This file is indexed.

/usr/lib/python3.5/typing.py is in libpython3.5-stdlib 3.5.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
# TODO nits:
# Get rid of asserts that are the caller's fault.
# Docstrings (e.g. ABCs).

import abc
from abc import abstractmethod, abstractproperty
import collections
import functools
import re as stdlib_re  # Avoid confusion with the re we export.
import sys
import types
try:
    import collections.abc as collections_abc
except ImportError:
    import collections as collections_abc  # Fallback for PY3.2.


# Please keep __all__ alphabetized within each category.
__all__ = [
    # Super-special typing primitives.
    'Any',
    'Callable',
    'Generic',
    'Optional',
    'TypeVar',
    'Union',
    'Tuple',

    # ABCs (from collections.abc).
    'AbstractSet',  # collections.abc.Set.
    'Awaitable',
    'AsyncIterator',
    'AsyncIterable',
    'ByteString',
    'Container',
    'Hashable',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'Mapping',
    'MappingView',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'Sequence',
    'Sized',
    'ValuesView',

    # Structural checks, a.k.a. protocols.
    'Reversible',
    'SupportsAbs',
    'SupportsFloat',
    'SupportsInt',
    'SupportsRound',

    # Concrete collection types.
    'Dict',
    'List',
    'Set',
    'NamedTuple',  # Not really a type.
    'Generator',

    # One-off things.
    'AnyStr',
    'cast',
    'get_type_hints',
    'no_type_check',
    'no_type_check_decorator',
    'overload',

    # Submodules.
    'io',
    're',
]


def _qualname(x):
    if sys.version_info[:2] >= (3, 3):
        return x.__qualname__
    else:
        # Fall back to just name.
        return x.__name__


class TypingMeta(type):
    """Metaclass for every type defined below.

    This overrides __new__() to require an extra keyword parameter
    '_root', which serves as a guard against naive subclassing of the
    typing classes.  Any legitimate class defined using a metaclass
    derived from TypingMeta (including internal subclasses created by
    e.g.  Union[X, Y]) must pass _root=True.

    This also defines a dummy constructor (all the work is done in
    __new__) and a nicer repr().
    """

    _is_protocol = False

    def __new__(cls, name, bases, namespace, *, _root=False):
        if not _root:
            raise TypeError("Cannot subclass %s" %
                            (', '.join(map(_type_repr, bases)) or '()'))
        return super().__new__(cls, name, bases, namespace)

    def __init__(self, *args, **kwds):
        pass

    def _eval_type(self, globalns, localns):
        """Override this in subclasses to interpret forward references.

        For example, Union['C'] is internally stored as
        Union[_ForwardRef('C')], which should evaluate to _Union[C],
        where C is an object found in globalns or localns (searching
        localns first, of course).
        """
        return self

    def _has_type_var(self):
        return False

    def __repr__(self):
        return '%s.%s' % (self.__module__, _qualname(self))


class Final:
    """Mix-in class to prevent instantiation."""

    __slots__ = ()

    def __new__(self, *args, **kwds):
        raise TypeError("Cannot instantiate %r" % self.__class__)


class _ForwardRef(TypingMeta):
    """Wrapper to hold a forward reference."""

    def __new__(cls, arg):
        if not isinstance(arg, str):
            raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
        try:
            code = compile(arg, '<string>', 'eval')
        except SyntaxError:
            raise SyntaxError('ForwardRef must be an expression -- got %r' %
                              (arg,))
        self = super().__new__(cls, arg, (), {}, _root=True)
        self.__forward_arg__ = arg
        self.__forward_code__ = code
        self.__forward_evaluated__ = False
        self.__forward_value__ = None
        typing_globals = globals()
        frame = sys._getframe(1)
        while frame is not None and frame.f_globals is typing_globals:
            frame = frame.f_back
        assert frame is not None
        self.__forward_frame__ = frame
        return self

    def _eval_type(self, globalns, localns):
        if not isinstance(localns, dict):
            raise TypeError('ForwardRef localns must be a dict -- got %r' %
                            (localns,))
        if not isinstance(globalns, dict):
            raise TypeError('ForwardRef globalns must be a dict -- got %r' %
                            (globalns,))
        if not self.__forward_evaluated__:
            if globalns is None and localns is None:
                globalns = localns = {}
            elif globalns is None:
                globalns = localns
            elif localns is None:
                localns = globalns
            self.__forward_value__ = _type_check(
                eval(self.__forward_code__, globalns, localns),
                "Forward references must evaluate to types.")
            self.__forward_evaluated__ = True
        return self.__forward_value__

    def __instancecheck__(self, obj):
        raise TypeError("Forward references cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if not self.__forward_evaluated__:
            globalns = self.__forward_frame__.f_globals
            localns = self.__forward_frame__.f_locals
            try:
                self._eval_type(globalns, localns)
            except NameError:
                return False  # Too early.
        return issubclass(cls, self.__forward_value__)

    def __repr__(self):
        return '_ForwardRef(%r)' % (self.__forward_arg__,)


class _TypeAlias:
    """Internal helper class for defining generic variants of concrete types.

