degrees
//     - scale     offset
//     - frame of reference
// Output is the offsetted frame
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
                                          const Vec3<T>&     tOffset,
                                          const Vec3<T>&     rOffset,
                                          const Vec3<T>&     sOffset,
                                          const Vec3<T>&     ref);

// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
// Inputs are :
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
//      -Matrix A
//      -Matrix B
// Return Matrix A with tweaked rotation/scale
template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
                                                bool               keepScaleA, 
                                                const Matrix44<T>& A,
                                                const Matrix44<T>& B);


//----------------------------------------------------------------------


// 
// Declarations for 3x3 matrix.
//

 
template <class T>  bool        extractScaling 
                                            (const Matrix33<T> &mat,
					     Vec2<T> &scl,
					     bool exc = true);
  
template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScaling 
                                            (Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        extractScalingAndShear 
                                            (const Matrix33<T> &mat,
					     Vec2<T> &scl,
					     T &h,
					     bool exc = true);
  
template <class T>  Matrix33<T> sansScalingAndShear 
                                            (const Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScalingAndShear 
                                            (Matrix33<T> &mat,
					     bool exc = true);

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix33<T> &mat,
					     Vec2<T>     &scl,
					     T           &shr,
					     bool exc = true);

template <class T>  void	extractEuler
                                            (const Matrix33<T> &mat,
					     T       &rot);

template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
					     Vec2<T> &s,
					     T       &h,
					     T       &r,
					     Vec2<T> &t,
					     bool exc = true);

template <class T>  bool	checkForZeroScaleInRow
                                            (const T       &scl, 
					     const Vec2<T> &row,
					     bool exc = true);

template <class T>  Matrix33<T> outerProduct
                                            ( const Vec3<T> &a,
                                              const Vec3<T> &b);


//-----------------------------------------------------------------------------
// Implementation for 4x4 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
{
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
Matrix44<T>
sansScaling (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return mat;

    Matrix44<T> M;
    
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return false;

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
extractScalingAndShear (const Matrix44<T> &mat, 
			Vec3<T> &scl, Vec3<T> &shr, bool exc)
{
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
Matrix44<T>
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return mat;
    
    return M;
}


template <class T>
void
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;

    if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
	result = mat;
}


template <class T>
bool
removeScalingAndShear (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
bool
extractAndRemoveScalingAndShear (Matrix44<T> &mat, 
				 Vec3<T> &scl, Vec3<T> &shr, bool exc)
{
    //
    // This implementation follows the technique described in the paper by
    // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
    // Matrix into Simple Transformations", p. 320.
    //

    Vec3<T> row[3];

    row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
    row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
    row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
    
    T maxVal = 0;
    for (int i=0; i < 3; i++)
	for (int j=0; j < 3; j++)
	    if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
		maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);

    //
    // We normalize the 3x3 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 3x3 matrix's coefficients are very
    // close to zero; we correct for this step at the end by multiplying the 
    // scaling factors by maxVal at the end (shear and rotation are not 
    // affected by the normalization).

    if (maxVal != 0)
    {
	for (int i=0; i < 3; i++)
	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
		return false;
	    else
		row[i] /= maxVal;
    }

    // Compute X scale factor. 
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
	return false;

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
    // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
    // extract the first 3 because we can effect the last 3 by shearing in
    // XY, XZ, YZ combined rotations and scales.
    //
    // shear matrix <   1,  YX,  ZX,  0,
    //                 XY,   1,  ZY,  0,
    //                 XZ,  YZ,   1,  0,
    //                  0,   0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr[0]  = row[0].dot (row[1]);
    row[1] -= shr[0] * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
	return false;

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
    row[1] /= scl.y; 
    shr[0] /= scl.y;

    // Compute XZ and YZ shears, orthogonalize 3rd row.
    shr[1]  = row[0].dot (row[2]);
    row[2] -= shr[1] * row[0];
    shr[2]  = row[1].dot (row[2]);
    row[2] -= shr[2] * row[1];

    // Next, get Z scale.
    scl.z = row[2].length ();
    if (! checkForZeroScaleInRow (scl.z, row[2], exc))
	return false;

    // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
    row[2] /= scl.z;
    shr[1] /= scl.z;
    shr[2] /= scl.z;

