This file is indexed.

/etc/lvm/lvm.conf is in lvm2 2.02.133-1ubuntu10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
# This is an example configuration file for the LVM2 system.
# It contains the default settings that would be used if there was no
# /etc/lvm/lvm.conf file.
#
# Refer to 'man lvm.conf' for further information including the file layout.
#
# Refer to 'man lvm.conf' for information about how settings configured in
# this file are combined with built-in values and command line options to
# arrive at the final values used by LVM.
#
# Refer to 'man lvmconfig' for information about displaying the built-in
# and configured values used by LVM.
#
# If a default value is set in this file (not commented out), then a
# new version of LVM using this file will continue using that value,
# even if the new version of LVM changes the built-in default value.
#
# To put this file in a different directory and override /etc/lvm set
# the environment variable LVM_SYSTEM_DIR before running the tools.
#
# N.B. Take care that each setting only appears once if uncommenting
# example settings in this file.


# Configuration section config.
# How LVM configuration settings are handled.
config {

	# Configuration option config/checks.
	# If enabled, any LVM configuration mismatch is reported.
	# This implies checking that the configuration key is understood by
	# LVM and that the value of the key is the proper type. If disabled,
	# any configuration mismatch is ignored and the default value is used
	# without any warning (a message about the configuration key not being
	# found is issued in verbose mode only).
	checks = 1

	# Configuration option config/abort_on_errors.
	# Abort the LVM process if a configuration mismatch is found.
	abort_on_errors = 0

	# Configuration option config/profile_dir.
	# Directory where LVM looks for configuration profiles.
	profile_dir = "/etc/lvm/profile"
}

# Configuration section devices.
# How LVM uses block devices.
devices {

	# Configuration option devices/dir.
	# Directory in which to create volume group device nodes.
	# Commands also accept this as a prefix on volume group names.
	# This configuration option is advanced.
	dir = "/dev"

	# Configuration option devices/scan.
	# Directories containing device nodes to use with LVM.
	# This configuration option is advanced.
	scan = [ "/dev" ]

	# Configuration option devices/obtain_device_list_from_udev.
	# Obtain the list of available devices from udev.
	# This avoids opening or using any inapplicable non-block devices or
	# subdirectories found in the udev directory. Any device node or
	# symlink not managed by udev in the udev directory is ignored. This
	# setting applies only to the udev-managed device directory; other
	# directories will be scanned fully. LVM needs to be compiled with
	# udev support for this setting to apply.
	obtain_device_list_from_udev = 1

	# Configuration option devices/external_device_info_source.
	# Select an external device information source.
	# Some information may already be available in the system and LVM can
	# use this information to determine the exact type or use of devices it
	# processes. Using an existing external device information source can
	# speed up device processing as LVM does not need to run its own native
	# routines to acquire this information. For example, this information
	# is used to drive LVM filtering like MD component detection, multipath
	# component detection, partition detection and others.
	# 
	# Accepted values:
	#   none
	#     No external device information source is used.
	#   udev
	#     Reuse existing udev database records. Applicable only if LVM is
	#     compiled with udev support.
	# 
	external_device_info_source = "none"

	# Configuration option devices/preferred_names.
	# Select which path name to display for a block device.
	# If multiple path names exist for a block device, and LVM needs to
	# display a name for the device, the path names are matched against
	# each item in this list of regular expressions. The first match is
	# used. Try to avoid using undescriptive /dev/dm-N names, if present.
	# If no preferred name matches, or if preferred_names are not defined,
	# the following built-in preferences are applied in order until one
	# produces a preferred name:
	# Prefer names with path prefixes in the order of:
	# /dev/mapper, /dev/disk, /dev/dm-*, /dev/block.
	# Prefer the name with the least number of slashes.
	# Prefer a name that is a symlink.
	# Prefer the path with least value in lexicographical order.
	# 
	# Example
	# preferred_names = [ "^/dev/mpath/", "^/dev/mapper/mpath", "^/dev/[hs]d" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option devices/filter.
	# Limit the block devices that are used by LVM commands.
	# This is a list of regular expressions used to accept or reject block
	# device path names. Each regex is delimited by a vertical bar '|'
	# (or any character) and is preceded by 'a' to accept the path, or
	# by 'r' to reject the path. The first regex in the list to match the
	# path is used, producing the 'a' or 'r' result for the device.
	# When multiple path names exist for a block device, if any path name
	# matches an 'a' pattern before an 'r' pattern, then the device is
	# accepted. If all the path names match an 'r' pattern first, then the
	# device is rejected. Unmatching path names do not affect the accept
	# or reject decision. If no path names for a device match a pattern,
	# then the device is accepted. Be careful mixing 'a' and 'r' patterns,
	# as the combination might produce unexpected results (test changes.)
	# Run vgscan after changing the filter to regenerate the cache.
	# See the use_lvmetad comment for a special case regarding filters.
	# 
	# Example
	# Accept every block device:
	# filter = [ "a|.*/|" ]
	# Reject the cdrom drive:
	# filter = [ "r|/dev/cdrom|" ]
	# Work with just loopback devices, e.g. for testing:
	# filter = [ "a|loop|", "r|.*|" ]
	# Accept all loop devices and ide drives except hdc:
	# filter = [ "a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|" ]
	# Use anchors to be very specific:
	# filter = [ "a|^/dev/hda8$|", "r|.*/|" ]
	# 
	# This configuration option has an automatic default value.
	# filter = [ "a|.*/|" ]

	# Configuration option devices/global_filter.
	# Limit the block devices that are used by LVM system components.
	# Because devices/filter may be overridden from the command line, it is
	# not suitable for system-wide device filtering, e.g. udev and lvmetad.
	# Use global_filter to hide devices from these LVM system components.
	# The syntax is the same as devices/filter. Devices rejected by
	# global_filter are not opened by LVM.
	# This configuration option has an automatic default value.
	# global_filter = [ "a|.*/|" ]

	# Configuration option devices/cache_dir.
	# Directory in which to store the device cache file.
	# The results of filtering are cached on disk to avoid rescanning dud
	# devices (which can take a very long time). By default this cache is
	# stored in a file named .cache. It is safe to delete this file; the
	# tools regenerate it. If obtain_device_list_from_udev is enabled, the
	# list of devices is obtained from udev and any existing .cache file
	# is removed.
	cache_dir = "/run/lvm"

	# Configuration option devices/cache_file_prefix.
	# A prefix used before the .cache file name. See devices/cache_dir.
	cache_file_prefix = ""

	# Configuration option devices/write_cache_state.
	# Enable/disable writing the cache file. See devices/cache_dir.
	write_cache_state = 1

	# Configuration option devices/types.
	# List of additional acceptable block device types.
	# These are of device type names from /proc/devices, followed by the
	# maximum number of partitions.
	# 
	# Example
	# types = [ "fd", 16 ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.

	# Configuration option devices/sysfs_scan.
	# Restrict device scanning to block devices appearing in sysfs.
	# This is a quick way of filtering out block devices that are not
	# present on the system. sysfs must be part of the kernel and mounted.)
	sysfs_scan = 1

	# Configuration option devices/multipath_component_detection.
	# Ignore devices that are components of DM multipath devices.
	multipath_component_detection = 1

	# Configuration option devices/md_component_detection.
	# Ignore devices that are components of software RAID (md) devices.
	md_component_detection = 1

	# Configuration option devices/fw_raid_component_detection.
	# Ignore devices that are components of firmware RAID devices.
	# LVM must use an external_device_info_source other than none for this
	# detection to execute.
	fw_raid_component_detection = 0

	# Configuration option devices/md_chunk_alignment.
	# Align PV data blocks with md device's stripe-width.
	# This applies if a PV is placed directly on an md device.
	md_chunk_alignment = 1

	# Configuration option devices/default_data_alignment.
	# Default alignment of the start of a PV data area in MB.
	# If set to 0, a value of 64KiB will be used.
	# Set to 1 for 1MiB, 2 for 2MiB, etc.
	# This configuration option has an automatic default value.
	# default_data_alignment = 1

	# Configuration option devices/data_alignment_detection.
	# Detect PV data alignment based on sysfs device information.
	# The start of a PV data area will be a multiple of minimum_io_size or
	# optimal_io_size exposed in sysfs. minimum_io_size is the smallest
	# request the device can perform without incurring a read-modify-write
	# penalty, e.g. MD chunk size. optimal_io_size is the device's
	# preferred unit of receiving I/O, e.g. MD stripe width.
	# minimum_io_size is used if optimal_io_size is undefined (0).
	# If md_chunk_alignment is enabled, that detects the optimal_io_size.
	# This setting takes precedence over md_chunk_alignment.
	data_alignment_detection = 1

