/usr/include/jerasure.h is in libjerasure-dev 2.0.0-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | /* *
* Copyright (c) 2013, James S. Plank and Kevin Greenan
* All rights reserved.
*
* Jerasure - A C/C++ Library for a Variety of Reed-Solomon and RAID-6 Erasure
* Coding Techniques
*
* Revision 2.0: Galois Field backend now links to GF-Complete
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* - Neither the name of the University of Tennessee nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#ifndef _JERASURE_H
#define _JERASURE_H
/* This uses procedures from the Galois Field arithmetic library */
#include "galois.h"
#ifdef __cplusplus
extern "C" {
#endif
/* ------------------------------------------------------------ */
/* In all of the routines below:
k = Number of data devices
m = Number of coding devices
w = Word size
data_ptrs = An array of k pointers to data which is size bytes.
Size must be a multiple of sizeof(long).
Pointers must also be longword aligned.
coding_ptrs = An array of m pointers to coding data which is size bytes.
packetsize = The size of a coding block with bitmatrix coding.
When you code with a bitmatrix, you will use w packets
of size packetsize.
matrix = an array of k*m integers.
It represents an m by k matrix.
Element i,j is in matrix[i*k+j];
bitmatrix = an array of k*m*w*w integers.
It represents an mw by kw matrix.
Element i,j is in matrix[i*k*w+j];
erasures = an array of id's of erased devices.
Id's are integers between 0 and k+m-1.
Id's 0 to k-1 are id's of data devices.
Id's k to k+m-1 are id's of coding devices:
Coding device id = id-k.
If there are e erasures, erasures[e] = -1.
schedule = an array of schedule operations.
If there are m operations, then schedule[m][0] = -1.
operation = an array of 5 integers:
0 = operation: 0 for copy, 1 for xor (-1 for end)
1 = source device (0 - k+m-1)
2 = source packet (0 - w-1)
3 = destination device (0 - k+m-1)
4 = destination packet (0 - w-1)
*/
/* --------------------------------------------------------------- */
/* Bitmatrices / schedules ---------------------------------------- */
/*
- jerasure_matrix_to_bitmatrix turns a m X k matrix in GF(2^w) into a
wm X wk bitmatrix (in GF(2)). This is
explained in the Cauchy Reed-Solomon coding
paper.
- jerasure_dumb_bitmatrix_to_schedule turns a bitmatrix into a schedule
using the straightforward algorithm -- just
schedule the dot products defined by each
row of the matrix.
- jerasure_smart_bitmatrix_to_schedule turns a bitmatrix into a schedule,
but tries to use previous dot products to
calculate new ones. This is the optimization
explained in the original Liberation code paper.
- jerasure_generate_schedule_cache precalcalculate all the schedule for the
given distribution bitmatrix. M must equal 2.
- jerasure_free_schedule frees a schedule that was allocated with
jerasure_XXX_bitmatrix_to_schedule.
- jerasure_free_schedule_cache frees a schedule cache that was created with
jerasure_generate_schedule_cache.
*/
int *jerasure_matrix_to_bitmatrix(int k, int m, int w, int *matrix);
int **jerasure_dumb_bitmatrix_to_schedule(int k, int m, int w, int *bitmatrix);
int **jerasure_smart_bitmatrix_to_schedule(int k, int m, int w, int *bitmatrix);
int ***jerasure_generate_schedule_cache(int k, int m, int w, int *bitmatrix, int smart);
void jerasure_free_schedule(int **schedule);
void jerasure_free_schedule_cache(int k, int m, int ***cache);
/* ------------------------------------------------------------ */
/* Encoding - these are all straightforward. jerasure_matrix_encode only
works with w = 8|16|32. */
void jerasure_do_parity(int k, char **data_ptrs, char *parity_ptr, int size);
void jerasure_matrix_encode(int k, int m, int w, int *matrix,
char **data_ptrs, char **coding_ptrs, int size);
void jerasure_bitmatrix_encode(int k, int m, int w, int *bitmatrix,
char **data_ptrs, char **coding_ptrs, int size, int packetsize);
void jerasure_schedule_encode(int k, int m, int w, int **schedule,
char **data_ptrs, char **coding_ptrs, int size, int packetsize);
/* ------------------------------------------------------------ */
/* Decoding. -------------------------------------------------- */
/* These return integers, because the matrix may not be invertible.
The parameter row_k_ones should be set to 1 if row k of the matrix
(or rows kw to (k+1)w+1) of th distribution matrix are all ones
(or all identity matrices). Then you can improve the performance
of decoding when there is more than one failure, and the parity
device didn't fail. You do it by decoding all but one of the data
devices, and then decoding the last data device from the data devices
and the parity device.
jerasure_schedule_decode_lazy generates the schedule on the fly.
jerasure_matrix_decode only works when w = 8|16|32.
jerasure_make_decoding_matrix/bitmatrix make the k*k decoding matrix
(or wk*wk bitmatrix) by taking the rows corresponding to k
non-erased devices of the distribution matrix, and then
inverting that matrix.