    Note that this is not a type; let's call it a pseudo-type.  It can
    be used in instance and subclass checks, e.g. isinstance(m, Match)
    or issubclass(type(m), Match).  However, it cannot be itself the
    target of an issubclass() call; e.g. issubclass(Match, C) (for
    some arbitrary class C) raises TypeError rather than returning
    False.
    """

    __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')

    def __new__(cls, *args, **kwds):
        """Constructor.

        This only exists to give a better error message in case
        someone tries to subclass a type alias (not a good idea).
        """
        if (len(args) == 3 and
            isinstance(args[0], str) and
            isinstance(args[1], tuple)):
            # Close enough.
            raise TypeError("A type alias cannot be subclassed")
        return object.__new__(cls)

    def __init__(self, name, type_var, impl_type, type_checker):
        """Initializer.

        Args:
            name: The name, e.g. 'Pattern'.
            type_var: The type parameter, e.g. AnyStr, or the
                specific type, e.g. str.
            impl_type: The implementation type.
            type_checker: Function that takes an impl_type instance.
                and returns a value that should be a type_var instance.
        """
        assert isinstance(name, str), repr(name)
        assert isinstance(type_var, type), repr(type_var)
        assert isinstance(impl_type, type), repr(impl_type)
        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
        self.name = name
        self.type_var = type_var
        self.impl_type = impl_type
        self.type_checker = type_checker

    def __repr__(self):
        return "%s[%s]" % (self.name, _type_repr(self.type_var))

    def __getitem__(self, parameter):
        assert isinstance(parameter, type), repr(parameter)
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("%s cannot be further parameterized." % self)
        if self.type_var.__constraints__:
            if not issubclass(parameter, Union[self.type_var.__constraints__]):
                raise TypeError("%s is not a valid substitution for %s." %
                                (parameter, self.type_var))
        return self.__class__(self.name, parameter,
                              self.impl_type, self.type_checker)

    def __instancecheck__(self, obj):
        raise TypeError("Type aliases cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if isinstance(cls, _TypeAlias):
            # Covariance.  For now, we compare by name.
            return (cls.name == self.name and
                    issubclass(cls.type_var, self.type_var))
        else:
            # Note that this is too lenient, because the
            # implementation type doesn't carry information about
            # whether it is about bytes or str (for example).
            return issubclass(cls, self.impl_type)


def _has_type_var(t):
    return t is not None and isinstance(t, TypingMeta) and t._has_type_var()


def _eval_type(t, globalns, localns):
    if isinstance(t, TypingMeta):
        return t._eval_type(globalns, localns)
    else:
        return t


def _type_check(arg, msg):
    """Check that the argument is a type, and return it.

    As a special case, accept None and return type(None) instead.
    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.

    The msg argument is a human-readable error message, e.g.

        "Union[arg, ...]: arg should be a type."

    We append the repr() of the actual value (truncated to 100 chars).
    """
    if arg is None:
        return type(None)
    if isinstance(arg, str):
        arg = _ForwardRef(arg)
    if not isinstance(arg, (type, _TypeAlias)):
        raise TypeError(msg + " Got %.100r." % (arg,))
    return arg


def _type_repr(obj):
    """Return the repr() of an object, special-casing types.

    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
        if obj.__module__ == 'builtins':
            return _qualname(obj)
        else:
            return '%s.%s' % (obj.__module__, _qualname(obj))
    else:
        return repr(obj)


class AnyMeta(TypingMeta):
    """Metaclass for Any."""

    def __new__(cls, name, bases, namespace, _root=False):
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        return self

    def __instancecheck__(self, obj):
        raise TypeError("Any cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if not isinstance(cls, type):
            return super().__subclasscheck__(cls)  # To TypeError.
        return True


class Any(Final, metaclass=AnyMeta, _root=True):
    """Special type indicating an unconstrained type.

    - Any object is an instance of Any.
    - Any class is a subclass of Any.
    - As a special case, Any and object are subclasses of each other.
    """

    __slots__ = ()


class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
    """Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows:

      def repeat(x: T, n: int) -> Sequence[T]:
          '''Return a list containing n references to x.'''
          return [x]*n

      def longest(x: A, y: A) -> A:
          '''Return the longest of two strings.'''
          return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
    that if the arguments are instances of some subclass of str,
    the return type is still plain str.

    At runtime, isinstance(x, T) will raise TypeError.  However,
    issubclass(C, T) is true for any class C, and issubclass(str, A)
    and issubclass(bytes, A) are true, and issubclass(int, A) is
    false.

    Type variables may be marked covariant or contravariant by passing
    covariant=True or contravariant=True.  See PEP 484 for more
    details.  By default type variables are invariant.