	# Configuration option devices/data_alignment.
	# Alignment of the start of a PV data area in KiB.
	# If a PV is placed directly on an md device and md_chunk_alignment or
	# data_alignment_detection are enabled, then this setting is ignored.
	# Otherwise, md_chunk_alignment and data_alignment_detection are
	# disabled if this is set. Set to 0 to use the default alignment or the
	# page size, if larger.
	data_alignment = 0

	# Configuration option devices/data_alignment_offset_detection.
	# Detect PV data alignment offset based on sysfs device information.
	# The start of a PV aligned data area will be shifted by the
	# alignment_offset exposed in sysfs. This offset is often 0, but may
	# be non-zero. Certain 4KiB sector drives that compensate for windows
	# partitioning will have an alignment_offset of 3584 bytes (sector 7
	# is the lowest aligned logical block, the 4KiB sectors start at
	# LBA -1, and consequently sector 63 is aligned on a 4KiB boundary).
	# pvcreate --dataalignmentoffset will skip this detection.
	data_alignment_offset_detection = 1

	# Configuration option devices/ignore_suspended_devices.
	# Ignore DM devices that have I/O suspended while scanning devices.
	# Otherwise, LVM waits for a suspended device to become accessible.
	# This should only be needed in recovery situations.
	ignore_suspended_devices = 0

	# Configuration option devices/ignore_lvm_mirrors.
	# Do not scan 'mirror' LVs to avoid possible deadlocks.
	# This avoids possible deadlocks when using the 'mirror' segment type.
	# This setting determines whether LVs using the 'mirror' segment type
	# are scanned for LVM labels. This affects the ability of mirrors to
	# be used as physical volumes. If this setting is enabled, it is
	# impossible to create VGs on top of mirror LVs, i.e. to stack VGs on
	# mirror LVs. If this setting is disabled, allowing mirror LVs to be
	# scanned, it may cause LVM processes and I/O to the mirror to become
	# blocked. This is due to the way that the mirror segment type handles
	# failures. In order for the hang to occur, an LVM command must be run
	# just after a failure and before the automatic LVM repair process
	# takes place, or there must be failures in multiple mirrors in the
	# same VG at the same time with write failures occurring moments before
	# a scan of the mirror's labels. The 'mirror' scanning problems do not
	# apply to LVM RAID types like 'raid1' which handle failures in a
	# different way, making them a better choice for VG stacking.
	ignore_lvm_mirrors = 1

	# Configuration option devices/disable_after_error_count.
	# Number of I/O errors after which a device is skipped.
	# During each LVM operation, errors received from each device are
	# counted. If the counter of a device exceeds the limit set here,
	# no further I/O is sent to that device for the remainder of the
	# operation. Setting this to 0 disables the counters altogether.
	disable_after_error_count = 0

	# Configuration option devices/require_restorefile_with_uuid.
	# Allow use of pvcreate --uuid without requiring --restorefile.
	require_restorefile_with_uuid = 1

	# Configuration option devices/pv_min_size.
	# Minimum size in KiB of block devices which can be used as PVs.
	# In a clustered environment all nodes must use the same value.
	# Any value smaller than 512KiB is ignored. The previous built-in
	# value was 512.
	pv_min_size = 2048

	# Configuration option devices/issue_discards.
	# Issue discards to PVs that are no longer used by an LV.
	# Discards are sent to an LV's underlying physical volumes when the LV
	# is no longer using the physical volumes' space, e.g. lvremove,
	# lvreduce. Discards inform the storage that a region is no longer
	# used. Storage that supports discards advertise the protocol-specific
	# way discards should be issued by the kernel (TRIM, UNMAP, or
	# WRITE SAME with UNMAP bit set). Not all storage will support or
	# benefit from discards, but SSDs and thinly provisioned LUNs
	# generally do. If enabled, discards will only be issued if both the
	# storage and kernel provide support.
	issue_discards = 1
}

# Configuration section allocation.
# How LVM selects space and applies properties to LVs.
allocation {

	# Configuration option allocation/cling_tag_list.
	# Advise LVM which PVs to use when searching for new space.
	# When searching for free space to extend an LV, the 'cling' allocation
	# policy will choose space on the same PVs as the last segment of the
	# existing LV. If there is insufficient space and a list of tags is
	# defined here, it will check whether any of them are attached to the
	# PVs concerned and then seek to match those PV tags between existing
	# extents and new extents.
	# 
	# Example
	# Use the special tag "@*" as a wildcard to match any PV tag:
	# cling_tag_list = [ "@*" ]
	# LVs are mirrored between two sites within a single VG, and
	# PVs are tagged with either @site1 or @site2 to indicate where
	# they are situated:
	# cling_tag_list = [ "@site1", "@site2" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option allocation/maximise_cling.
	# Use a previous allocation algorithm.
	# Changes made in version 2.02.85 extended the reach of the 'cling'
	# policies to detect more situations where data can be grouped onto
	# the same disks. This setting can be used to disable the changes
	# and revert to the previous algorithm.
	maximise_cling = 1

	# Configuration option allocation/use_blkid_wiping.
	# Use blkid to detect existing signatures on new PVs and LVs.
	# The blkid library can detect more signatures than the native LVM
	# detection code, but may take longer. LVM needs to be compiled with
	# blkid wiping support for this setting to apply. LVM native detection
	# code is currently able to recognize: MD device signatures,
	# swap signature, and LUKS signatures. To see the list of signatures
	# recognized by blkid, check the output of the 'blkid -k' command.
	use_blkid_wiping = 1

	# Configuration option allocation/wipe_signatures_when_zeroing_new_lvs.
	# Look for and erase any signatures while zeroing a new LV.
	# The --wipesignatures option overrides this setting.
	# Zeroing is controlled by the -Z/--zero option, and if not specified,
	# zeroing is used by default if possible. Zeroing simply overwrites the
	# first 4KiB of a new LV with zeroes and does no signature detection or
	# wiping. Signature wiping goes beyond zeroing and detects exact types
	# and positions of signatures within the whole LV. It provides a
	# cleaner LV after creation as all known signatures are wiped. The LV
	# is not claimed incorrectly by other tools because of old signatures
	# from previous use. The number of signatures that LVM can detect
	# depends on the detection code that is selected (see
	# use_blkid_wiping.) Wiping each detected signature must be confirmed.
	# When this setting is disabled, signatures on new LVs are not detected
	# or erased unless the --wipesignatures option is used directly.
	wipe_signatures_when_zeroing_new_lvs = 1

	# Configuration option allocation/mirror_logs_require_separate_pvs.
	# Mirror logs and images will always use different PVs.
	# The default setting changed in version 2.02.85.
	mirror_logs_require_separate_pvs = 0

	# Configuration option allocation/cache_pool_metadata_require_separate_pvs.
	# Cache pool metadata and data will always use different PVs.
	cache_pool_metadata_require_separate_pvs = 0

	# Configuration option allocation/cache_mode.
	# The default cache mode used for new cache.
	# 
	# Accepted values:
	#   writethrough
	#     Data blocks are immediately written from the cache to disk.
	#   writeback
	#     Data blocks are written from the cache back to disk after some
	#     delay to improve performance.
	# 
	# This setting replaces allocation/cache_pool_cachemode.
	# This configuration option has an automatic default value.
	# cache_mode = "writethrough"

	# Configuration option allocation/cache_policy.
	# The default cache policy used for new cache volume.
	# Since kernel 4.2 the default policy is smq (Stochastic multique),
	# otherwise the older mq (Multiqueue) policy is selected.
	# This configuration option does not have a default value defined.

	# Configuration section allocation/cache_settings.
	# Settings for the cache policy.
	# See documentation for individual cache policies for more info.
	# This configuration section has an automatic default value.
	# cache_settings {
	# }

	# Configuration option allocation/cache_pool_chunk_size.
	# The minimal chunk size in KiB for cache pool volumes.
	# Using a chunk_size that is too large can result in wasteful use of
	# the cache, where small reads and writes can cause large sections of
	# an LV to be mapped into the cache. However, choosing a chunk_size
	# that is too small can result in more overhead trying to manage the
	# numerous chunks that become mapped into the cache. The former is
	# more of a problem than the latter in most cases, so the default is
	# on the smaller end of the spectrum. Supported values range from
	# 32KiB to 1GiB in multiples of 32.
	# This configuration option does not have a default value defined.

