/usr/include/tcadb.h is in libtokyocabinet-dev 1.4.48-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | /*************************************************************************************************
* The abstract database API of Tokyo Cabinet
* Copyright (C) 2006-2012 FAL Labs
* This file is part of Tokyo Cabinet.
* Tokyo Cabinet is free software; you can redistribute it and/or modify it under the terms of
* the GNU Lesser General Public License as published by the Free Software Foundation; either
* version 2.1 of the License or any later version. Tokyo Cabinet is distributed in the hope
* that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
* You should have received a copy of the GNU Lesser General Public License along with Tokyo
* Cabinet; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA.
*************************************************************************************************/
#ifndef _TCADB_H /* duplication check */
#define _TCADB_H
#if defined(__cplusplus)
#define __TCADB_CLINKAGEBEGIN extern "C" {
#define __TCADB_CLINKAGEEND }
#else
#define __TCADB_CLINKAGEBEGIN
#define __TCADB_CLINKAGEEND
#endif
__TCADB_CLINKAGEBEGIN
#include <tcutil.h>
#include <tchdb.h>
#include <tcbdb.h>
#include <tcfdb.h>
#include <tctdb.h>
/*************************************************************************************************
* API
*************************************************************************************************/
typedef struct { /* type of structure for an abstract database */
int omode; /* open mode */
TCMDB *mdb; /* on-memory hash database object */
TCNDB *ndb; /* on-memory tree database object */
TCHDB *hdb; /* hash database object */
TCBDB *bdb; /* B+ tree database object */
TCFDB *fdb; /* fixed-length databae object */
TCTDB *tdb; /* table database object */
int64_t capnum; /* capacity number of records */
int64_t capsiz; /* capacity size of using memory */
uint32_t capcnt; /* count for capacity check */
BDBCUR *cur; /* cursor of B+ tree */
void *skel; /* skeleton database */
} TCADB;
enum { /* enumeration for open modes */
ADBOVOID, /* not opened */
ADBOMDB, /* on-memory hash database */
ADBONDB, /* on-memory tree database */
ADBOHDB, /* hash database */
ADBOBDB, /* B+ tree database */
ADBOFDB, /* fixed-length database */
ADBOTDB, /* table database */
ADBOSKEL /* skeleton database */
};
/* Create an abstract database object.
The return value is the new abstract database object. */
TCADB *tcadbnew(void);
/* Delete an abstract database object.
`adb' specifies the abstract database object. */
void tcadbdel(TCADB *adb);
/* Open an abstract database.
`adb' specifies the abstract database object.
`name' specifies the name of the database. If it is "*", the database will be an on-memory
hash database. If it is "+", the database will be an on-memory tree database. If its suffix
is ".tch", the database will be a hash database. If its suffix is ".tcb", the database will
be a B+ tree database. If its suffix is ".tcf", the database will be a fixed-length database.
If its suffix is ".tct", the database will be a table database. Otherwise, this function
fails. Tuning parameters can trail the name, separated by "#". Each parameter is composed of
the name and the value, separated by "=". On-memory hash database supports "bnum", "capnum",
and "capsiz". On-memory tree database supports "capnum" and "capsiz". Hash database supports
"mode", "bnum", "apow", "fpow", "opts", "rcnum", "xmsiz", and "dfunit". B+ tree database
supports "mode", "lmemb", "nmemb", "bnum", "apow", "fpow", "opts", "lcnum", "ncnum", "xmsiz",
and "dfunit". Fixed-length database supports "mode", "width", and "limsiz". Table database
supports "mode", "bnum", "apow", "fpow", "opts", "rcnum", "lcnum", "ncnum", "xmsiz", "dfunit",
and "idx".
If successful, the return value is true, else, it is false.
The tuning parameter "capnum" specifies the capacity number of records. "capsiz" specifies
the capacity size of using memory. Records spilled the capacity are removed by the storing
order. "mode" can contain "w" of writer, "r" of reader, "c" of creating, "t" of truncating,
"e" of no locking, and "f" of non-blocking lock. The default mode is relevant to "wc".