    Type variables can be introspected. e.g.:

      T.__name__ == 'T'
      T.__constraints__ == ()
      T.__covariant__ == False
      T.__contravariant__ = False
      A.__constraints__ == (str, bytes)
    """

    def __new__(cls, name, *constraints, bound=None,
                covariant=False, contravariant=False):
        self = super().__new__(cls, name, (Final,), {}, _root=True)
        if covariant and contravariant:
            raise ValueError("Bivariant type variables are not supported.")
        self.__covariant__ = bool(covariant)
        self.__contravariant__ = bool(contravariant)
        if constraints and bound is not None:
            raise TypeError("Constraints cannot be combined with bound=...")
        if constraints and len(constraints) == 1:
            raise TypeError("A single constraint is not allowed")
        msg = "TypeVar(name, constraint, ...): constraints must be types."
        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
        if bound:
            self.__bound__ = _type_check(bound, "Bound must be a type.")
        else:
            self.__bound__ = None
        return self

    def _has_type_var(self):
        return True

    def __repr__(self):
        if self.__covariant__:
            prefix = '+'
        elif self.__contravariant__:
            prefix = '-'
        else:
            prefix = '~'
        return prefix + self.__name__

    def __instancecheck__(self, instance):
        raise TypeError("Type variables cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        # TODO: Make this raise TypeError too?
        if cls is self:
            return True
        if cls is Any:
            return True
        if self.__bound__ is not None:
            return issubclass(cls, self.__bound__)
        if self.__constraints__:
            return any(issubclass(cls, c) for c in self.__constraints__)
        return True


# Some unconstrained type variables.  These are used by the container types.
T = TypeVar('T')  # Any type.
KT = TypeVar('KT')  # Key type.
VT = TypeVar('VT')  # Value type.
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.

# A useful type variable with constraints.  This represents string types.
# TODO: What about bytearray, memoryview?
AnyStr = TypeVar('AnyStr', bytes, str)


class UnionMeta(TypingMeta):
    """Metaclass for Union."""

    def __new__(cls, name, bases, namespace, parameters=None, _root=False):
        if parameters is None:
            return super().__new__(cls, name, bases, namespace, _root=_root)
        if not isinstance(parameters, tuple):
            raise TypeError("Expected parameters=<tuple>")
        # Flatten out Union[Union[...], ...] and type-check non-Union args.
        params = []
        msg = "Union[arg, ...]: each arg must be a type."
        for p in parameters:
            if isinstance(p, UnionMeta):
                params.extend(p.__union_params__)
            else:
                params.append(_type_check(p, msg))
        # Weed out strict duplicates, preserving the first of each occurrence.
        all_params = set(params)
        if len(all_params) < len(params):
            new_params = []
            for t in params:
                if t in all_params:
                    new_params.append(t)
                    all_params.remove(t)
            params = new_params
            assert not all_params, all_params
        # Weed out subclasses.
        # E.g. Union[int, Employee, Manager] == Union[int, Employee].
        # If Any or object is present it will be the sole survivor.
        # If both Any and object are present, Any wins.
        # Never discard type variables, except against Any.
        # (In particular, Union[str, AnyStr] != AnyStr.)
        all_params = set(params)
        for t1 in params:
            if t1 is Any:
                return Any
            if isinstance(t1, TypeVar):
                continue
            if isinstance(t1, _TypeAlias):
                # _TypeAlias is not a real class.
                continue
            if any(issubclass(t1, t2)
                   for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
                all_params.remove(t1)
        # It's not a union if there's only one type left.
        if len(all_params) == 1:
            return all_params.pop()
        # Create a new class with these params.
        self = super().__new__(cls, name, bases, {}, _root=True)
        self.__union_params__ = tuple(t for t in params if t in all_params)
        self.__union_set_params__ = frozenset(self.__union_params__)
        return self

    def _eval_type(self, globalns, localns):
        p = tuple(_eval_type(t, globalns, localns)
                  for t in self.__union_params__)
        if p == self.__union_params__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  p, _root=True)

    def _has_type_var(self):
        if self.__union_params__:
            for t in self.__union_params__:
                if _has_type_var(t):
                    return True
        return False

    def __repr__(self):
        r = super().__repr__()
        if self.__union_params__:
            r += '[%s]' % (', '.join(_type_repr(t)
                                     for t in self.__union_params__))
        return r

    def __getitem__(self, parameters):
        if self.__union_params__ is not None:
            raise TypeError(
                "Cannot subscript an existing Union. Use Union[u, t] instead.")
        if parameters == ():
            raise TypeError("Cannot take a Union of no types.")
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), parameters, _root=True)

    def __eq__(self, other):
        if not isinstance(other, UnionMeta):
            return NotImplemented
        return self.__union_set_params__ == other.__union_set_params__

    def __hash__(self):
        return hash(self.__union_set_params__)

    def __instancecheck__(self, obj):
        raise TypeError("Unions cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if self.__union_params__ is None:
            return isinstance(cls, UnionMeta)
        elif isinstance(cls, UnionMeta):
            if cls.__union_params__ is None:
                return False
            return all(issubclass(c, self) for c in (cls.__union_params__))
        elif isinstance(cls, TypeVar):
            if cls in self.__union_params__:
                return True
            if cls.__constraints__:
                return issubclass(Union[cls.__constraints__], self)
            return False
        else:
            return any(issubclass(cls, t) for t in self.__union_params__)


class Union(Final, metaclass=UnionMeta, _root=True):
    """Union type; Union[X, Y] means either X or Y.

    To define a union, use e.g. Union[int, str].  Details:

    - The arguments must be types and there must be at least one.

    - None as an argument is a special case and is replaced by
      type(None).