	# Configuration option allocation/thin_pool_metadata_require_separate_pvs.
	# Thin pool metdata and data will always use different PVs.
	thin_pool_metadata_require_separate_pvs = 0

	# Configuration option allocation/thin_pool_zero.
	# Thin pool data chunks are zeroed before they are first used.
	# Zeroing with a larger thin pool chunk size reduces performance.
	# This configuration option has an automatic default value.
	# thin_pool_zero = 1

	# Configuration option allocation/thin_pool_discards.
	# The discards behaviour of thin pool volumes.
	# 
	# Accepted values:
	#   ignore
	#   nopassdown
	#   passdown
	# 
	# This configuration option has an automatic default value.
	# thin_pool_discards = "passdown"

	# Configuration option allocation/thin_pool_chunk_size_policy.
	# The chunk size calculation policy for thin pool volumes.
	# 
	# Accepted values:
	#   generic
	#     If thin_pool_chunk_size is defined, use it. Otherwise, calculate
	#     the chunk size based on estimation and device hints exposed in
	#     sysfs - the minimum_io_size. The chunk size is always at least
	#     64KiB.
	#   performance
	#     If thin_pool_chunk_size is defined, use it. Otherwise, calculate
	#     the chunk size for performance based on device hints exposed in
	#     sysfs - the optimal_io_size. The chunk size is always at least
	#     512KiB.
	# 
	# This configuration option has an automatic default value.
	# thin_pool_chunk_size_policy = "generic"

	# Configuration option allocation/thin_pool_chunk_size.
	# The minimal chunk size in KiB for thin pool volumes.
	# Larger chunk sizes may improve performance for plain thin volumes,
	# however using them for snapshot volumes is less efficient, as it
	# consumes more space and takes extra time for copying. When unset,
	# lvm tries to estimate chunk size starting from 64KiB. Supported
	# values are in the range 64KiB to 1GiB.
	# This configuration option does not have a default value defined.

	# Configuration option allocation/physical_extent_size.
	# Default physical extent size in KiB to use for new VGs.
	# This configuration option has an automatic default value.
	# physical_extent_size = 4096
}

# Configuration section log.
# How LVM log information is reported.
log {

	# Configuration option log/verbose.
	# Controls the messages sent to stdout or stderr.
	verbose = 0

	# Configuration option log/silent.
	# Suppress all non-essential messages from stdout.
	# This has the same effect as -qq. When enabled, the following commands
	# still produce output: dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck,
	# pvdisplay, pvs, version, vgcfgrestore -l, vgdisplay, vgs.
	# Non-essential messages are shifted from log level 4 to log level 5
	# for syslog and lvm2_log_fn purposes.
	# Any 'yes' or 'no' questions not overridden by other arguments are
	# suppressed and default to 'no'.
	silent = 0

	# Configuration option log/syslog.
	# Send log messages through syslog.
	syslog = 1

	# Configuration option log/file.
	# Write error and debug log messages to a file specified here.
	# This configuration option does not have a default value defined.

	# Configuration option log/overwrite.
	# Overwrite the log file each time the program is run.
	overwrite = 0

	# Configuration option log/level.
	# The level of log messages that are sent to the log file or syslog.
	# There are 6 syslog-like log levels currently in use: 2 to 7 inclusive.
	# 7 is the most verbose (LOG_DEBUG).
	level = 0

	# Configuration option log/indent.
	# Indent messages according to their severity.
	indent = 1

	# Configuration option log/command_names.
	# Display the command name on each line of output.
	command_names = 0

	# Configuration option log/prefix.
	# A prefix to use before the log message text.
	# (After the command name, if selected).
	# Two spaces allows you to see/grep the severity of each message.
	# To make the messages look similar to the original LVM tools use:
	# indent = 0, command_names = 1, prefix = " -- "
	prefix = "  "

	# Configuration option log/activation.
	# Log messages during activation.
	# Don't use this in low memory situations (can deadlock).
	activation = 0

	# Configuration option log/debug_classes.
	# Select log messages by class.
	# Some debugging messages are assigned to a class and only appear in
	# debug output if the class is listed here. Classes currently
	# available: memory, devices, activation, allocation, lvmetad,
	# metadata, cache, locking, lvmpolld. Use "all" to see everything.
	debug_classes = [ "memory", "devices", "activation", "allocation", "lvmetad", "metadata", "cache", "locking", "lvmpolld" ]
}

# Configuration section backup.
# How LVM metadata is backed up and archived.
# In LVM, a 'backup' is a copy of the metadata for the current system,
# and an 'archive' contains old metadata configurations. They are
# stored in a human readable text format.
backup {

	# Configuration option backup/backup.
	# Maintain a backup of the current metadata configuration.
	# Think very hard before turning this off!
	backup = 1

	# Configuration option backup/backup_dir.
	# Location of the metadata backup files.
	# Remember to back up this directory regularly!
	backup_dir = "/etc/lvm/backup"

	# Configuration option backup/archive.
	# Maintain an archive of old metadata configurations.
	# Think very hard before turning this off.
	archive = 1

	# Configuration option backup/archive_dir.
	# Location of the metdata archive files.
	# Remember to back up this directory regularly!
	archive_dir = "/etc/lvm/archive"

	# Configuration option backup/retain_min.
	# Minimum number of archives to keep.
	retain_min = 10

	# Configuration option backup/retain_days.
	# Minimum number of days to keep archive files.
	retain_days = 30
}

# Configuration section shell.
# Settings for running LVM in shell (readline) mode.
shell {

	# Configuration option shell/history_size.
	# Number of lines of history to store in ~/.lvm_history.
	history_size = 100
}

# Configuration section global.
# Miscellaneous global LVM settings.
global {

	# Configuration option global/umask.
	# The file creation mask for any files and directories created.
	# Interpreted as octal if the first digit is zero.
	umask = 077

	# Configuration option global/test.
	# No on-disk metadata changes will be made in test mode.
	# Equivalent to having the -t option on every command.
	test = 0

	# Configuration option global/units.
	# Default value for --units argument.
	units = "h"

	# Configuration option global/si_unit_consistency.
	# Distinguish between powers of 1024 and 1000 bytes.
	# The LVM commands distinguish between powers of 1024 bytes,
	# e.g. KiB, MiB, GiB, and powers of 1000 bytes, e.g. KB, MB, GB.
	# If scripts depend on the old behaviour, disable this setting
	# temporarily until they are updated.
	si_unit_consistency = 1

	# Configuration option global/suffix.
	# Display unit suffix for sizes.
	# This setting has no effect if the units are in human-readable form
	# (global/units = "h") in which case the suffix is always displayed.
	suffix = 1

	# Configuration option global/activation.
	# Enable/disable communication with the kernel device-mapper.
	# Disable to use the tools to manipulate LVM metadata without
	# activating any logical volumes. If the device-mapper driver
	# is not present in the kernel, disabling this should suppress
	# the error messages.
	activation = 1

	# Configuration option global/fallback_to_lvm1.
	# Try running LVM1 tools if LVM cannot communicate with DM.
	# This option only applies to 2.4 kernels and is provided to help
	# switch between device-mapper kernels and LVM1 kernels. The LVM1
	# tools need to be installed with .lvm1 suffices, e.g. vgscan.lvm1.
	# They will stop working once the lvm2 on-disk metadata format is used.
	# This configuration option has an automatic default value.
	# fallback_to_lvm1 = 0

	# Configuration option global/format.
	# The default metadata format that commands should use.
	# The -M 1|2 option overrides this setting.
	# 
	# Accepted values:
	#   lvm1
	#   lvm2
	# 
	# This configuration option has an automatic default value.
	# format = "lvm2"

	# Configuration option global/format_libraries.
	# Shared libraries that process different metadata formats.
	# If support for LVM1 metadata was compiled as a shared library use
	# format_libraries = "liblvm2format1.so"
	# This configuration option does not have a default value defined.

