This file is indexed.

/usr/lib/python3/dist-packages/Onboard/WPEngine.py is in onboard 1.2.0-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# -*- coding: utf-8 -*-

# Copyright © 2013-2014 marmuta <marmvta@gmail.com>
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import division, print_function, unicode_literals

import os
import time
import logging

from Onboard.utils import unicode_str, XDGDirs
from Onboard.Timer import Timer
from Onboard.Config import Config

import Onboard.pypredict as pypredict

config = Config()

_logger = logging.getLogger(__name__)


class WPLocalEngine(object):
    """
    Singleton class for low-level word prediction, local in-process engine.
    """

    def __new__(cls, *args, **kwargs):
        """
        Singleton magic.
        """
        if not hasattr(cls, "self"):
            cls.self = object.__new__(cls, *args, **kwargs)
            cls.self.construct()
        return cls.self

    def __init__(self):
        """
        Called multiple times, do not use.
        """
        pass

    def construct(self):
        """
        Singleton constructor, runs only once.
        """
        self._model_cache = ModelCache()
        self._auto_save_timer = AutoSaveTimer(self._model_cache)
        self.models = []
        self.persistent_models = []
        self.auto_learn_models = []
        self.scratch_models = []

    def cleanup(self):
        self._auto_save_timer.stop()
        self._model_cache.save_models()

    def set_models(self, persistent_models, auto_learn_models, scratch_models):
        """ Fixme: rename to "set_model_ids" """
        self.models = persistent_models + scratch_models
        self.persistent_models = persistent_models
        self.auto_learn_models = auto_learn_models
        self.auto_learn_models = auto_learn_models
        self.scratch_models = scratch_models

    def load_models(self):
        """
        Pre-load models set with set_models. If this isn't called,
        language models are lazy-loaded on demand.
        """
        self._model_cache.get_models(self.models)

    def postpone_autosave(self):
        self._auto_save_timer.postpone()

    def pause_autosave(self):
        # Pause for a minute max, because resume_autosave isn't
        # reliable called, e.g. when dragging and leaving the window.
        self._auto_save_timer.pause(60)

    def resume_autosave(self):
        self._auto_save_timer.resume()

    def predict(self, context_line, limit=20,
                case_insensitive=False,
                case_insensitive_smart=False,
                accent_insensitive=False,
                accent_insensitive_smart=False,
                ignore_capitalized=False,
                ignore_non_capitalized=False):
        """ Find completion/prediction choices. """
        LanguageModel = pypredict.LanguageModel
        options = 0
        if case_insensitive:
            options |= LanguageModel.CASE_INSENSITIVE
        if case_insensitive_smart:
            options |= LanguageModel.CASE_INSENSITIVE_SMART
        if accent_insensitive:
            options |= LanguageModel.ACCENT_INSENSITIVE
        if accent_insensitive_smart:
            options |= LanguageModel.ACCENT_INSENSITIVE_SMART
        if ignore_capitalized:
            options |= LanguageModel.IGNORE_CAPITALIZED
        if ignore_non_capitalized:
            options |= LanguageModel.IGNORE_NON_CAPITALIZED

        context, spans = pypredict.tokenize_context(context_line)
        choices = self._get_prediction(self.models, context, limit, options)
        _logger.debug("context=" + repr(context))
        _logger.debug("choices=" + repr(choices[:5]))
        return [x[0] for x in choices]

    def learn_text(self, text, allow_new_words):
        """ Count n-grams and add words to the auto-learn models. """
        if self.auto_learn_models:
            tokens, spans = pypredict.tokenize_text(text)

            # There are too many false positives with trailing
            # single quotes, remove them.
            # Do this here, because we still want "it's", etc. to
            # incrementally provide completions.
            for i, token in enumerate(tokens):
                if token.endswith("'"):
                    token = token[:-1]
                    if not token:  # shouldn't happen
                        token = "<unk>"
                    tokens[i] = token

            # if requested, drop unknown words
            if allow_new_words:
                token_sections = [tokens]
            else:
                token_sections = self._drop_new_words(tokens, spans,
                                                      self.persistent_models)
            models = self._model_cache.get_models(self.auto_learn_models)
            for model in models:
                for tokens in token_sections:
                    model.learn_tokens(tokens)

            _logger.info("learn_text: tokens=" + repr(token_sections))