"opts" can contains "l" of large option, "d" of Deflate option, "b" of BZIP2 option, and "t"
of TCBS option. "idx" specifies the column name of an index and its type separated by ":".
For example, "casket.tch#bnum=1000000#opts=ld" means that the name of the database file is
"casket.tch", and the bucket number is 1000000, and the options are large and Deflate. */
bool tcadbopen(TCADB *adb, const char *name);
/* Close an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false.
Update of a database is assured to be written when the database is closed. If a writer opens
a database but does not close it appropriately, the database will be broken. */
bool tcadbclose(TCADB *adb);
/* Store a record into an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
If successful, the return value is true, else, it is false.
If a record with the same key exists in the database, it is overwritten. */
bool tcadbput(TCADB *adb, const void *kbuf, int ksiz, const void *vbuf, int vsiz);
/* Store a string record into an abstract object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
`vstr' specifies the string of the value.
If successful, the return value is true, else, it is false.
If a record with the same key exists in the database, it is overwritten. */
bool tcadbput2(TCADB *adb, const char *kstr, const char *vstr);
/* Store a new record into an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
If successful, the return value is true, else, it is false.
If a record with the same key exists in the database, this function has no effect. */
bool tcadbputkeep(TCADB *adb, const void *kbuf, int ksiz, const void *vbuf, int vsiz);
/* Store a new string record into an abstract database object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
`vstr' specifies the string of the value.
If successful, the return value is true, else, it is false.
If a record with the same key exists in the database, this function has no effect. */
bool tcadbputkeep2(TCADB *adb, const char *kstr, const char *vstr);
/* Concatenate a value at the end of the existing record in an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
If successful, the return value is true, else, it is false.
If there is no corresponding record, a new record is created. */
bool tcadbputcat(TCADB *adb, const void *kbuf, int ksiz, const void *vbuf, int vsiz);
/* Concatenate a string value at the end of the existing record in an abstract database object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
`vstr' specifies the string of the value.
If successful, the return value is true, else, it is false.
If there is no corresponding record, a new record is created. */
bool tcadbputcat2(TCADB *adb, const char *kstr, const char *vstr);
/* Remove a record of an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
If successful, the return value is true, else, it is false. */
bool tcadbout(TCADB *adb, const void *kbuf, int ksiz);
/* Remove a string record of an abstract database object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
If successful, the return value is true, else, it is false. */
bool tcadbout2(TCADB *adb, const char *kstr);
/* Retrieve a record in an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`sp' specifies the pointer to the variable into which the size of the region of the return
value is assigned.
If successful, the return value is the pointer to the region of the value of the corresponding
record. `NULL' is returned if no record corresponds.
Because an additional zero code is appended at the end of the region of the return value,
the return value can be treated as a character string. Because the region of the return
value is allocated with the `malloc' call, it should be released with the `free' call when
it is no longer in use. */
void *tcadbget(TCADB *adb, const void *kbuf, int ksiz, int *sp);
/* Retrieve a string record in an abstract database object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
If successful, the return value is the string of the value of the corresponding record.
`NULL' is returned if no record corresponds.
Because the region of the return value is allocated with the `malloc' call, it should be
released with the `free' call when it is no longer in use. */
char *tcadbget2(TCADB *adb, const char *kstr);
/* Get the size of the value of a record in an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
If successful, the return value is the size of the value of the corresponding record, else,
it is -1. */
int tcadbvsiz(TCADB *adb, const void *kbuf, int ksiz);
/* Get the size of the value of a string record in an abstract database object.
`adb' specifies the abstract database object.
`kstr' specifies the string of the key.
If successful, the return value is the size of the value of the corresponding record, else,
it is -1. */
int tcadbvsiz2(TCADB *adb, const char *kstr);
/* Initialize the iterator of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false.
The iterator is used in order to access the key of every record stored in a database. */
bool tcadbiterinit(TCADB *adb);
/* Get the next key of the iterator of an abstract database object.