	# Configuration option global/segment_libraries.
	# This configuration option does not have a default value defined.

	# Configuration option global/proc.
	# Location of proc filesystem.
	# This configuration option is advanced.
	proc = "/proc"

	# Configuration option global/etc.
	# Location of /etc system configuration directory.
	etc = "/etc"

	# Configuration option global/locking_type.
	# Type of locking to use.
	# 
	# Accepted values:
	#   0
	#     Turns off locking. Warning: this risks metadata corruption if
	#     commands run concurrently.
	#   1
	#     LVM uses local file-based locking, the standard mode.
	#   2
	#     LVM uses the external shared library locking_library.
	#   3
	#     LVM uses built-in clustered locking with clvmd.
	#     This is incompatible with lvmetad. If use_lvmetad is enabled,
	#     LVM prints a warning and disables lvmetad use.
	#   4
	#     LVM uses read-only locking which forbids any operations that
	#     might change metadata.
	#   5
	#     Offers dummy locking for tools that do not need any locks.
	#     You should not need to set this directly; the tools will select
	#     when to use it instead of the configured locking_type.
	#     Do not use lvmetad or the kernel device-mapper driver with this
	#     locking type. It is used by the --readonly option that offers
	#     read-only access to Volume Group metadata that cannot be locked
	#     safely because it belongs to an inaccessible domain and might be
	#     in use, for example a virtual machine image or a disk that is
	#     shared by a clustered machine.
	# 
	locking_type = 1

	# Configuration option global/wait_for_locks.
	# When disabled, fail if a lock request would block.
	wait_for_locks = 1

	# Configuration option global/fallback_to_clustered_locking.
	# Attempt to use built-in cluster locking if locking_type 2 fails.
	# If using external locking (type 2) and initialisation fails, with
	# this enabled, an attempt will be made to use the built-in clustered
	# locking. Disable this if using a customised locking_library.
	fallback_to_clustered_locking = 1

	# Configuration option global/fallback_to_local_locking.
	# Use locking_type 1 (local) if locking_type 2 or 3 fail.
	# If an attempt to initialise type 2 or type 3 locking failed, perhaps
	# because cluster components such as clvmd are not running, with this
	# enabled, an attempt will be made to use local file-based locking
	# (type 1). If this succeeds, only commands against local VGs will
	# proceed. VGs marked as clustered will be ignored.
	fallback_to_local_locking = 1

	# Configuration option global/locking_dir.
	# Directory to use for LVM command file locks.
	# Local non-LV directory that holds file-based locks while commands are
	# in progress. A directory like /tmp that may get wiped on reboot is OK.
	locking_dir = "/run/lock/lvm"

	# Configuration option global/prioritise_write_locks.
	# Allow quicker VG write access during high volume read access.
	# When there are competing read-only and read-write access requests for
	# a volume group's metadata, instead of always granting the read-only
	# requests immediately, delay them to allow the read-write requests to
	# be serviced. Without this setting, write access may be stalled by a
	# high volume of read-only requests. This option only affects
	# locking_type 1 viz. local file-based locking.
	prioritise_write_locks = 1

	# Configuration option global/library_dir.
	# Search this directory first for shared libraries.
	# This configuration option does not have a default value defined.

	# Configuration option global/locking_library.
	# The external locking library to use for locking_type 2.
	# This configuration option has an automatic default value.
	# locking_library = "liblvm2clusterlock.so"

	# Configuration option global/abort_on_internal_errors.
	# Abort a command that encounters an internal error.
	# Treat any internal errors as fatal errors, aborting the process that
	# encountered the internal error. Please only enable for debugging.
	abort_on_internal_errors = 0

	# Configuration option global/detect_internal_vg_cache_corruption.
	# Internal verification of VG structures.
	# Check if CRC matches when a parsed VG is used multiple times. This
	# is useful to catch unexpected changes to cached VG structures.
	# Please only enable for debugging.
	detect_internal_vg_cache_corruption = 0

	# Configuration option global/metadata_read_only.
	# No operations that change on-disk metadata are permitted.
	# Additionally, read-only commands that encounter metadata in need of
	# repair will still be allowed to proceed exactly as if the repair had
	# been performed (except for the unchanged vg_seqno). Inappropriate
	# use could mess up your system, so seek advice first!
	metadata_read_only = 0

	# Configuration option global/mirror_segtype_default.
	# The segment type used by the short mirroring option -m.
	# The --type mirror|raid1 option overrides this setting.
	# 
	# Accepted values:
	#   mirror
	#     The original RAID1 implementation from LVM/DM. It is
	#     characterized by a flexible log solution (core, disk, mirrored),
	#     and by the necessity to block I/O while handling a failure.
	#     There is an inherent race in the dmeventd failure handling logic
	#     with snapshots of devices using this type of RAID1 that in the
	#     worst case could cause a deadlock. (Also see
	#     devices/ignore_lvm_mirrors.)
	#   raid1
	#     This is a newer RAID1 implementation using the MD RAID1
	#     personality through device-mapper. It is characterized by a
	#     lack of log options. (A log is always allocated for every
	#     device and they are placed on the same device as the image,
	#     so no separate devices are required.) This mirror
	#     implementation does not require I/O to be blocked while
	#     handling a failure. This mirror implementation is not
	#     cluster-aware and cannot be used in a shared (active/active)
	#     fashion in a cluster.
	# 
	mirror_segtype_default = "raid1"

	# Configuration option global/raid10_segtype_default.
	# The segment type used by the -i -m combination.
	# The --type raid10|mirror option overrides this setting.
	# The --stripes/-i and --mirrors/-m options can both be specified
	# during the creation of a logical volume to use both striping and
	# mirroring for the LV. There are two different implementations.
	# 
	# Accepted values:
	#   raid10
	#     LVM uses MD's RAID10 personality through DM. This is the
	#     preferred option.
	#   mirror
	#     LVM layers the 'mirror' and 'stripe' segment types. The layering
	#     is done by creating a mirror LV on top of striped sub-LVs,
	#     effectively creating a RAID 0+1 array. The layering is suboptimal
	#     in terms of providing redundancy and performance.
	# 
	raid10_segtype_default = "raid10"

	# Configuration option global/sparse_segtype_default.
	# The segment type used by the -V -L combination.
	# The --type snapshot|thin option overrides this setting.
	# The combination of -V and -L options creates a sparse LV. There are
	# two different implementations.
	# 
	# Accepted values:
	#   snapshot
	#     The original snapshot implementation from LVM/DM. It uses an old
	#     snapshot that mixes data and metadata within a single COW
	#     storage volume and performs poorly when the size of stored data
	#     passes hundreds of MB.
	#   thin
	#     A newer implementation that uses thin provisioning. It has a
	#     bigger minimal chunk size (64KiB) and uses a separate volume for
	#     metadata. It has better performance, especially when more data
	#     is used. It also supports full snapshots.
	# 
	sparse_segtype_default = "thin"

	# Configuration option global/lvdisplay_shows_full_device_path.
	# Enable this to reinstate the previous lvdisplay name format.
	# The default format for displaying LV names in lvdisplay was changed
	# in version 2.02.89 to show the LV name and path separately.
	# Previously this was always shown as /dev/vgname/lvname even when that
	# was never a valid path in the /dev filesystem.
	# This configuration option has an automatic default value.
	# lvdisplay_shows_full_device_path = 0

	# Configuration option global/use_lvmetad.
	# Use lvmetad to cache metadata and reduce disk scanning.
	# When enabled (and running), lvmetad provides LVM commands with VG
	# metadata and PV state. LVM commands then avoid reading this
	# information from disks which can be slow. When disabled (or not
	# running), LVM commands fall back to scanning disks to obtain VG
	# metadata. lvmetad is kept updated via udev rules which must be set
	# up for LVM to work correctly. (The udev rules should be installed
	# by default.) Without a proper udev setup, changes in the system's
	# block device configuration will be unknown to LVM, and ignored
	# until a manual 'pvscan --cache' is run. If lvmetad was running
	# while use_lvmetad was disabled, it must be stopped, use_lvmetad
	# enabled, and then started. When using lvmetad, LV activation is
	# switched to an automatic, event-based mode. In this mode, LVs are
	# activated based on incoming udev events that inform lvmetad when
	# PVs appear on the system. When a VG is complete (all PVs present),
	# it is auto-activated. The auto_activation_volume_list setting
	# controls which LVs are auto-activated (all by default.)
	# When lvmetad is updated (automatically by udev events, or directly
	# by pvscan --cache), devices/filter is ignored and all devices are
	# scanned by default. lvmetad always keeps unfiltered information
	# which is provided to LVM commands. Each LVM command then filters
	# based on devices/filter. This does not apply to other, non-regexp,
	# filtering settings: component filters such as multipath and MD
	# are checked during pvscan --cache. To filter a device and prevent
	# scanning from the LVM system entirely, including lvmetad, use
	# devices/global_filter.
	use_lvmetad = 1

	# Configuration option global/use_lvmlockd.
	# Use lvmlockd for locking among hosts using LVM on shared storage.
	# See lvmlockd(8) for more information.
	use_lvmlockd = 0

	# Configuration option global/lvmlockd_lock_retries.
	# Retry lvmlockd lock requests this many times.
	# This configuration option has an automatic default value.
	# lvmlockd_lock_retries = 3

	# Configuration option global/sanlock_lv_extend.
	# Size in MiB to extend the internal LV holding sanlock locks.
	# The internal LV holds locks for each LV in the VG, and after enough
	# LVs have been created, the internal LV needs to be extended. lvcreate
	# will automatically extend the internal LV when needed by the amount
	# specified here. Setting this to 0 disables the automatic extension
	# and can cause lvcreate to fail.
	# This configuration option has an automatic default value.
	# sanlock_lv_extend = 256