    - Unions of unions are flattened, e.g.::

        Union[Union[int, str], float] == Union[int, str, float]

    - Unions of a single argument vanish, e.g.::

        Union[int] == int  # The constructor actually returns int

    - Redundant arguments are skipped, e.g.::

        Union[int, str, int] == Union[int, str]

    - When comparing unions, the argument order is ignored, e.g.::

        Union[int, str] == Union[str, int]

    - When two arguments have a subclass relationship, the least
      derived argument is kept, e.g.::

        class Employee: pass
        class Manager(Employee): pass
        Union[int, Employee, Manager] == Union[int, Employee]
        Union[Manager, int, Employee] == Union[int, Employee]
        Union[Employee, Manager] == Employee

    - Corollary: if Any is present it is the sole survivor, e.g.::

        Union[int, Any] == Any

    - Similar for object::

        Union[int, object] == object

    - To cut a tie: Union[object, Any] == Union[Any, object] == Any.

    - You cannot subclass or instantiate a union.

    - You cannot write Union[X][Y] (what would it mean?).

    - You can use Optional[X] as a shorthand for Union[X, None].
    """

    # Unsubscripted Union type has params set to None.
    __union_params__ = None
    __union_set_params__ = None


class OptionalMeta(TypingMeta):
    """Metaclass for Optional."""

    def __new__(cls, name, bases, namespace, _root=False):
        return super().__new__(cls, name, bases, namespace, _root=_root)

    def __getitem__(self, arg):
        arg = _type_check(arg, "Optional[t] requires a single type.")
        return Union[arg, type(None)]


class Optional(Final, metaclass=OptionalMeta, _root=True):
    """Optional type.

    Optional[X] is equivalent to Union[X, type(None)].
    """

    __slots__ = ()


class TupleMeta(TypingMeta):
    """Metaclass for Tuple."""

    def __new__(cls, name, bases, namespace, parameters=None,
                use_ellipsis=False, _root=False):
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        self.__tuple_params__ = parameters
        self.__tuple_use_ellipsis__ = use_ellipsis
        return self

    def _has_type_var(self):
        if self.__tuple_params__:
            for t in self.__tuple_params__:
                if _has_type_var(t):
                    return True
        return False

    def _eval_type(self, globalns, localns):
        tp = self.__tuple_params__
        if tp is None:
            return self
        p = tuple(_eval_type(t, globalns, localns) for t in tp)
        if p == self.__tuple_params__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  p, _root=True)

    def __repr__(self):
        r = super().__repr__()
        if self.__tuple_params__ is not None:
            params = [_type_repr(p) for p in self.__tuple_params__]
            if self.__tuple_use_ellipsis__:
                params.append('...')
            r += '[%s]' % (
                ', '.join(params))
        return r

    def __getitem__(self, parameters):
        if self.__tuple_params__ is not None:
            raise TypeError("Cannot re-parameterize %r" % (self,))
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if len(parameters) == 2 and parameters[1] == Ellipsis:
            parameters = parameters[:1]
            use_ellipsis = True
            msg = "Tuple[t, ...]: t must be a type."
        else:
            use_ellipsis = False
            msg = "Tuple[t0, t1, ...]: each t must be a type."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), parameters,
                              use_ellipsis=use_ellipsis, _root=True)

    def __eq__(self, other):
        if not isinstance(other, TupleMeta):
            return NotImplemented
        return self.__tuple_params__ == other.__tuple_params__

    def __hash__(self):
        return hash(self.__tuple_params__)

    def __instancecheck__(self, obj):
        raise TypeError("Tuples cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if not isinstance(cls, type):
            return super().__subclasscheck__(cls)  # To TypeError.
        if issubclass(cls, tuple):
            return True  # Special case.
        if not isinstance(cls, TupleMeta):
            return super().__subclasscheck__(cls)  # False.
        if self.__tuple_params__ is None:
            return True
        if cls.__tuple_params__ is None:
            return False  # ???
        if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
            return False
        # Covariance.
        return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
                all(issubclass(x, p)
                    for x, p in zip(cls.__tuple_params__,
                                    self.__tuple_params__)))


class Tuple(Final, metaclass=TupleMeta, _root=True):
    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.

    Example: Tuple[T1, T2] is a tuple of two elements corresponding
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
    of an int, a float and a string.

    To specify a variable-length tuple of homogeneous type, use Sequence[T].
    """

    __slots__ = ()


class CallableMeta(TypingMeta):
    """Metaclass for Callable."""

    def __new__(cls, name, bases, namespace, _root=False,
                args=None, result=None):
        if args is None and result is None:
            pass  # Must be 'class Callable'.
        else:
            if args is not Ellipsis:
                if not isinstance(args, list):
                    raise TypeError("Callable[args, result]: "
                                    "args must be a list."
                                    " Got %.100r." % (args,))
                msg = "Callable[[arg, ...], result]: each arg must be a type."
                args = tuple(_type_check(arg, msg) for arg in args)
            msg = "Callable[args, result]: result must be a type."
            result = _type_check(result, msg)
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        self.__args__ = args
        self.__result__ = result
        return self

    def _has_type_var(self):
        if self.__args__:
            for t in self.__args__:
                if _has_type_var(t):
                    return True
        return _has_type_var(self.__result__)

    def _eval_type(self, globalns, localns):
        if self.__args__ is None and self.__result__ is None:
            return self
        if self.__args__ is Ellipsis:
            args = self.__args__
        else:
            args = [_eval_type(t, globalns, localns) for t in self.__args__]
        result = _eval_type(self.__result__, globalns, localns)
        if args == self.__args__ and result == self.__result__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  args=args, result=result, _root=True)