`adb' specifies the abstract database object.
`sp' specifies the pointer to the variable into which the size of the region of the return
value is assigned.
If successful, the return value is the pointer to the region of the next key, else, it is
`NULL'. `NULL' is returned when no record is to be get out of the iterator.
Because an additional zero code is appended at the end of the region of the return value, the
return value can be treated as a character string. Because the region of the return value is
allocated with the `malloc' call, it should be released with the `free' call when it is no
longer in use. It is possible to access every record by iteration of calling this function.
It is allowed to update or remove records whose keys are fetched while the iteration.
However, it is not assured if updating the database is occurred while the iteration. Besides,
the order of this traversal access method is arbitrary, so it is not assured that the order of
storing matches the one of the traversal access. */
void *tcadbiternext(TCADB *adb, int *sp);
/* Get the next key string of the iterator of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is the string of the next key, else, it is `NULL'. `NULL' is
returned when no record is to be get out of the iterator.
Because the region of the return value is allocated with the `malloc' call, it should be
released with the `free' call when it is no longer in use. It is possible to access every
record by iteration of calling this function. However, it is not assured if updating the
database is occurred while the iteration. Besides, the order of this traversal access method
is arbitrary, so it is not assured that the order of storing matches the one of the traversal
access. */
char *tcadbiternext2(TCADB *adb);
/* Get forward matching keys in an abstract database object.
`adb' specifies the abstract database object.
`pbuf' specifies the pointer to the region of the prefix.
`psiz' specifies the size of the region of the prefix.
`max' specifies the maximum number of keys to be fetched. If it is negative, no limit is
specified.
The return value is a list object of the corresponding keys. This function does never fail.
It returns an empty list even if no key corresponds.
Because the object of the return value is created with the function `tclistnew', it should be
deleted with the function `tclistdel' when it is no longer in use. Note that this function
may be very slow because every key in the database is scanned. */
TCLIST *tcadbfwmkeys(TCADB *adb, const void *pbuf, int psiz, int max);
/* Get forward matching string keys in an abstract database object.
`adb' specifies the abstract database object.
`pstr' specifies the string of the prefix.
`max' specifies the maximum number of keys to be fetched. If it is negative, no limit is
specified.
The return value is a list object of the corresponding keys. This function does never fail.
It returns an empty list even if no key corresponds.
Because the object of the return value is created with the function `tclistnew', it should be
deleted with the function `tclistdel' when it is no longer in use. Note that this function
may be very slow because every key in the database is scanned. */
TCLIST *tcadbfwmkeys2(TCADB *adb, const char *pstr, int max);
/* Add an integer to a record in an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`num' specifies the additional value.
If successful, the return value is the summation value, else, it is `INT_MIN'.
If the corresponding record exists, the value is treated as an integer and is added to. If no
record corresponds, a new record of the additional value is stored. */
int tcadbaddint(TCADB *adb, const void *kbuf, int ksiz, int num);
/* Add a real number to a record in an abstract database object.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`num' specifies the additional value.
If successful, the return value is the summation value, else, it is Not-a-Number.
If the corresponding record exists, the value is treated as a real number and is added to. If
no record corresponds, a new record of the additional value is stored. */
double tcadbadddouble(TCADB *adb, const void *kbuf, int ksiz, double num);
/* Synchronize updated contents of an abstract database object with the file and the device.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false. */
bool tcadbsync(TCADB *adb);
/* Optimize the storage of an abstract database object.
`adb' specifies the abstract database object.
`params' specifies the string of the tuning parameters, which works as with the tuning
of parameters the function `tcadbopen'. If it is `NULL', it is not used.
If successful, the return value is true, else, it is false.
This function is useful to reduce the size of the database storage with data fragmentation by
successive updating. */
bool tcadboptimize(TCADB *adb, const char *params);
/* Remove all records of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false. */
bool tcadbvanish(TCADB *adb);
/* Copy the database file of an abstract database object.
`adb' specifies the abstract database object.