	# Configuration option global/thin_check_executable.
	# The full path to the thin_check command.
	# LVM uses this command to check that a thin metadata device is in a
	# usable state. When a thin pool is activated and after it is
	# deactivated, this command is run. Activation will only proceed if
	# the command has an exit status of 0. Set to "" to skip this check.
	# (Not recommended.) Also see thin_check_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_check_executable = "/usr/sbin/thin_check"

	# Configuration option global/thin_dump_executable.
	# The full path to the thin_dump command.
	# LVM uses this command to dump thin pool metadata.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_dump_executable = "/usr/sbin/thin_dump"

	# Configuration option global/thin_repair_executable.
	# The full path to the thin_repair command.
	# LVM uses this command to repair a thin metadata device if it is in
	# an unusable state. Also see thin_repair_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_repair_executable = "/usr/sbin/thin_repair"

	# Configuration option global/thin_check_options.
	# List of options passed to the thin_check command.
	# With thin_check version 2.1 or newer you can add the option
	# --ignore-non-fatal-errors to let it pass through ignorable errors
	# and fix them later. With thin_check version 3.2 or newer you should
	# include the option --clear-needs-check-flag.
	# This configuration option has an automatic default value.
	# thin_check_options = [ "-q", "--clear-needs-check-flag" ]

	# Configuration option global/thin_repair_options.
	# List of options passed to the thin_repair command.
	# This configuration option has an automatic default value.
	# thin_repair_options = [ "" ]

	# Configuration option global/thin_disabled_features.
	# Features to not use in the thin driver.
	# This can be helpful for testing, or to avoid using a feature that is
	# causing problems. Features include: block_size, discards,
	# discards_non_power_2, external_origin, metadata_resize,
	# external_origin_extend, error_if_no_space.
	# 
	# Example
	# thin_disabled_features = [ "discards", "block_size" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option global/cache_disabled_features.
	# Features to not use in the cache driver.
	# This can be helpful for testing, or to avoid using a feature that is
	# causing problems. Features include: policy_mq, policy_smq.
	# 
	# Example
	# cache_disabled_features = [ "policy_smq" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option global/cache_check_executable.
	# The full path to the cache_check command.
	# LVM uses this command to check that a cache metadata device is in a
	# usable state. When a cached LV is activated and after it is
	# deactivated, this command is run. Activation will only proceed if the
	# command has an exit status of 0. Set to "" to skip this check.
	# (Not recommended.) Also see cache_check_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_check_executable = "/usr/sbin/cache_check"

	# Configuration option global/cache_dump_executable.
	# The full path to the cache_dump command.
	# LVM uses this command to dump cache pool metadata.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_dump_executable = "/usr/sbin/cache_dump"

	# Configuration option global/cache_repair_executable.
	# The full path to the cache_repair command.
	# LVM uses this command to repair a cache metadata device if it is in
	# an unusable state. Also see cache_repair_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_repair_executable = "/usr/sbin/cache_repair"

	# Configuration option global/cache_check_options.
	# List of options passed to the cache_check command.
	# With cache_check version 5.0 or newer you should include the option
	# --clear-needs-check-flag.
	# This configuration option has an automatic default value.
	# cache_check_options = [ "-q", "--clear-needs-check-flag" ]

	# Configuration option global/cache_repair_options.
	# List of options passed to the cache_repair command.
	# This configuration option has an automatic default value.
	# cache_repair_options = [ "" ]

	# Configuration option global/system_id_source.
	# The method LVM uses to set the local system ID.
	# Volume Groups can also be given a system ID (by vgcreate, vgchange,
	# or vgimport.) A VG on shared storage devices is accessible only to
	# the host with a matching system ID. See 'man lvmsystemid' for
	# information on limitations and correct usage.
	# 
	# Accepted values:
	#   none
	#     The host has no system ID.
	#   lvmlocal
	#     Obtain the system ID from the system_id setting in the 'local'
	#     section of an lvm configuration file, e.g. lvmlocal.conf.
	#   uname
	#     Set the system ID from the hostname (uname) of the system.
	#     System IDs beginning localhost are not permitted.
	#   machineid
	#     Use the contents of the machine-id file to set the system ID.
	#     Some systems create this file at installation time.
	#     See 'man machine-id' and global/etc.
	#   file
	#     Use the contents of another file (system_id_file) to set the
	#     system ID.
	# 
	system_id_source = "none"

	# Configuration option global/system_id_file.
	# The full path to the file containing a system ID.
	# This is used when system_id_source is set to 'file'.
	# Comments starting with the character # are ignored.
	# This configuration option does not have a default value defined.

	# Configuration option global/use_lvmpolld.
	# Use lvmpolld to supervise long running LVM commands.
	# When enabled, control of long running LVM commands is transferred
	# from the original LVM command to the lvmpolld daemon. This allows
	# the operation to continue independent of the original LVM command.
	# After lvmpolld takes over, the LVM command displays the progress
	# of the ongoing operation. lvmpolld itself runs LVM commands to
	# manage the progress of ongoing operations. lvmpolld can be used as
	# a native systemd service, which allows it to be started on demand,
	# and to use its own control group. When this option is disabled, LVM
	# commands will supervise long running operations by forking themselves.
	use_lvmpolld = 1
}

# Configuration section activation.
activation {

	# Configuration option activation/checks.
	# Perform internal checks of libdevmapper operations.
	# Useful for debugging problems with activation. Some of the checks may
	# be expensive, so it's best to use this only when there seems to be a
	# problem.
	checks = 0

	# Configuration option activation/udev_sync.
	# Use udev notifications to synchronize udev and LVM.
	# The --nodevsync option overrides this setting.
	# When disabled, LVM commands will not wait for notifications from
	# udev, but continue irrespective of any possible udev processing in
	# the background. Only use this if udev is not running or has rules
	# that ignore the devices LVM creates. If enabled when udev is not
	# running, and LVM processes are waiting for udev, run the command
	# 'dmsetup udevcomplete_all' to wake them up.
	udev_sync = 1

	# Configuration option activation/udev_rules.
	# Use udev rules to manage LV device nodes and symlinks.
	# When disabled, LVM will manage the device nodes and symlinks for
	# active LVs itself. Manual intervention may be required if this
	# setting is changed while LVs are active.
	udev_rules = 1

	# Configuration option activation/verify_udev_operations.
	# Use extra checks in LVM to verify udev operations.
	# This enables additional checks (and if necessary, repairs) on entries
	# in the device directory after udev has completed processing its
	# events. Useful for diagnosing problems with LVM/udev interactions.
	verify_udev_operations = 0

	# Configuration option activation/retry_deactivation.
	# Retry failed LV deactivation.
	# If LV deactivation fails, LVM will retry for a few seconds before
	# failing. This may happen because a process run from a quick udev rule
	# temporarily opened the device.
	retry_deactivation = 1

	# Configuration option activation/missing_stripe_filler.
	# Method to fill missing stripes when activating an incomplete LV.
	# Using 'error' will make inaccessible parts of the device return I/O
	# errors on access. You can instead use a device path, in which case,
	# that device will be used in place of missing stripes. Using anything
	# other than 'error' with mirrored or snapshotted volumes is likely to
	# result in data corruption.
	# This configuration option is advanced.
	missing_stripe_filler = "error"

	# Configuration option activation/use_linear_target.
	# Use the linear target to optimize single stripe LVs.
	# When disabled, the striped target is used. The linear target is an
	# optimised version of the striped target that only handles a single
	# stripe.
	use_linear_target = 1

	# Configuration option activation/reserved_stack.
	# Stack size in KiB to reserve for use while devices are suspended.
	# Insufficent reserve risks I/O deadlock during device suspension.
	reserved_stack = 64

	# Configuration option activation/reserved_memory.
	# Memory size in KiB to reserve for use while devices are suspended.
	# Insufficent reserve risks I/O deadlock during device suspension.
	reserved_memory = 8192

	# Configuration option activation/process_priority.
	# Nice value used while devices are suspended.
	# Use a high priority so that LVs are suspended
	# for the shortest possible time.
	process_priority = -18