    // At this point, the upper 3x3 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
    // is less than zero, then negate the matrix and the scaling factors.
    if (row[0].dot (row[1].cross (row[2])) < 0)
	for (int  i=0; i < 3; i++)
	{
	    scl[i] *= -1;
	    row[i] *= -1;
	}

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 3x3 matrix in mat is now a rotation matrix.
    for (int i=0; i < 3; i++)
    {
	mat[i][0] = row[i][0]; 
	mat[i][1] = row[i][1]; 
	mat[i][2] = row[i][2];
    }

    // Correct the scaling factors for the normalization step that we 
    // performed above; shear and rotation are not affected by the 
    // normalization.
    scl *= maxVal;

    return true;
}


template <class T>
void
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

    Matrix44<T> M (i[0], i[1], i[2], 0, 
		   j[0], j[1], j[2], 0, 
		   k[0], k[1], k[2], 0, 
		   0,    0,    0,    1);

    //
    // Extract the first angle, rot.x.
    // 

    rot.x = Math<T>::atan2 (M[1][2], M[2][2]);

    //
    // Remove the rot.x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (-rot.x, 0, 0));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
    rot.y = Math<T>::atan2 (-N[0][2], cy);
    rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
}


template <class T>
void
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

    Matrix44<T> M (i[0], i[1], i[2], 0, 
		   j[0], j[1], j[2], 0, 
		   k[0], k[1], k[2], 0, 
		   0,    0,    0,    1);

    //
    // Extract the first angle, rot.x.
    // 

    rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);

    //
    // Remove the x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (0, 0, -rot.x));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
    rot.y = -Math<T>::atan2 (-N[2][0], cy);
    rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
}


template <class T>
Quat<T>
extractQuat (const Matrix44<T> &mat)
{
  Matrix44<T> rot;

  T        tr, s;
  T         q[4];
  int    i, j, k;
  Quat<T>   quat;

  int nxt[3] = {1, 2, 0};
  tr = mat[0][0] + mat[1][1] + mat[2][2];

  // check the diagonal
  if (tr > 0.0) {
     s = Math<T>::sqrt (tr + T(1.0));
     quat.r = s / T(2.0);
     s = T(0.5) / s;

     quat.v.x = (mat[1][2] - mat[2][1]) * s;
     quat.v.y = (mat[2][0] - mat[0][2]) * s;
     quat.v.z = (mat[0][1] - mat[1][0]) * s;
  } 
  else {      
     // diagonal is negative
     i = 0;
     if (mat[1][1] > mat[0][0]) 
        i=1;
     if (mat[2][2] > mat[i][i]) 
        i=2;
    
     j = nxt[i];
     k = nxt[j];
     s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
      
     q[i] = s * T(0.5);
     if (s != T(0.0)) 
        s = T(0.5) / s;

     q[3] = (mat[j][k] - mat[k][j]) * s;
     q[j] = (mat[i][j] + mat[j][i]) * s;
     q[k] = (mat[i][k] + mat[k][i]) * s;

     quat.v.x = q[0];
     quat.v.y = q[1];
     quat.v.z = q[2];
     quat.r = q[3];
 }

  return quat;
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Vec3<T> &r,
	     Vec3<T> &t,
	     bool exc /* = true */ ,
	     typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
{
    Matrix44<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
	return false;

    extractEulerXYZ (rot, r);

    t.x = mat[3][0];
    t.y = mat[3][1];
    t.z = mat[3][2];

    if (rOrder != Euler<T>::XYZ)
    {
	IMATH_INTERNAL_NAMESPACE::Euler<T> eXYZ (r, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
	IMATH_INTERNAL_NAMESPACE::Euler<T> e (eXYZ, rOrder);
	r = e.toXYZVector ();
    }

    return true;
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Vec3<T> &r,
	     Vec3<T> &t,
	     bool exc)
{
    return extractSHRT(mat, s, h, r, t, exc, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Euler<T> &r,
	     Vec3<T> &t,
	     bool exc /* = true */)
{
    return extractSHRT (mat, s, h, r, t, exc, r.order ());
}


template <class T> 
bool		
checkForZeroScaleInRow (const T& scl, 
			const Vec3<T> &row,
			bool exc /* = true */ )
{
    for (int i = 0; i < 3; i++)
    {
	if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
	{
	    if (exc)
		throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc ("Cannot remove zero scaling "
					   "from matrix.");
	    else
		return false;
	}
    }