`path' specifies the path of the destination file. If it begins with `@', the trailing
substring is executed as a command line.
If successful, the return value is true, else, it is false. False is returned if the executed
command returns non-zero code.
The database file is assured to be kept synchronized and not modified while the copying or
executing operation is in progress. So, this function is useful to create a backup file of
the database file. */
bool tcadbcopy(TCADB *adb, const char *path);
/* Begin the transaction of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false.
The database is locked by the thread while the transaction so that only one transaction can be
activated with a database object at the same time. Thus, the serializable isolation level is
assumed if every database operation is performed in the transaction. All updated regions are
kept track of by write ahead logging while the transaction. If the database is closed during
transaction, the transaction is aborted implicitly. */
bool tcadbtranbegin(TCADB *adb);
/* Commit the transaction of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false.
Update in the transaction is fixed when it is committed successfully. */
bool tcadbtrancommit(TCADB *adb);
/* Abort the transaction of an abstract database object.
`adb' specifies the abstract database object.
If successful, the return value is true, else, it is false.
Update in the transaction is discarded when it is aborted. The state of the database is
rollbacked to before transaction. */
bool tcadbtranabort(TCADB *adb);
/* Get the file path of an abstract database object.
`adb' specifies the abstract database object.
The return value is the path of the database file or `NULL' if the object does not connect to
any database. "*" stands for on-memory hash database. "+" stands for on-memory tree
database. */
const char *tcadbpath(TCADB *adb);
/* Get the number of records of an abstract database object.
`adb' specifies the abstract database object.
The return value is the number of records or 0 if the object does not connect to any database
instance. */
uint64_t tcadbrnum(TCADB *adb);
/* Get the size of the database of an abstract database object.
`adb' specifies the abstract database object.
The return value is the size of the database or 0 if the object does not connect to any
database instance. */
uint64_t tcadbsize(TCADB *adb);
/* Call a versatile function for miscellaneous operations of an abstract database object.
`adb' specifies the abstract database object.
`name' specifies the name of the function. All databases support "put", "out", "get",
"putlist", "outlist", "getlist", and "getpart". "put" is to store a record. It receives a
key and a value, and returns an empty list. "out" is to remove a record. It receives a key,
and returns an empty list. "get" is to retrieve a record. It receives a key, and returns a
list of the values. "putlist" is to store records. It receives keys and values one after the
other, and returns an empty list. "outlist" is to remove records. It receives keys, and
returns an empty list. "getlist" is to retrieve records. It receives keys, and returns keys
and values of corresponding records one after the other. "getpart" is to retrieve the partial
value of a record. It receives a key, the offset of the region, and the length of the region.
`args' specifies a list object containing arguments.
If successful, the return value is a list object of the result. `NULL' is returned on failure.
Because the object of the return value is created with the function `tclistnew', it
should be deleted with the function `tclistdel' when it is no longer in use. */
TCLIST *tcadbmisc(TCADB *adb, const char *name, const TCLIST *args);
/*************************************************************************************************
* features for experts
*************************************************************************************************/
typedef struct { /* type of structure for a extra database skeleton */
void *opq; /* opaque pointer */
void (*del)(void *); /* destructor */
bool (*open)(void *, const char *);
bool (*close)(void *);
bool (*put)(void *, const void *, int, const void *, int);
bool (*putkeep)(void *, const void *, int, const void *, int);
bool (*putcat)(void *, const void *, int, const void *, int);
bool (*out)(void *, const void *, int);
void *(*get)(void *, const void *, int, int *);
int (*vsiz)(void *, const void *, int);
bool (*iterinit)(void *);
void *(*iternext)(void *, int *);
TCLIST *(*fwmkeys)(void *, const void *, int, int);
int (*addint)(void *, const void *, int, int);
double (*adddouble)(void *, const void *, int, double);
bool (*sync)(void *);
bool (*optimize)(void *, const char *);
bool (*vanish)(void *);
bool (*copy)(void *, const char *);
bool (*tranbegin)(void *);
bool (*trancommit)(void *);
bool (*tranabort)(void *);
const char *(*path)(void *);
uint64_t (*rnum)(void *);
uint64_t (*size)(void *);
TCLIST *(*misc)(void *, const char *, const TCLIST *);
bool (*putproc)(void *, const void *, int, const void *, int, TCPDPROC, void *);
bool (*foreach)(void *, TCITER, void *);
} ADBSKEL;
/* type of the pointer to a mapping function.