	# Configuration option activation/volume_list.
	# Only LVs selected by this list are activated.
	# If this list is defined, an LV is only activated if it matches an
	# entry in this list. If this list is undefined, it imposes no limits
	# on LV activation (all are allowed).
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*' is
	#     assumed.
	# 
	# Example
	# volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/auto_activation_volume_list.
	# Only LVs selected by this list are auto-activated.
	# This list works like volume_list, but it is used only by
	# auto-activation commands. It does not apply to direct activation
	# commands. If this list is defined, an LV is only auto-activated
	# if it matches an entry in this list. If this list is undefined, it
	# imposes no limits on LV auto-activation (all are allowed.) If this
	# list is defined and empty, i.e. "[]", then no LVs are selected for
	# auto-activation. An LV that is selected by this list for
	# auto-activation, must also be selected by volume_list (if defined)
	# before it is activated. Auto-activation is an activation command that
	# includes the 'a' argument: --activate ay or -a ay. The 'a' (auto)
	# argument for auto-activation is meant to be used by activation
	# commands that are run automatically by the system, as opposed to LVM
	# commands run directly by a user. A user may also use the 'a' flag
	# directly to perform auto-activation. Also see pvscan(8) for more
	# information about auto-activation.
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*' is
	#     assumed.
	# 
	# Example
	# volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/read_only_volume_list.
	# LVs in this list are activated in read-only mode.
	# If this list is defined, each LV that is to be activated is checked
	# against this list, and if it matches, it is activated in read-only
	# mode. This overrides the permission setting stored in the metadata,
	# e.g. from --permission rw.
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*' is
	#     assumed.
	# 
	# Example
	# volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/raid_region_size.
	# Size in KiB of each raid or mirror synchronization region.
	# For raid or mirror segment types, this is the amount of data that is
	# copied at once when initializing, or moved at once by pvmove.
	raid_region_size = 512

	# Configuration option activation/error_when_full.
	# Return errors if a thin pool runs out of space.
	# The --errorwhenfull option overrides this setting.
	# When enabled, writes to thin LVs immediately return an error if the
	# thin pool is out of data space. When disabled, writes to thin LVs
	# are queued if the thin pool is out of space, and processed when the
	# thin pool data space is extended. New thin pools are assigned the
	# behavior defined here.
	# This configuration option has an automatic default value.
	# error_when_full = 0

	# Configuration option activation/readahead.
	# Setting to use when there is no readahead setting in metadata.
	# 
	# Accepted values:
	#   none
	#     Disable readahead.
	#   auto
	#     Use default value chosen by kernel.
	# 
	readahead = "auto"

	# Configuration option activation/raid_fault_policy.
	# Defines how a device failure in a RAID LV is handled.
	# This includes LVs that have the following segment types:
	# raid1, raid4, raid5*, and raid6*.
	# If a device in the LV fails, the policy determines the steps
	# performed by dmeventd automatically, and the steps perfomed by the
	# manual command lvconvert --repair --use-policies.
	# Automatic handling requires dmeventd to be monitoring the LV.
	# 
	# Accepted values:
	#   warn
	#     Use the system log to warn the user that a device in the RAID LV
	#     has failed. It is left to the user to run lvconvert --repair
	#     manually to remove or replace the failed device. As long as the
	#     number of failed devices does not exceed the redundancy of the LV
	#     (1 device for raid4/5, 2 for raid6), the LV will remain usable.
	#   allocate
	#     Attempt to use any extra physical volumes in the VG as spares and
	#     replace faulty devices.
	# 
	raid_fault_policy = "warn"

	# Configuration option activation/mirror_image_fault_policy.
	# Defines how a device failure in a 'mirror' LV is handled.
	# An LV with the 'mirror' segment type is composed of mirror images
	# (copies) and a mirror log. A disk log ensures that a mirror LV does
	# not need to be re-synced (all copies made the same) every time a
	# machine reboots or crashes. If a device in the LV fails, this policy
	# determines the steps perfomed by dmeventd automatically, and the steps
	# performed by the manual command lvconvert --repair --use-policies.
	# Automatic handling requires dmeventd to be monitoring the LV.
	# 
	# Accepted values:
	#   remove
	#     Simply remove the faulty device and run without it. If the log
	#     device fails, the mirror would convert to using an in-memory log.
	#     This means the mirror will not remember its sync status across
	#     crashes/reboots and the entire mirror will be re-synced. If a
	#     mirror image fails, the mirror will convert to a non-mirrored
	#     device if there is only one remaining good copy.
	#   allocate
	#     Remove the faulty device and try to allocate space on a new
	#     device to be a replacement for the failed device. Using this
	#     policy for the log is fast and maintains the ability to remember
	#     sync state through crashes/reboots. Using this policy for a
	#     mirror device is slow, as it requires the mirror to resynchronize
	#     the devices, but it will preserve the mirror characteristic of
	#     the device. This policy acts like 'remove' if no suitable device
	#     and space can be allocated for the replacement.
	#   allocate_anywhere
	#     Not yet implemented. Useful to place the log device temporarily
	#     on the same physical volume as one of the mirror images. This
	#     policy is not recommended for mirror devices since it would break
	#     the redundant nature of the mirror. This policy acts like
	#     'remove' if no suitable device and space can be allocated for the
	#     replacement.
	# 
	mirror_image_fault_policy = "remove"

	# Configuration option activation/mirror_log_fault_policy.
	# Defines how a device failure in a 'mirror' log LV is handled.
	# The mirror_image_fault_policy description for mirrored LVs also
	# applies to mirrored log LVs.
	mirror_log_fault_policy = "allocate"

	# Configuration option activation/snapshot_autoextend_threshold.
	# Auto-extend a snapshot when its usage exceeds this percent.
	# Setting this to 100 disables automatic extension.
	# The minimum value is 50 (a smaller value is treated as 50.)
	# Also see snapshot_autoextend_percent.
	# Automatic extension requires dmeventd to be monitoring the LV.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# snapshot_autoextend_threshold = 70
	# 
	snapshot_autoextend_threshold = 100

	# Configuration option activation/snapshot_autoextend_percent.
	# Auto-extending a snapshot adds this percent extra space.
	# The amount of additional space added to a snapshot is this
	# percent of its current size.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# snapshot_autoextend_percent = 20
	# 
	snapshot_autoextend_percent = 20

	# Configuration option activation/thin_pool_autoextend_threshold.
	# Auto-extend a thin pool when its usage exceeds this percent.
	# Setting this to 100 disables automatic extension.
	# The minimum value is 50 (a smaller value is treated as 50.)
	# Also see thin_pool_autoextend_percent.
	# Automatic extension requires dmeventd to be monitoring the LV.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# thin_pool_autoextend_threshold = 70
	# 
	thin_pool_autoextend_threshold = 100

	# Configuration option activation/thin_pool_autoextend_percent.
	# Auto-extending a thin pool adds this percent extra space.
	# The amount of additional space added to a thin pool is this
	# percent of its current size.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# thin_pool_autoextend_percent = 20
	# 
	thin_pool_autoextend_percent = 20

	# Configuration option activation/mlock_filter.
	# Do not mlock these memory areas.
	# While activating devices, I/O to devices being (re)configured is
	# suspended. As a precaution against deadlocks, LVM pins memory it is
	# using so it is not paged out, and will not require I/O to reread.
	# Groups of pages that are known not to be accessed during activation
	# do not need to be pinned into memory. Each string listed in this
	# setting is compared against each line in /proc/self/maps, and the
	# pages corresponding to lines that match are not pinned. On some
	# systems, locale-archive was found to make up over 80% of the memory
	# used by the process.
	# 
	# Example
	# mlock_filter = [ "locale/locale-archive", "gconv/gconv-modules.cache" ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.

	# Configuration option activation/use_mlockall.
	# Use the old behavior of mlockall to pin all memory.
	# Prior to version 2.02.62, LVM used mlockall() to pin the whole
	# process's memory while activating devices.
	use_mlockall = 0

	# Configuration option activation/monitoring.
	# Monitor LVs that are activated.
	# The --ignoremonitoring option overrides this setting.
	# When enabled, LVM will ask dmeventd to monitor activated LVs.
	monitoring = 1

	# Configuration option activation/polling_interval.
	# Check pvmove or lvconvert progress at this interval (seconds).
	# When pvmove or lvconvert must wait for the kernel to finish
	# synchronising or merging data, they check and report progress at
	# intervals of this number of seconds. If this is set to 0 and there
	# is only one thing to wait for, there are no progress reports, but
	# the process is awoken immediately once the operation is complete.
	polling_interval = 15

	# Configuration option activation/auto_set_activation_skip.
	# Set the activation skip flag on new thin snapshot LVs.
	# The --setactivationskip option overrides this setting.
	# An LV can have a persistent 'activation skip' flag. The flag causes
	# the LV to be skipped during normal activation. The lvchange/vgchange
	# -K option is required to activate LVs that have the activation skip
	# flag set. When this setting is enabled, the activation skip flag is
	# set on new thin snapshot LVs.
	# This configuration option has an automatic default value.
	# auto_set_activation_skip = 1

	# Configuration option activation/activation_mode.
	# How LVs with missing devices are activated.
	# The --activationmode option overrides this setting.
	# 
	# Accepted values:
	#   complete
	#     Only allow activation of an LV if all of the Physical Volumes it
	#     uses are present. Other PVs in the Volume Group may be missing.
	#   degraded
	#     Like complete, but additionally RAID LVs of segment type raid1,
	#     raid4, raid5, radid6 and raid10 will be activated if there is no
	#     data loss, i.e. they have sufficient redundancy to present the
	#     entire addressable range of the Logical Volume.
	#   partial
	#     Allows the activation of any LV even if a missing or failed PV
	#     could cause data loss with a portion of the LV inaccessible.
	#     This setting should not normally be used, but may sometimes
	#     assist with data recovery.
	# 
	activation_mode = "degraded"

	# Configuration option activation/lock_start_list.
	# Locking is started only for VGs selected by this list.
	# The rules are the same as those for volume_list.
	# This configuration option does not have a default value defined.