    return true;
}

template <class T>
Matrix44<T>
outerProduct (const Vec4<T> &a, const Vec4<T> &b )
{
    return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
                        a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
                        a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
                        a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
}

template <class T>
Matrix44<T>
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
{
    Quat<T> q;
    q.setRotation(from, to);
    return q.toMatrix44();
}


template <class T>
Matrix44<T>	
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
			 const Vec3<T> &toDir,
			 const Vec3<T> &upDir)
{
    //
    // The goal is to obtain a rotation matrix that takes 
    // "fromDir" to "toDir".  We do this in two steps and 
    // compose the resulting rotation matrices; 
    //    (a) rotate "fromDir" into the z-axis
    //    (b) rotate the z-axis into "toDir"
    //

    // The from direction must be non-zero; but we allow zero to and up dirs.
    if (fromDir.length () == 0)
	return Matrix44<T> ();

    else
    {
	Matrix44<T> zAxis2FromDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
	alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));

	Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
	
	Matrix44<T> zAxis2ToDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
	alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);

	return fromDir2zAxis * zAxis2ToDir;
    }
}


template <class T>
void
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
{
    //
    // Ensure that the target direction is non-zero.
    //

    if ( targetDir.length () == 0 )
	targetDir = Vec3<T> (0, 0, 1);

    //
    // Ensure that the up direction is non-zero.
    //

    if ( upDir.length () == 0 )
	upDir = Vec3<T> (0, 1, 0);

    //
    // Check for degeneracies.  If the upDir and targetDir are parallel 
    // or opposite, then compute a new, arbitrary up direction that is
    // not parallel or opposite to the targetDir.
    //

    if (upDir.cross (targetDir).length () == 0)
    {
	upDir = targetDir.cross (Vec3<T> (1, 0, 0));
	if (upDir.length() == 0)
	    upDir = targetDir.cross(Vec3<T> (0, 0, 1));
    }

    //
    // Compute the x-, y-, and z-axis vectors of the new coordinate system.
    //

    Vec3<T> targetPerpDir = upDir.cross (targetDir);    
    Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
    
    //
    // Rotate the x-axis into targetPerpDir (row 0),
    // rotate the y-axis into targetUpDir   (row 1),
    // rotate the z-axis into targetDir     (row 2).
    //
    
    Vec3<T> row[3];
    row[0] = targetPerpDir.normalized ();
    row[1] = targetUpDir  .normalized ();
    row[2] = targetDir    .normalized ();
    
    result.x[0][0] = row[0][0];
    result.x[0][1] = row[0][1];
    result.x[0][2] = row[0][2];
    result.x[0][3] = (T)0;
 
    result.x[1][0] = row[1][0];
    result.x[1][1] = row[1][1];
    result.x[1][2] = row[1][2];
    result.x[1][3] = (T)0;
 
    result.x[2][0] = row[2][0];
    result.x[2][1] = row[2][1];
    result.x[2][2] = row[2][2];
    result.x[2][3] = (T)0;
 
    result.x[3][0] = (T)0;
    result.x[3][1] = (T)0;
    result.x[3][2] = (T)0;
    result.x[3][3] = (T)1;
}


// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
// Inputs are : 
//     -the position of the frame
//     -the x axis direction of the frame
//     -a normal to the y axis of the frame
// Return is the orthonormal frame
template <class T>
Matrix44<T>
computeLocalFrame( const Vec3<T>& p,
                   const Vec3<T>& xDir,
                   const Vec3<T>& normal)
{
    Vec3<T> _xDir(xDir);
    Vec3<T> x = _xDir.normalize();
    Vec3<T> y = (normal % x).normalize();
    Vec3<T> z = (x % y).normalize();

    Matrix44<T> L;
    L[0][0] = x[0];
    L[0][1] = x[1];
    L[0][2] = x[2];
    L[0][3] = 0.0;

    L[1][0] = y[0];
    L[1][1] = y[1];
    L[1][2] = y[2];
    L[1][3] = 0.0;

    L[2][0] = z[0];
    L[2][1] = z[1];
    L[2][2] = z[2];
    L[2][3] = 0.0;