    def __repr__(self):
        r = super().__repr__()
        if self.__args__ is not None or self.__result__ is not None:
            if self.__args__ is Ellipsis:
                args_r = '...'
            else:
                args_r = '[%s]' % ', '.join(_type_repr(t)
                                            for t in self.__args__)
            r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
        return r

    def __getitem__(self, parameters):
        if self.__args__ is not None or self.__result__ is not None:
            raise TypeError("This Callable type is already parameterized.")
        if not isinstance(parameters, tuple) or len(parameters) != 2:
            raise TypeError(
                "Callable must be used as Callable[[arg, ...], result].")
        args, result = parameters
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), _root=True,
                              args=args, result=result)

    def __eq__(self, other):
        if not isinstance(other, CallableMeta):
            return NotImplemented
        return (self.__args__ == other.__args__ and
                self.__result__ == other.__result__)

    def __hash__(self):
        return hash(self.__args__) ^ hash(self.__result__)

    def __instancecheck__(self, obj):
        # For unparametrized Callable we allow this, because
        # typing.Callable should be equivalent to
        # collections.abc.Callable.
        if self.__args__ is None and self.__result__ is None:
            return isinstance(obj, collections_abc.Callable)
        else:
            raise TypeError("Callable[] cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if not isinstance(cls, CallableMeta):
            return super().__subclasscheck__(cls)
        if self.__args__ is None and self.__result__ is None:
            return True
        # We're not doing covariance or contravariance -- this is *invariance*.
        return self == cls


class Callable(Final, metaclass=CallableMeta, _root=True):
    """Callable type; Callable[[int], str] is a function of (int) -> str.

    The subscription syntax must always be used with exactly two
    values: the argument list and the return type.  The argument list
    must be a list of types; the return type must be a single type.

    There is no syntax to indicate optional or keyword arguments,
    such function types are rarely used as callback types.
    """

    __slots__ = ()


def _gorg(a):
    """Return the farthest origin of a generic class."""
    assert isinstance(a, GenericMeta)
    while a.__origin__ is not None:
        a = a.__origin__
    return a


def _geqv(a, b):
    """Return whether two generic classes are equivalent.

    The intention is to consider generic class X and any of its
    parameterized forms (X[T], X[int], etc.)  as equivalent.

    However, X is not equivalent to a subclass of X.

    The relation is reflexive, symmetric and transitive.
    """
    assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
    # Reduce each to its origin.
    return _gorg(a) is _gorg(b)


class GenericMeta(TypingMeta, abc.ABCMeta):
    """Metaclass for generic types."""

    # TODO: Constrain more how Generic is used; only a few
    # standard patterns should be allowed.

    # TODO: Use a more precise rule than matching __name__ to decide
    # whether two classes are the same.  Also, save the formal
    # parameters.  (These things are related!  A solution lies in
    # using origin.)

    __extra__ = None

    def __new__(cls, name, bases, namespace,
                parameters=None, origin=None, extra=None):
        if parameters is None:
            # Extract parameters from direct base classes.  Only
            # direct bases are considered and only those that are
            # themselves generic, and parameterized with type
            # variables.  Don't use bases like Any, Union, Tuple,
            # Callable or type variables.
            params = None
            for base in bases:
                if isinstance(base, TypingMeta):
                    if not isinstance(base, GenericMeta):
                        raise TypeError(
                            "You cannot inherit from magic class %s" %
                            repr(base))
                    if base.__parameters__ is None:
                        continue  # The base is unparameterized.
                    for bp in base.__parameters__:
                        if _has_type_var(bp) and not isinstance(bp, TypeVar):
                            raise TypeError(
                                "Cannot inherit from a generic class "
                                "parameterized with "
                                "non-type-variable %s" % bp)
                        if params is None:
                            params = []
                        if bp not in params:
                            params.append(bp)
            if params is not None:
                parameters = tuple(params)
        self = super().__new__(cls, name, bases, namespace, _root=True)
        self.__parameters__ = parameters
        if extra is not None:
            self.__extra__ = extra
        # Else __extra__ is inherited, eventually from the
        # (meta-)class default above.
        self.__origin__ = origin
        return self

    def _has_type_var(self):
        if self.__parameters__:
            for t in self.__parameters__:
                if _has_type_var(t):
                    return True
        return False

    def __repr__(self):
        r = super().__repr__()
        if self.__parameters__ is not None:
            r += '[%s]' % (
                ', '.join(_type_repr(p) for p in self.__parameters__))
        return r

    def __eq__(self, other):
        if not isinstance(other, GenericMeta):
            return NotImplemented
        return (_geqv(self, other) and
                self.__parameters__ == other.__parameters__)

    def __hash__(self):
        return hash((self.__name__, self.__parameters__))