	# Configuration option activation/auto_lock_start_list.
	# Locking is auto-started only for VGs selected by this list.
	# The rules are the same as those for auto_activation_volume_list.
	# This configuration option does not have a default value defined.
}

# Configuration section metadata.
# This configuration section has an automatic default value.
# metadata {

	# Configuration option metadata/pvmetadatacopies.
	# Number of copies of metadata to store on each PV.
	# The --pvmetadatacopies option overrides this setting.
	# 
	# Accepted values:
	#   2
	#     Two copies of the VG metadata are stored on the PV, one at the
	#     front of the PV, and one at the end.
	#   1
	#     One copy of VG metadata is stored at the front of the PV.
	#   0
	#     No copies of VG metadata are stored on the PV. This may be
	#     useful for VGs containing large numbers of PVs.
	# 
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# pvmetadatacopies = 1

	# Configuration option metadata/vgmetadatacopies.
	# Number of copies of metadata to maintain for each VG.
	# The --vgmetadatacopies option overrides this setting.
	# If set to a non-zero value, LVM automatically chooses which of the
	# available metadata areas to use to achieve the requested number of
	# copies of the VG metadata. If you set a value larger than the the
	# total number of metadata areas available, then metadata is stored in
	# them all. The value 0 (unmanaged) disables this automatic management
	# and allows you to control which metadata areas are used at the
	# individual PV level using pvchange --metadataignore y|n.
	# This configuration option has an automatic default value.
	# vgmetadatacopies = 0

	# Configuration option metadata/pvmetadatasize.
	# Approximate number of sectors to use for each metadata copy.
	# VGs with large numbers of PVs or LVs, or VGs containing complex LV
	# structures, may need additional space for VG metadata. The metadata
	# areas are treated as circular buffers, so unused space becomes filled
	# with an archive of the most recent previous versions of the metadata.
	# This configuration option has an automatic default value.
	# pvmetadatasize = 255

	# Configuration option metadata/pvmetadataignore.
	# Ignore metadata areas on a new PV.
	# The --metadataignore option overrides this setting.
	# If metadata areas on a PV are ignored, LVM will not store metadata
	# in them.
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# pvmetadataignore = 0

	# Configuration option metadata/stripesize.
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# stripesize = 64

	# Configuration option metadata/dirs.
	# Directories holding live copies of text format metadata.
	# These directories must not be on logical volumes!
	# It's possible to use LVM with a couple of directories here,
	# preferably on different (non-LV) filesystems, and with no other
	# on-disk metadata (pvmetadatacopies = 0). Or this can be in addition
	# to on-disk metadata areas. The feature was originally added to
	# simplify testing and is not supported under low memory situations -
	# the machine could lock up. Never edit any files in these directories
	# by hand unless you are absolutely sure you know what you are doing!
	# Use the supplied toolset to make changes (e.g. vgcfgrestore).
	# 
	# Example
	# dirs = [ "/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2" ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.
# }

# Configuration section report.
# LVM report command output formatting.
# This configuration section has an automatic default value.
# report {

	# Configuration option report/compact_output.
	# Do not print empty values for all report fields.
	# If enabled, all fields that don't have a value set for any of the
	# rows reported are skipped and not printed. Compact output is
	# applicable only if report/buffered is enabled. If you need to
	# compact only specified fields, use compact_output=0 and define
	# report/compact_output_cols configuration setting instead.
	# This configuration option has an automatic default value.
	# compact_output = 0

	# Configuration option report/compact_output_cols.
	# Do not print empty values for specified report fields.
	# If defined, specified fields that don't have a value set for any
	# of the rows reported are skipped and not printed. Compact output
	# is applicable only if report/buffered is enabled. If you need to
	# compact all fields, use compact_output=1 instead in which case
	# the compact_output_cols setting is then ignored.
	# This configuration option has an automatic default value.
	# compact_output_cols = ""

	# Configuration option report/aligned.
	# Align columns in report output.
	# This configuration option has an automatic default value.
	# aligned = 1

	# Configuration option report/buffered.
	# Buffer report output.
	# When buffered reporting is used, the report's content is appended
	# incrementally to include each object being reported until the report
	# is flushed to output which normally happens at the end of command
	# execution. Otherwise, if buffering is not used, each object is
	# reported as soon as its processing is finished.
	# This configuration option has an automatic default value.
	# buffered = 1

	# Configuration option report/headings.
	# Show headings for columns on report.
	# This configuration option has an automatic default value.
	# headings = 1

	# Configuration option report/separator.
	# A separator to use on report after each field.
	# This configuration option has an automatic default value.
	# separator = " "

	# Configuration option report/list_item_separator.
	# A separator to use for list items when reported.
	# This configuration option has an automatic default value.
	# list_item_separator = ","

	# Configuration option report/prefixes.
	# Use a field name prefix for each field reported.
	# This configuration option has an automatic default value.
	# prefixes = 0

	# Configuration option report/quoted.
	# Quote field values when using field name prefixes.
	# This configuration option has an automatic default value.
	# quoted = 1

	# Configuration option report/colums_as_rows.
	# Output each column as a row.
	# If set, this also implies report/prefixes=1.
	# This configuration option has an automatic default value.
	# colums_as_rows = 0

	# Configuration option report/binary_values_as_numeric.
	# Use binary values 0 or 1 instead of descriptive literal values.
	# For columns that have exactly two valid values to report
	# (not counting the 'unknown' value which denotes that the
	# value could not be determined).
	# This configuration option has an automatic default value.
	# binary_values_as_numeric = 0

	# Configuration option report/time_format.
	# Set time format for fields reporting time values.
	# Format specification is a string which may contain special character
	# sequences and ordinary character sequences. Ordinary character
	# sequences are copied verbatim. Each special character sequence is
	# introduced by the '%' character and such sequence is then
	# substituted with a value as described below.
	# 
	# Accepted values:
	#   %a
	#     The abbreviated name of the day of the week according to the
	#     current locale.
	#   %A
	#     The full name of the day of the week according to the current
	#     locale.
	#   %b
	#     The abbreviated month name according to the current locale.
	#   %B
	#     The full month name according to the current locale.
	#   %c
	#     The preferred date and time representation for the current
	#     locale (alt E)
	#   %C
	#     The century number (year/100) as a 2-digit integer. (alt E)
	#   %d
	#     The day of the month as a decimal number (range 01 to 31).
	#     (alt O)
	#   %D
	#     Equivalent to %m/%d/%y. (For Americans only. Americans should
	#     note that in other countries%d/%m/%y is rather common. This
	#     means that in international context this format is ambiguous and
	#     should not be used.
	#   %e
	#     Like %d, the day of the month as a decimal number, but a leading
	#     zero is replaced by a space. (alt O)
	#   %E
	#     Modifier: use alternative local-dependent representation if
	#     available.
	#   %F
	#     Equivalent to %Y-%m-%d (the ISO 8601 date format).
	#   %G
	#     The ISO 8601 week-based year with century as adecimal number.
	#     The 4-digit year corresponding to the ISO week number (see %V).
	#     This has the same format and value as %Y, except that if the
	#     ISO week number belongs to the previous or next year, that year
	#     is used instead.
	#   %g
	#     Like %G, but without century, that is, with a 2-digit year
	#     (00-99).
	#   %h
	#     Equivalent to %b.
	#   %H
	#     The hour as a decimal number using a 24-hour clock
	#     (range 00 to 23). (alt O)
	#   %I
	#     The hour as a decimal number using a 12-hour clock
	#     (range 01 to 12). (alt O)
	#   %j
	#     The day of the year as a decimal number (range 001 to 366).
	#   %k
	#     The hour (24-hour clock) as a decimal number (range 0 to 23);
	#     single digits are preceded by a blank. (See also %H.)
	#   %l
	#     The hour (12-hour clock) as a decimal number (range 1 to 12);
	#     single digits are preceded by a blank. (See also %I.)
	#   %m
	#     The month as a decimal number (range 01 to 12). (alt O)
	#   %M
	#     The minute as a decimal number (range 00 to 59). (alt O)
	#   %O
	#     Modifier: use alternative numeric symbols.
	#   %p
	#     Either "AM" or "PM" according to the given time value,
	#     or the corresponding strings for the current locale. Noon is
	#     treated as "PM" and midnight as "AM".
	#   %P
	#     Like %p but in lowercase: "am" or "pm" or a corresponding
	#     string for the current locale.
	#   %r
	#     The time in a.m. or p.m. notation. In the POSIX locale this is
	#     equivalent to %I:%M:%S %p.
	#   %R
	#     The time in 24-hour notation (%H:%M). For a version including
	#     the seconds, see %T below.
	#   %s
	#     The number of seconds since the Epoch,
	#     1970-01-01 00:00:00 +0000 (UTC)
	#   %S
	#     The second as a decimal number (range 00 to 60). (The range is
	#     up to 60 to allow for occasional leap seconds.) (alt O)
	#   %t
	#     A tab character.
	#   %T
	#     The time in 24-hour notation (%H:%M:%S).
	#   %u
	#     The day of the week as a decimal, range 1 to 7, Monday being 1.
	#     See also %w. (alt O)
	#   %U
	#     The week number of the current year as a decimal number,
	#     range 00 to 53, starting with the first Sunday as the first
	#     day of week 01. See also %V and %W. (alt O)
	#   %V
	#     The ISO 8601 week number of the current year as a decimal number,
	#     range 01 to 53, where week 1 is the first week that has at least
	#     4 days in the new year. See also %U and %W. (alt O)
	#   %w
	#     The day of the week as a decimal, range 0 to 6, Sunday being 0.
	#     See also %u. (alt O)
	#   %W
	#     The week number of the current year as a decimal number,
	#     range 00 to 53, starting with the first Monday as the first day
	#     of week 01. (alt O)
	#   %x
	#     The preferred date representation for the current locale without
	#     the time. (alt E)
	#   %X
	#     The preferred time representation for the current locale without
	#     the date. (alt E)
	#   %y
	#     The year as a decimal number without a century (range 00 to 99).
	#     (alt E, alt O)
	#   %Y
	#     The year as a decimal number including the century. (alt E)
	#   %z
	#     The +hhmm or -hhmm numeric timezone (that is, the hour and minute
	#     offset from UTC).
	#   %Z
	#     The timezone name or abbreviation.
	#   %%
	#     A literal '%' character.
	# 
	# This configuration option has an automatic default value.
	# time_format = "%Y-%m-%d %T %z"

