This file is indexed.

/usr/include/llvm-3.8/llvm/IR/ConstantRange.h is in llvm-3.8-dev 1:3.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges: :
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0)     = {}       = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H

#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/DataTypes.h"

namespace llvm {

/// This class represents a range of values.
///
class ConstantRange {
  APInt Lower, Upper;

  // If we have move semantics, pass APInts by value and move them into place.
  typedef APInt APIntMoveTy;

public:
  /// Initialize a full (the default) or empty set for the specified bit width.
  ///
  explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);

  /// Initialize a range to hold the single specified value.
  ///
  ConstantRange(APIntMoveTy Value);

  /// @brief Initialize a range of values explicitly. This will assert out if
  /// Lower==Upper and Lower != Min or Max value for its type. It will also
  /// assert out if the two APInt's are not the same bit width.
  ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);

  /// Produce the smallest range such that all values that may satisfy the given
  /// predicate with any value contained within Other is contained in the
  /// returned range.  Formally, this returns a superset of
  /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
  /// answer is not representable as a ConstantRange, the return value will be a
  /// proper superset of the above.
  ///
  /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
  static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
                                             const ConstantRange &Other);

  /// Produce the largest range such that all values in the returned range
  /// satisfy the given predicate with all values contained within Other.
  /// Formally, this returns a subset of
  /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
  /// exact answer is not representable as a ConstantRange, the return value
  /// will be a proper subset of the above.
  ///
  /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
  static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
                                                const ConstantRange &Other);

  /// Return the largest range containing all X such that "X BinOpC C" does not
  /// wrap (overflow).
  ///
  /// Example:
  ///  typedef OverflowingBinaryOperator OBO;
  ///  makeNoWrapRegion(Add, i8 1, OBO::NoSignedWrap) == [-128, 127)
  ///  makeNoWrapRegion(Add, i8 1, OBO::NoUnsignedWrap) == [0, -1)
  ///  makeNoWrapRegion(Add, i8 0, OBO::NoUnsignedWrap) == Full Set
  static ConstantRange makeNoWrapRegion(Instruction::BinaryOps BinOp,
                                        const APInt &C, unsigned NoWrapKind);

  /// Return the lower value for this range.
  ///
  const APInt &getLower() const { return Lower; }

  /// Return the upper value for this range.
  ///
  const APInt &getUpper() const { return Upper; }

  /// Get the bit width of this ConstantRange.
  ///
  uint32_t getBitWidth() const { return Lower.getBitWidth(); }

  /// Return true if this set contains all of the elements possible
  /// for this data-type.
  ///
  bool isFullSet() const;

  /// Return true if this set contains no members.
  ///
  bool isEmptySet() const;

  /// Return true if this set wraps around the top of the range.
  /// For example: [100, 8).
  ///
  bool isWrappedSet() const;

  /// Return true if this set wraps around the INT_MIN of
  /// its bitwidth. For example: i8 [120, 140).
  ///
  bool isSignWrappedSet() const;

  /// Return true if the specified value is in the set.
  ///
  bool contains(const APInt &Val) const;

  /// Return true if the other range is a subset of this one.
  ///
  bool contains(const ConstantRange &CR) const;

  /// If this set contains a single element, return it, otherwise return null.
  ///
  const APInt *getSingleElement() const {
    if (Upper == Lower + 1)
      return &Lower;
    return nullptr;
  }

  /// Return true if this set contains exactly one member.
  ///
  bool isSingleElement() const { return getSingleElement() != nullptr; }

  /// Return the number of elements in this set.
  ///
  APInt getSetSize() const;

  /// Return the largest unsigned value contained in the ConstantRange.
  ///
  APInt getUnsignedMax() const;

  /// Return the smallest unsigned value contained in the ConstantRange.
  ///
  APInt getUnsignedMin() const;

  /// Return the largest signed value contained in the ConstantRange.
  ///
  APInt getSignedMax() const;

  /// Return the smallest signed value contained in the ConstantRange.
  ///
  APInt getSignedMin() const;

  /// Return true if this range is equal to another range.
  ///
  bool operator==(const ConstantRange &CR) const {
    return Lower == CR.Lower && Upper == CR.Upper;
  }
  bool operator!=(const ConstantRange &CR) const {
    return !operator==(CR);
  }

  /// Subtract the specified constant from the endpoints of this constant range.
  ConstantRange subtract(const APInt &CI) const;

  /// \brief Subtract the specified range from this range (aka relative
  /// complement of the sets).
  ConstantRange difference(const ConstantRange &CR) const;

  /// Return the range that results from the intersection of
  /// this range with another range.  The resultant range is guaranteed to
  /// include all elements contained in both input ranges, and to have the
  /// smallest possible set size that does so.  Because there may be two
  /// intersections with the same set size, A.intersectWith(B) might not
  /// be equal to B.intersectWith(A).
  ///
  ConstantRange intersectWith(const ConstantRange &CR) const;

  /// Return the range that results from the union of this range
  /// with another range.  The resultant range is guaranteed to include the
  /// elements of both sets, but may contain more.  For example, [3, 9) union
  /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
  /// in either set before.
  ///
  ConstantRange unionWith(const ConstantRange &CR) const;

  /// Return a new range in the specified integer type, which must
  /// be strictly larger than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// zero extended to BitWidth.
  ConstantRange zeroExtend(uint32_t BitWidth) const;

  /// Return a new range in the specified integer type, which must
  /// be strictly larger than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// sign extended to BitWidth.
  ConstantRange signExtend(uint32_t BitWidth) const;

  /// Return a new range in the specified integer type, which must be
  /// strictly smaller than the current type.  The returned range will
  /// correspond to the possible range of values if the source range had been
  /// truncated to the specified type.
  ConstantRange truncate(uint32_t BitWidth) const;

  /// Make this range have the bit width given by \p BitWidth. The
  /// value is zero extended, truncated, or left alone to make it that width.
  ConstantRange zextOrTrunc(uint32_t BitWidth) const;

  /// Make this range have the bit width given by \p BitWidth. The
  /// value is sign extended, truncated, or left alone to make it that width.
  ConstantRange sextOrTrunc(uint32_t BitWidth) const;

  /// Return a new range representing the possible values resulting
  /// from an addition of a value in this range and a value in \p Other.
  ConstantRange add(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a subtraction of a value in this range and a value in \p Other.
  ConstantRange sub(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a multiplication of a value in this range and a value in \p Other,
  /// treating both this and \p Other as unsigned ranges.
  ConstantRange multiply(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a signed maximum of a value in this range and a value in \p Other.
  ConstantRange smax(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned maximum of a value in this range and a value in \p Other.
  ConstantRange umax(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from an unsigned division of a value in this range and a value in
  /// \p Other.
  ConstantRange udiv(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a binary-and of a value in this range by a value in \p Other.
  ConstantRange binaryAnd(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a binary-or of a value in this range by a value in \p Other.
  ConstantRange binaryOr(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting
  /// from a left shift of a value in this range by a value in \p Other.
  /// TODO: This isn't fully implemented yet.
  ConstantRange shl(const ConstantRange &Other) const;

  /// Return a new range representing the possible values resulting from a
  /// logical right shift of a value in this range and a value in \p Other.
  ConstantRange lshr(const ConstantRange &Other) const;

  /// Return a new range that is the logical not of the current set.
  ///
  ConstantRange inverse() const;

  /// Print out the bounds to a stream.
  ///
  void print(raw_ostream &OS) const;

  /// Allow printing from a debugger easily.
  ///
  void dump() const;
};

inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
  CR.print(OS);
  return OS;
}

} // End llvm namespace

#endif