You should already have allocated the decoding matrix and
dm_ids, which is a vector of k integers. These will be
filled in appropriately. dm_ids[i] is the id of element
i of the survivors vector. I.e. row i of the decoding matrix
times dm_ids equals data drive i.
Both of these routines take "erased" instead of "erasures".
Erased is a vector with k+m elements, which has 0 or 1 for
each device's id, according to whether the device is erased.
jerasure_erasures_to_erased allocates and returns erased from erasures.
*/
int jerasure_matrix_decode(int k, int m, int w,
int *matrix, int row_k_ones, int *erasures,
char **data_ptrs, char **coding_ptrs, int size);
int jerasure_bitmatrix_decode(int k, int m, int w,
int *bitmatrix, int row_k_ones, int *erasures,
char **data_ptrs, char **coding_ptrs, int size, int packetsize);
int jerasure_schedule_decode_lazy(int k, int m, int w, int *bitmatrix, int *erasures,
char **data_ptrs, char **coding_ptrs, int size, int packetsize,
int smart);
int jerasure_schedule_decode_cache(int k, int m, int w, int ***scache, int *erasures,
char **data_ptrs, char **coding_ptrs, int size, int packetsize);
int jerasure_make_decoding_matrix(int k, int m, int w, int *matrix, int *erased,
int *decoding_matrix, int *dm_ids);
int jerasure_make_decoding_bitmatrix(int k, int m, int w, int *matrix, int *erased,
int *decoding_matrix, int *dm_ids);
int *jerasure_erasures_to_erased(int k, int m, int *erasures);
/* ------------------------------------------------------------ */
/* These perform dot products and schedules. -------------------*/
/*
src_ids is a matrix of k id's (0 - k-1 for data devices, k - k+m-1
for coding devices) that identify the source devices. Dest_id is
the id of the destination device.
jerasure_matrix_dotprod only works when w = 8|16|32.
jerasure_do_scheduled_operations executes the schedule on w*packetsize worth of
bytes from each device. ptrs is an array of pointers which should have as many
elements as the highest referenced device in the schedule.
*/
void jerasure_matrix_dotprod(int k, int w, int *matrix_row,
int *src_ids, int dest_id,
char **data_ptrs, char **coding_ptrs, int size);
void jerasure_bitmatrix_dotprod(int k, int w, int *bitmatrix_row,
int *src_ids, int dest_id,
char **data_ptrs, char **coding_ptrs, int size, int packetsize);
void jerasure_do_scheduled_operations(char **ptrs, int **schedule, int packetsize);
/* ------------------------------------------------------------ */
/* Matrix Inversion ------------------------------------------- */
/*
The two matrix inversion functions work on rows*rows matrices of
ints. If a bitmatrix, then each int will just be zero or one.
Otherwise, they will be elements of gf(2^w). Obviously, you can
do bit matrices with crs_invert_matrix() and set w = 1, but
crs_invert_bitmatrix will be more efficient.
The two invertible functions return whether a matrix is invertible.
They are more efficient than the inverstion functions.
Mat will be destroyed when the matrix inversion or invertible
testing is done. Sorry.
Inv must be allocated by the caller.
The two invert_matrix functions return 0 on success, and -1 if the
matrix is uninvertible.
The two invertible function simply return whether the matrix is
invertible. (0 or 1). Mat will be destroyed.
*/
int jerasure_invert_matrix(int *mat, int *inv, int rows, int w);
int jerasure_invert_bitmatrix(int *mat, int *inv, int rows);
int jerasure_invertible_matrix(int *mat, int rows, int w);
int jerasure_invertible_bitmatrix(int *mat, int rows);
/* ------------------------------------------------------------ */
/* Basic matrix operations -------------------------------------*/
/*
Each of the print_matrix routines require a w. In jerasure_print_matrix,
this is to calculate the field width. In jerasure_print_bitmatrix, it is
to put spaces between the bits.
jerasure_matrix_multiply is a simple matrix multiplier in GF(2^w). It returns a r1*c2
matrix, which is the product of the two input matrices. It allocates
the product. Obviously, c1 should equal r2. However, this is not
validated by the procedure.
*/
void jerasure_print_matrix(int *matrix, int rows, int cols, int w);
void jerasure_print_bitmatrix(int *matrix, int rows, int cols, int w);
int *jerasure_matrix_multiply(int *m1, int *m2, int r1, int c1, int r2, int c2, int w);
/* ------------------------------------------------------------ */
/* Stats ------------------------------------------------------ */
/*
jerasure_get_stats fills in a vector of three doubles:
fill_in[0] is the number of bytes that have been XOR'd
fill_in[1] is the number of bytes that have been copied
fill_in[2] is the number of bytes that have been multiplied
by a constant in GF(2^w)
When jerasure_get_stats() is called, it resets its values.
*/
void jerasure_get_stats(double *fill_in);
int jerasure_autoconf_test();
#ifdef __cplusplus
}
#endif
#endif
|