	# Configuration option report/devtypes_sort.
	# List of columns to sort by when reporting 'lvm devtypes' command.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_sort = "devtype_name"

	# Configuration option report/devtypes_cols.
	# List of columns to report for 'lvm devtypes' command.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_cols = "devtype_name,devtype_max_partitions,devtype_description"

	# Configuration option report/devtypes_cols_verbose.
	# List of columns to report for 'lvm devtypes' command in verbose mode.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_cols_verbose = "devtype_name,devtype_max_partitions,devtype_description"

	# Configuration option report/lvs_sort.
	# List of columns to sort by when reporting 'lvs' command.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_sort = "vg_name,lv_name"

	# Configuration option report/lvs_cols.
	# List of columns to report for 'lvs' command.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_cols = "lv_name,vg_name,lv_attr,lv_size,pool_lv,origin,data_percent,metadata_percent,move_pv,mirror_log,copy_percent,convert_lv"

	# Configuration option report/lvs_cols_verbose.
	# List of columns to report for 'lvs' command in verbose mode.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_cols_verbose = "lv_name,vg_name,seg_count,lv_attr,lv_size,lv_major,lv_minor,lv_kernel_major,lv_kernel_minor,pool_lv,origin,data_percent,metadata_percent,move_pv,copy_percent,mirror_log,convert_lv,lv_uuid,lv_profile"

	# Configuration option report/vgs_sort.
	# List of columns to sort by when reporting 'vgs' command.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_sort = "vg_name"

	# Configuration option report/vgs_cols.
	# List of columns to report for 'vgs' command.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_cols = "vg_name,pv_count,lv_count,snap_count,vg_attr,vg_size,vg_free"

	# Configuration option report/vgs_cols_verbose.
	# List of columns to report for 'vgs' command in verbose mode.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_cols_verbose = "vg_name,vg_attr,vg_extent_size,pv_count,lv_count,snap_count,vg_size,vg_free,vg_uuid,vg_profile"

	# Configuration option report/pvs_sort.
	# List of columns to sort by when reporting 'pvs' command.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_sort = "pv_name"

	# Configuration option report/pvs_cols.
	# List of columns to report for 'pvs' command.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_cols = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free"

	# Configuration option report/pvs_cols_verbose.
	# List of columns to report for 'pvs' command in verbose mode.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_cols_verbose = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,dev_size,pv_uuid"

	# Configuration option report/segs_sort.
	# List of columns to sort by when reporting 'lvs --segments' command.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_sort = "vg_name,lv_name,seg_start"

	# Configuration option report/segs_cols.
	# List of columns to report for 'lvs --segments' command.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_cols = "lv_name,vg_name,lv_attr,stripes,segtype,seg_size"

	# Configuration option report/segs_cols_verbose.
	# List of columns to report for 'lvs --segments' command in verbose mode.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_cols_verbose = "lv_name,vg_name,lv_attr,seg_start,seg_size,stripes,segtype,stripesize,chunksize"

	# Configuration option report/pvsegs_sort.
	# List of columns to sort by when reporting 'pvs --segments' command.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_sort = "pv_name,pvseg_start"

	# Configuration option report/pvsegs_cols.
	# List of columns to sort by when reporting 'pvs --segments' command.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_cols = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size"

	# Configuration option report/pvsegs_cols_verbose.
	# List of columns to sort by when reporting 'pvs --segments' command in verbose mode.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_cols_verbose = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size,lv_name,seg_start_pe,segtype,seg_pe_ranges"
# }

# Configuration section dmeventd.
# Settings for the LVM event daemon.
dmeventd {

	# Configuration option dmeventd/mirror_library.
	# The library dmeventd uses when monitoring a mirror device.
	# libdevmapper-event-lvm2mirror.so attempts to recover from
	# failures. It removes failed devices from a volume group and
	# reconfigures a mirror as necessary. If no mirror library is
	# provided, mirrors are not monitored through dmeventd.
	mirror_library = "libdevmapper-event-lvm2mirror.so"

	# Configuration option dmeventd/raid_library.
	# This configuration option has an automatic default value.
	# raid_library = "libdevmapper-event-lvm2raid.so"

	# Configuration option dmeventd/snapshot_library.
	# The library dmeventd uses when monitoring a snapshot device.
	# libdevmapper-event-lvm2snapshot.so monitors the filling of snapshots
	# and emits a warning through syslog when the usage exceeds 80%. The
	# warning is repeated when 85%, 90% and 95% of the snapshot is filled.
	snapshot_library = "libdevmapper-event-lvm2snapshot.so"

	# Configuration option dmeventd/thin_library.
	# The library dmeventd uses when monitoring a thin device.
	# libdevmapper-event-lvm2thin.so monitors the filling of a pool
	# and emits a warning through syslog when the usage exceeds 80%. The
	# warning is repeated when 85%, 90% and 95% of the pool is filled.
	thin_library = "libdevmapper-event-lvm2thin.so"

	# Configuration option dmeventd/executable.
	# The full path to the dmeventd binary.
	# This configuration option has an automatic default value.
	# executable = "/sbin/dmeventd"
}

# Configuration section tags.
# Host tag settings.
# This configuration section has an automatic default value.
# tags {

	# Configuration option tags/hosttags.
	# Create a host tag using the machine name.
	# The machine name is nodename returned by uname(2).
	# This configuration option has an automatic default value.
	# hosttags = 0

	# Configuration section tags/<tag>.
	# Replace this subsection name with a custom tag name.
	# Multiple subsections like this can be created. The '@' prefix for
	# tags is optional. This subsection can contain host_list, which is a
	# list of machine names. If the name of the local machine is found in
	# host_list, then the name of this subsection is used as a tag and is
	# applied to the local machine as a 'host tag'. If this subsection is
	# empty (has no host_list), then the subsection name is always applied
	# as a 'host tag'.
	# 
	# Example
	# The host tag foo is given to all hosts, and the host tag
	# bar is given to the hosts named machine1 and machine2.
	# tags { foo { } bar { host_list = [ "machine1", "machine2" ] } }
	# 
	# This configuration section has variable name.
	# This configuration section has an automatic default value.
	# tag {

		# Configuration option tags/<tag>/host_list.
		# A list of machine names.
		# These machine names are compared to the nodename returned
		# by uname(2). If the local machine name matches an entry in
		# this list, the name of the subsection is applied to the
		# machine as a 'host tag'.
		# This configuration option does not have a default value defined.
	# }
# }