`map' specifies the pointer to the destination manager.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
`op' specifies the pointer to the optional opaque object.
The return value is true to continue iteration or false to stop iteration. */
typedef bool (*ADBMAPPROC)(void *map, const char *kbuf, int ksiz, const char *vbuf, int vsiz,
void *op);
/* Set an extra database sleleton to an abstract database object.
`adb' specifies the abstract database object.
`skel' specifies the extra database skeleton.
If successful, the return value is true, else, it is false. */
bool tcadbsetskel(TCADB *adb, ADBSKEL *skel);
/* Set the multiple database skeleton to an abstract database object.
`adb' specifies the abstract database object.
`num' specifies the number of inner databases.
If successful, the return value is true, else, it is false. */
bool tcadbsetskelmulti(TCADB *adb, int num);
/* Get the open mode of an abstract database object.
`adb' specifies the abstract database object.
The return value is `ADBOVOID' for not opened database, `ADBOMDB' for on-memory hash database,
`ADBONDB' for on-memory tree database, `ADBOHDB' for hash database, `ADBOBDB' for B+ tree
database, `ADBOFDB' for fixed-length database, `ADBOTDB' for table database. */
int tcadbomode(TCADB *adb);
/* Get the concrete database object of an abstract database object.
`adb' specifies the abstract database object.
The return value is the concrete database object depend on the open mode or 0 if the object
does not connect to any database instance. */
void *tcadbreveal(TCADB *adb);
/* Store a record into an abstract database object with a duplication handler.
`adb' specifies the abstract database object.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
`proc' specifies the pointer to the callback function to process duplication.
`op' specifies an arbitrary pointer to be given as a parameter of the callback function. If
it is not needed, `NULL' can be specified.
If successful, the return value is true, else, it is false.
This function does not work for the table database. */
bool tcadbputproc(TCADB *adb, const void *kbuf, int ksiz, const void *vbuf, int vsiz,
TCPDPROC proc, void *op);
/* Process each record atomically of an abstract database object.
`adb' specifies the abstract database object.
`iter' specifies the pointer to the iterator function called for each record.
`op' specifies an arbitrary pointer to be given as a parameter of the iterator function. If
it is not needed, `NULL' can be specified.
If successful, the return value is true, else, it is false. */
bool tcadbforeach(TCADB *adb, TCITER iter, void *op);
/* Map records of an abstract database object into another B+ tree database.
`adb' specifies the abstract database object.
`keys' specifies a list object of the keys of the target records. If it is `NULL', every
record is processed.
`bdb' specifies the B+ tree database object into which records emitted by the mapping function
are stored.
`proc' specifies the pointer to the mapping function called for each record.
`op' specifies specifies the pointer to the optional opaque object for the mapping function.
`csiz' specifies the size of the cache to sort emitted records. If it is negative, the
default size is specified. The default size is 268435456.
If successful, the return value is true, else, it is false. */
bool tcadbmapbdb(TCADB *adb, TCLIST *keys, TCBDB *bdb, ADBMAPPROC proc, void *op, int64_t csiz);
/* Emit records generated by the mapping function into the result map.
`kbuf' specifies the pointer to the region of the key.
`ksiz' specifies the size of the region of the key.
`vbuf' specifies the pointer to the region of the value.
`vsiz' specifies the size of the region of the value.
If successful, the return value is true, else, it is false. */
bool tcadbmapbdbemit(void *map, const char *kbuf, int ksiz, const char *vbuf, int vsiz);
__TCADB_CLINKAGEEND
#endif /* duplication check */
/* END OF FILE */
|