    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        if not params:
            raise TypeError("Cannot have empty parameter list")
        msg = "Parameters to generic types must be types."
        params = tuple(_type_check(p, msg) for p in params)
        if self.__parameters__ is None:
            for p in params:
                if not isinstance(p, TypeVar):
                    raise TypeError("Initial parameters must be "
                                    "type variables; got %s" % p)
            if len(set(params)) != len(params):
                raise TypeError(
                    "All type variables in Generic[...] must be distinct.")
        else:
            if len(params) != len(self.__parameters__):
                raise TypeError("Cannot change parameter count from %d to %d" %
                                (len(self.__parameters__), len(params)))
            for new, old in zip(params, self.__parameters__):
                if isinstance(old, TypeVar):
                    if not old.__constraints__:
                        # Substituting for an unconstrained TypeVar is OK.
                        continue
                    if issubclass(new, Union[old.__constraints__]):
                        # Specializing a constrained type variable is OK.
                        continue
                if not issubclass(new, old):
                    raise TypeError(
                        "Cannot substitute %s for %s in %s" %
                        (_type_repr(new), _type_repr(old), self))

        return self.__class__(self.__name__, (self,) + self.__bases__,
                              dict(self.__dict__),
                              parameters=params,
                              origin=self,
                              extra=self.__extra__)

    def __instancecheck__(self, instance):
        # Since we extend ABC.__subclasscheck__ and
        # ABC.__instancecheck__ inlines the cache checking done by the
        # latter, we must extend __instancecheck__ too. For simplicity
        # we just skip the cache check -- instance checks for generic
        # classes are supposed to be rare anyways.
        return self.__subclasscheck__(instance.__class__)

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if isinstance(cls, GenericMeta):
            # For a class C(Generic[T]) where T is co-variant,
            # C[X] is a subclass of C[Y] iff X is a subclass of Y.
            origin = self.__origin__
            if origin is not None and origin is cls.__origin__:
                assert len(self.__parameters__) == len(origin.__parameters__)
                assert len(cls.__parameters__) == len(origin.__parameters__)
                for p_self, p_cls, p_origin in zip(self.__parameters__,
                                                   cls.__parameters__,
                                                   origin.__parameters__):
                    if isinstance(p_origin, TypeVar):
                        if p_origin.__covariant__:
                            # Covariant -- p_cls must be a subclass of p_self.
                            if not issubclass(p_cls, p_self):
                                break
                        elif p_origin.__contravariant__:
                            # Contravariant.  I think it's the opposite. :-)
                            if not issubclass(p_self, p_cls):
                                break
                        else:
                            # Invariant -- p_cls and p_self must equal.
                            if p_self != p_cls:
                                break
                    else:
                        # If the origin's parameter is not a typevar,
                        # insist on invariance.
                        if p_self != p_cls:
                            break
                else:
                    return True
                # If we break out of the loop, the superclass gets a chance.
        if super().__subclasscheck__(cls):
            return True
        if self.__extra__ is None or isinstance(cls, GenericMeta):
            return False
        return issubclass(cls, self.__extra__)


class Generic(metaclass=GenericMeta):
    """Abstract base class for generic types.

    A generic type is typically declared by inheriting from an
    instantiation of this class with one or more type variables.
    For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
          # Etc.

    This class can then be used as follows::

      def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
          try:
              return mapping[key]
          except KeyError:
              return default

    For clarity the type variables may be redefined, e.g.::

      X = TypeVar('X')
      Y = TypeVar('Y')
      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
          # Same body as above.
    """

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        next_in_mro = object
        # Look for the last occurrence of Generic or Generic[...].
        for i, c in enumerate(cls.__mro__[:-1]):
            if isinstance(c, GenericMeta) and _gorg(c) is Generic:
                next_in_mro = cls.__mro__[i+1]
        return next_in_mro.__new__(_gorg(cls))


def cast(typ, val):
    """Cast a value to a type.

    This returns the value unchanged.  To the type checker this
    signals that the return value has the designated type, but at
    runtime we intentionally don't check anything (we want this
    to be as fast as possible).
    """
    return val


def _get_defaults(func):
    """Internal helper to extract the default arguments, by name."""
    code = func.__code__
    pos_count = code.co_argcount
    kw_count = code.co_kwonlyargcount
    arg_names = code.co_varnames
    kwarg_names = arg_names[pos_count:pos_count + kw_count]
    arg_names = arg_names[:pos_count]
    defaults = func.__defaults__ or ()
    kwdefaults = func.__kwdefaults__
    res = dict(kwdefaults) if kwdefaults else {}
    pos_offset = pos_count - len(defaults)
    for name, value in zip(arg_names[pos_offset:], defaults):
        assert name not in res
        res[name] = value
    return res


def get_type_hints(obj, globalns=None, localns=None):
    """Return type hints for a function or method object.

    This is often the same as obj.__annotations__, but it handles
    forward references encoded as string literals, and if necessary
    adds Optional[t] if a default value equal to None is set.

    BEWARE -- the behavior of globalns and localns is counterintuitive
    (unless you are familiar with how eval() and exec() work).  The
    search order is locals first, then globals.

    - If no dict arguments are passed, an attempt is made to use the
      globals from obj, and these are also used as the locals.  If the
      object does not appear to have globals, an exception is raised.

    - If one dict argument is passed, it is used for both globals and
      locals.