    L[3][0] = p[0];
    L[3][1] = p[1];
    L[3][2] = p[2];
    L[3][3] = 1.0;
    
    return L;
}

// Add a translate/rotate/scale offset to an input frame
// and put it in another frame of reference
// Inputs are :
//     - input frame
//     - translate offset
//     - rotate    offset in degrees
//     - scale     offset
//     - frame of reference
// Output is the offsetted frame
template <class T>
Matrix44<T>
addOffset( const Matrix44<T>& inMat,
           const Vec3<T>&     tOffset,
           const Vec3<T>&     rOffset,
           const Vec3<T>&     sOffset,
           const Matrix44<T>& ref)
{
    Matrix44<T> O;

    Vec3<T> _rOffset(rOffset);
    _rOffset *= M_PI / 180.0;
    O.rotate (_rOffset);

    O[3][0] = tOffset[0];
    O[3][1] = tOffset[1];
    O[3][2] = tOffset[2];

    Matrix44<T> S;
    S.scale (sOffset);

    Matrix44<T> X = S * O * inMat * ref;

    return X;
}

// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
// Inputs are :
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
//      -Matrix A
//      -Matrix B
// Return Matrix A with tweaked rotation/scale
template <class T>
Matrix44<T>
computeRSMatrix( bool               keepRotateA,
                 bool               keepScaleA, 
                 const Matrix44<T>& A, 
                 const Matrix44<T>& B)
{
    Vec3<T> as, ah, ar, at;
    extractSHRT (A, as, ah, ar, at);
    
    Vec3<T> bs, bh, br, bt;
    extractSHRT (B, bs, bh, br, bt);

    if (!keepRotateA)
        ar = br;

    if (!keepScaleA)
        as = bs;

    Matrix44<T> mat;
    mat.makeIdentity();
    mat.translate (at);
    mat.rotate (ar);
    mat.scale (as);
    
    return mat;
}



//-----------------------------------------------------------------------------
// Implementation for 3x3 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
{
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;

    return true;
}


template <class T>
Matrix33<T>
sansScaling (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return mat;

    Matrix33<T> M;
    
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return false;

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
{
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;

    return true;
}


template <class T>
Matrix33<T>
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return mat;
    
    return M;
}


template <class T>
bool
removeScalingAndShear (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
	return false;
    
    return true;
}

template <class T>
bool
extractAndRemoveScalingAndShear (Matrix33<T> &mat, 
				 Vec2<T> &scl, T &shr, bool exc)
{
    Vec2<T> row[2];

    row[0] = Vec2<T> (mat[0][0], mat[0][1]);
    row[1] = Vec2<T> (mat[1][0], mat[1][1]);
    
    T maxVal = 0;
    for (int i=0; i < 2; i++)
	for (int j=0; j < 2; j++)
	    if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
		maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);

    //
    // We normalize the 2x2 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 2x2 matrix's coefficients are very
    // close to zero; we correct for this step at the end by multiplying the 
    // scaling factors by maxVal at the end (shear and rotation are not 
    // affected by the normalization).

    if (maxVal != 0)
    {
	for (int i=0; i < 2; i++)
	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
		return false;
	    else
		row[i] /= maxVal;
    }

    // Compute X scale factor. 
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
	return false;

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
    // There are 2 combinations (XY, YX), although we only extract the XY 
    // shear factor because we can effect the an YX shear factor by 
    // shearing in XY combined with rotations and scales.
    //
    // shear matrix <   1,  YX,  0,
    //                 XY,   1,  0,
    //                  0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr     = row[0].dot (row[1]);
    row[1] -= shr * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
	return false;

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
    row[1] /= scl.y; 
    shr    /= scl.y;

    // At this point, the upper 2x2 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
    // is -1, then flip the rotation matrix and adjust the scale(Y) 
    // and shear(XY) factors to compensate.
    if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
    {
	row[1][0] *= -1;
	row[1][1] *= -1;
	scl[1] *= -1;
	shr *= -1;
    }

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 2x2 matrix in mat is now a rotation matrix.
    for (int i=0; i < 2; i++)
    {
	mat[i][0] = row[i][0]; 
	mat[i][1] = row[i][1]; 
    }

    scl *= maxVal;

    return true;
}


template <class T>
void
extractEuler (const Matrix33<T> &mat, T &rot)
{
    //
    // Normalize the local x and y axes to remove scaling.
    //

    Vec2<T> i (mat[0][0], mat[0][1]);
    Vec2<T> j (mat[1][0], mat[1][1]);

    i.normalize();
    j.normalize();