    - If two dict arguments are passed, they specify globals and
      locals, respectively.
    """
    if getattr(obj, '__no_type_check__', None):
        return {}
    if globalns is None:
        globalns = getattr(obj, '__globals__', {})
        if localns is None:
            localns = globalns
    elif localns is None:
        localns = globalns
    defaults = _get_defaults(obj)
    hints = dict(obj.__annotations__)
    for name, value in hints.items():
        if isinstance(value, str):
            value = _ForwardRef(value)
        value = _eval_type(value, globalns, localns)
        if name in defaults and defaults[name] is None:
            value = Optional[value]
        hints[name] = value
    return hints


# TODO: Also support this as a class decorator.
def no_type_check(arg):
    """Decorator to indicate that annotations are not type hints.

    The argument must be a class or function; if it is a class, it
    applies recursively to all methods defined in that class (but not
    to methods defined in its superclasses or subclasses).

    This mutates the function(s) in place.
    """
    if isinstance(arg, type):
        for obj in arg.__dict__.values():
            if isinstance(obj, types.FunctionType):
                obj.__no_type_check__ = True
    else:
        arg.__no_type_check__ = True
    return arg


def no_type_check_decorator(decorator):
    """Decorator to give another decorator the @no_type_check effect.

    This wraps the decorator with something that wraps the decorated
    function in @no_type_check.
    """

    @functools.wraps(decorator)
    def wrapped_decorator(*args, **kwds):
        func = decorator(*args, **kwds)
        func = no_type_check(func)
        return func

    return wrapped_decorator


def overload(func):
    raise RuntimeError("Overloading is only supported in library stubs")


class _ProtocolMeta(GenericMeta):
    """Internal metaclass for _Protocol.

    This exists so _Protocol classes can be generic without deriving
    from Generic.
    """

    def __instancecheck__(self, obj):
        raise TypeError("Protocols cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if not self._is_protocol:
            # No structural checks since this isn't a protocol.
            return NotImplemented

        if self is _Protocol:
            # Every class is a subclass of the empty protocol.
            return True

        # Find all attributes defined in the protocol.
        attrs = self._get_protocol_attrs()

        for attr in attrs:
            if not any(attr in d.__dict__ for d in cls.__mro__):
                return False
        return True

    def _get_protocol_attrs(self):
        # Get all Protocol base classes.
        protocol_bases = []
        for c in self.__mro__:
            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
                protocol_bases.append(c)

        # Get attributes included in protocol.
        attrs = set()
        for base in protocol_bases:
            for attr in base.__dict__.keys():
                # Include attributes not defined in any non-protocol bases.
                for c in self.__mro__:
                    if (c is not base and attr in c.__dict__ and
                            not getattr(c, '_is_protocol', False)):
                        break
                else:
                    if (not attr.startswith('_abc_') and
                        attr != '__abstractmethods__' and
                        attr != '_is_protocol' and
                        attr != '__dict__' and
                        attr != '__slots__' and
                        attr != '_get_protocol_attrs' and
                        attr != '__parameters__' and
                        attr != '__origin__' and
                        attr != '__module__'):
                        attrs.add(attr)

        return attrs


class _Protocol(metaclass=_ProtocolMeta):
    """Internal base class for protocol classes.

    This implements a simple-minded structural isinstance check
    (similar but more general than the one-offs in collections.abc
    such as Hashable).
    """

    __slots__ = ()

    _is_protocol = True


# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.

Hashable = collections_abc.Hashable  # Not generic.


class Awaitable(Generic[T_co], extra=collections_abc.Awaitable):
    __slots__ = ()


class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable):
    __slots__ = ()


class AsyncIterator(AsyncIterable[T_co], extra=collections_abc.AsyncIterator):
    __slots__ = ()


class Iterable(Generic[T_co], extra=collections_abc.Iterable):
    __slots__ = ()


class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
    __slots__ = ()


class SupportsInt(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __int__(self) -> int:
        pass


class SupportsFloat(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __float__(self) -> float:
        pass


class SupportsComplex(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __complex__(self) -> complex:
        pass


class SupportsBytes(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __bytes__(self) -> bytes:
        pass


class SupportsAbs(_Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __abs__(self) -> T_co:
        pass


class SupportsRound(_Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __round__(self, ndigits: int = 0) -> T_co:
        pass


class Reversible(_Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __reversed__(self) -> 'Iterator[T_co]':
        pass


Sized = collections_abc.Sized  # Not generic.


class Container(Generic[T_co], extra=collections_abc.Container):
    __slots__ = ()


# Callable was defined earlier.


class AbstractSet(Sized, Iterable[T_co], Container[T_co],
                  extra=collections_abc.Set):
    pass


class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
    pass


# NOTE: Only the value type is covariant.
class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co],
              extra=collections_abc.Mapping):
    pass


class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
    pass


class Sequence(Sized, Iterable[T_co], Container[T_co],
               extra=collections_abc.Sequence):
    pass


class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
    pass


class ByteString(Sequence[int], extra=collections_abc.ByteString):
    pass


ByteString.register(type(memoryview(b'')))


class List(list, MutableSequence[T]):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, List):
            raise TypeError("Type List cannot be instantiated; "
                            "use list() instead")
        return list.__new__(cls, *args, **kwds)


class Set(set, MutableSet[T]):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Set):
            raise TypeError("Type Set cannot be instantiated; "
                            "use set() instead")
        return set.__new__(cls, *args, **kwds)


class _FrozenSetMeta(GenericMeta):
    """This metaclass ensures set is not a subclass of FrozenSet.

    Without this metaclass, set would be considered a subclass of
    FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
    set is a subclass of that.
    """

    def __subclasscheck__(self, cls):
        if issubclass(cls, Set):
            return False
        return super().__subclasscheck__(cls)


class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if _geqv(cls, FrozenSet):
            raise TypeError("Type FrozenSet cannot be instantiated; "
                            "use frozenset() instead")
        return frozenset.__new__(cls, *args, **kwds)


class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
    pass


class KeysView(MappingView[KT], AbstractSet[KT],
               extra=collections_abc.KeysView):
    pass


# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co].
class ItemsView(MappingView, Generic[KT, VT_co],
                extra=collections_abc.ItemsView):
    pass


class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
    pass


class Dict(dict, MutableMapping[KT, VT]):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Dict):
            raise TypeError("Type Dict cannot be instantiated; "
                            "use dict() instead")
        return dict.__new__(cls, *args, **kwds)


# Determine what base class to use for Generator.
if hasattr(collections_abc, 'Generator'):
    # Sufficiently recent versions of 3.5 have a Generator ABC.
    _G_base = collections_abc.Generator
else:
    # Fall back on the exact type.
    _G_base = types.GeneratorType


class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
                extra=_G_base):
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Generator):
            raise TypeError("Type Generator cannot be instantiated; "
                            "create a subclass instead")
        return super().__new__(cls, *args, **kwds)


def NamedTuple(typename, fields):
    """Typed version of namedtuple.

    Usage::

        Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])

    This is equivalent to::

        Employee = collections.namedtuple('Employee', ['name', 'id'])

    The resulting class has one extra attribute: _field_types,
    giving a dict mapping field names to types.  (The field names
    are in the _fields attribute, which is part of the namedtuple
    API.)
    """
    fields = [(n, t) for n, t in fields]
    cls = collections.namedtuple(typename, [n for n, t in fields])
    cls._field_types = dict(fields)
    # Set the module to the caller's module (otherwise it'd be 'typing').
    try:
        cls.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass
    return cls


class IO(Generic[AnyStr]):
    """Generic base class for TextIO and BinaryIO.

    This is an abstract, generic version of the return of open().

    NOTE: This does not distinguish between the different possible
    classes (text vs. binary, read vs. write vs. read/write,
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
    below capture the distinctions between text vs. binary, which is
    pervasive in the interface; however we currently do not offer a
    way to track the other distinctions in the type system.
    """

    __slots__ = ()

    @abstractproperty
    def mode(self) -> str:
        pass

    @abstractproperty
    def name(self) -> str:
        pass

    @abstractmethod
    def close(self) -> None:
        pass

    @abstractmethod
    def closed(self) -> bool:
        pass

    @abstractmethod
    def fileno(self) -> int:
        pass

    @abstractmethod
    def flush(self) -> None:
        pass

    @abstractmethod
    def isatty(self) -> bool:
        pass

    @abstractmethod
    def read(self, n: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readable(self) -> bool:
        pass

    @abstractmethod
    def readline(self, limit: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readlines(self, hint: int = -1) -> List[AnyStr]:
        pass

    @abstractmethod
    def seek(self, offset: int, whence: int = 0) -> int:
        pass

    @abstractmethod
    def seekable(self) -> bool:
        pass

    @abstractmethod
    def tell(self) -> int:
        pass

    @abstractmethod
    def truncate(self, size: int = None) -> int:
        pass

    @abstractmethod
    def writable(self) -> bool:
        pass

    @abstractmethod
    def write(self, s: AnyStr) -> int:
        pass

    @abstractmethod
    def writelines(self, lines: List[AnyStr]) -> None:
        pass

    @abstractmethod
    def __enter__(self) -> 'IO[AnyStr]':
        pass

    @abstractmethod
    def __exit__(self, type, value, traceback) -> None:
        pass


class BinaryIO(IO[bytes]):
    """Typed version of the return of open() in binary mode."""

    __slots__ = ()

    @abstractmethod
    def write(self, s: Union[bytes, bytearray]) -> int:
        pass

    @abstractmethod
    def __enter__(self) -> 'BinaryIO':
        pass


class TextIO(IO[str]):
    """Typed version of the return of open() in text mode."""

    __slots__ = ()

    @abstractproperty
    def buffer(self) -> BinaryIO:
        pass

    @abstractproperty
    def encoding(self) -> str:
        pass

    @abstractproperty
    def errors(self) -> str:
        pass

    @abstractproperty
    def line_buffering(self) -> bool:
        pass

    @abstractproperty
    def newlines(self) -> Any:
        pass

    @abstractmethod
    def __enter__(self) -> 'TextIO':
        pass


class io:
    """Wrapper namespace for IO generic classes."""

    __all__ = ['IO', 'TextIO', 'BinaryIO']
    IO = IO
    TextIO = TextIO
    BinaryIO = BinaryIO

io.__name__ = __name__ + '.io'
sys.modules[io.__name__] = io


Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
                     lambda p: p.pattern)
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
                   lambda m: m.re.pattern)


class re:
    """Wrapper namespace for re type aliases."""

    __all__ = ['Pattern', 'Match']
    Pattern = Pattern
    Match = Match

re.__name__ = __name__ + '.re'
sys.modules[re.__name__] = re