    //
    // Extract the angle, rot.
    // 

    rot = - Math<T>::atan2 (j[0], i[0]);
}


template <class T>
bool 
extractSHRT (const Matrix33<T> &mat,
	     Vec2<T> &s,
	     T       &h,
	     T       &r,
	     Vec2<T> &t,
	     bool    exc)
{
    Matrix33<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
	return false;

    extractEuler (rot, r);

    t.x = mat[2][0];
    t.y = mat[2][1];

    return true;
}


template <class T> 
bool		
checkForZeroScaleInRow (const T& scl, 
                        const Vec2<T> &row,
                        bool exc /* = true */ )
{
    for (int i = 0; i < 2; i++)
    {
        if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
        {
            if (exc)
                throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc (
                        "Cannot remove zero scaling from matrix.");
            else
                return false;
        }
    }

    return true;
}


template <class T>
Matrix33<T>
outerProduct (const Vec3<T> &a, const Vec3<T> &b )
{
    return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
                        a.y*b.x, a.y*b.y, a.y*b.z,
                        a.z*b.x, a.z*b.y, a.z*b.z );
}


// Computes the translation and rotation that brings the 'from' points
// as close as possible to the 'to' points under the Frobenius norm.  
// To be more specific, let x be the matrix of 'from' points and y be
// the matrix of 'to' points, we want to find the matrix A of the form
//    [ R t ]
//    [ 0 1 ]
// that minimizes
//     || (A*x - y)^T * W * (A*x - y) ||_F
// If doScaling is true, then a uniform scale is allowed also.
template <typename T>
IMATH_INTERNAL_NAMESPACE::M44d
procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A,  // From these
                                  const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B,  // To these
                                  const T* weights, 
                                  const size_t numPoints,
                                  const bool doScaling = false);

// Unweighted:
template <typename T>
IMATH_INTERNAL_NAMESPACE::M44d
procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A, 
                                  const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B, 
                                  const size_t numPoints,
                                  const bool doScaling = false);

// Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
// should be quite accurate (competitive with LAPACK) even for poorly
// conditioned matrices, and because it has been written specifically for the
// 3x3/4x4 case it is much faster than calling out to LAPACK.  
//
// The SVD of a 3x3/4x4 matrix A is defined as follows:
//     A = U * S * V^T
// where S is the diagonal matrix of singular values and both U and V are
// orthonormal.  By convention, the entries S are all positive and sorted from
// the largest to the smallest.  However, some uses of this function may
// require that the matrix U*V^T have positive determinant; in this case, we
// may make the smallest singular value negative to ensure that this is
// satisfied.  
//
// Currently only available for single- and double-precision matrices.
template <typename T>
void
jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
           IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
           IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
           IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
           const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
           const bool forcePositiveDeterminant = false);

template <typename T>
void
jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
           IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
           IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
           IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
           const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
           const bool forcePositiveDeterminant = false);

// Compute the eigenvalues (S) and the eigenvectors (V) of
// a real symmetric matrix using Jacobi transformation.
//
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
// 	A = V * S * V^T
// where V is orthonormal and S is the diagonal matrix of eigenvalues.
// Input matrix A must be symmetric. A is also modified during
// the computation so that upper diagonal entries of A become zero. 
//
template <typename T>
void
jacobiEigenSolver (Matrix33<T>& A,
                   Vec3<T>& S,
                   Matrix33<T>& V,
                   const T tol);

template <typename T>
inline
void
jacobiEigenSolver (Matrix33<T>& A,
                   Vec3<T>& S,
                   Matrix33<T>& V)
{
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
}

template <typename T>
void
jacobiEigenSolver (Matrix44<T>& A,
                   Vec4<T>& S,
                   Matrix44<T>& V,
                   const T tol);

template <typename T>
inline
void
jacobiEigenSolver (Matrix44<T>& A,
                   Vec4<T>& S,
                   Matrix44<T>& V)
{
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
}

// Compute a eigenvector corresponding to the abs max/min eigenvalue
// of a real symmetric matrix using Jacobi transformation.
template <typename TM, typename TV>
void
maxEigenVector (TM& A, TV& S);
template <typename TM, typename TV>
void
minEigenVector (TM& A, TV& S);

IMATH_INTERNAL_NAMESPACE_HEADER_EXIT

#endif // INCLUDED_IMATHMATRIXALGO_H