            # debug: save all learned text for later parameter optimization
            if config.log_learn:
                fn = os.path.join(config.user_dir, "learned_text.txt")
                with open(fn, "a") as f:
                    f.write(text + "\n")

    def _drop_new_words(self, tokens, spans, lmids):
        """ Remove tokens that don't already exist in any active model.  """

        tokspans, counts = self.lookup_tokens(tokens, spans, lmids)
        split_indices = [i for i, model_counts in enumerate(counts)
                         if all(n != 1 for n in model_counts)]
        return pypredict.split_tokens_at(tokens, split_indices)

    def learn_scratch_text(self, text):
        """ Count n-grams and add words to the scratch models. """
        tokens, spans = pypredict.tokenize_text(text)
        models = self._model_cache.get_models(self.scratch_models)
        for model in models:
            # print("scratch learn", model, tokens)
            model.learn_tokens(tokens, True)

    def clear_scratch_models(self):
        """ Count n-grams and add words to the scratch models. """
        models = self._model_cache.get_models(self.scratch_models)
        for model in models:
            model.clear()

    def lookup_text(self, text, lmids):
        """
        Split <text> into tokens and lookup the individual tokens in each
        of the given language models. See lookup_tokens() for more information.
        """
        tokens, spans = pypredict.tokenize_sentence(text)
        return self.lookup_tokens(tokens, spans, lmids)

    def lookup_tokens(self, tokens, spans, lmids):
        """
        Lookup the individual tokens in each of the given language models.
        This method is meant to be a basis for highlighting (partially)
        unknown words in a display for recently typed text.

        The return value is a tuple of two arrays. First an array of tuples
        (start, end, token), one per token, with start and end index pointing
        into <text> and second a two dimensional array of lookup results.
        There is one lookup result per token and language model. Each lookup
        result is either 0 for no match, 1 for an exact match or -n for
        count n partial (prefix) matches.
        """
        tokspans  = [(spans[i][0], spans[i][1], t)
                     for i, t in enumerate(tokens)]
        counts = [[0 for lmid in lmids] for t in tokspans]
        for i, lmid in enumerate(lmids):
            model = self._model_cache.get_model(lmid)
            if model:
                for j, t in enumerate(tokspans):
                    counts[j][i] = model.lookup_word(t[2])

        _logger.debug("lookup_tokens: tokens=%s counts=%s" %
                     (repr(tokens), repr(counts)))

        # Counts are 0 for no match, 1 for exact match or
        # -n for partial matches
        return tokens, counts

    def word_exists(self, word):
        """
        Does word exist in any of the non-scratch models?
        """
        exists = False
        lmids = self.persistent_models
        for i, lmid in enumerate(lmids):
            model = self._model_cache.get_model(lmid)
            if model:
                count = model.lookup_word(word)
                if count > 0:
                    exists = True
                    break
        return exists

    def tokenize_text(self, text):
        """
        Let the service find the words in text.
        """
        tokens, spans = pypredict.tokenize_text(text)
        return tokens, spans

    def tokenize_text_pythonic(self, text):
        """
        Let the service find the words in text.
        Return python types instead of dbus.Array/String/... .

        Doctests:
        # whitspace have to be respected in spans
        >>> p = WPLocalEngine()
        >>> p.tokenize_text_pythonic("abc  def")
        (['abc', 'def'], [[0, 3], [5, 8]])
        """
        return self.tokenize_text(text)

    def tokenize_context(self, text):
        """ let the service find the words in text """
        return pypredict.tokenize_context(text)

    def get_model_names(self, _class):
        """ Return the names of the available models. """
        names = self._model_cache.find_available_model_names(_class)
        return names

    def get_last_context_fragment(self, text):
        """
        Return the very last (partial) word in text.
        """
        text = text[-1024:]
        tokens, spans = self.tokenize_context(text)
        if len(spans):
            # Don't return the token itself as it won't include
            # trailing dashes. Catch the text until its very end.
            begin = spans[-1][0]
            return text[begin:]
        else:
            return ""

    def _get_prediction(self, lmdesc, context, limit, options):
        lmids, weights = self._model_cache.parse_lmdesc(lmdesc)
        models = self._model_cache.get_models(lmids)

        for m in models:
            # Kneser-ney perfomes best in entropy and ksr measures, but
            # failed in practice for anything but natural language, e.g.
            # shell commands.
            # -> use the second best available: absolute discounting
            # m.smoothing = "kneser-ney"
            m.smoothing = "abs-disc"

            # setup recency caching
            if hasattr(m, "recency_ratio"):
                # Values found with
                # $ pypredict/optimize caching models/en.lm learned_text.txt
                # based on multilingual text actually typed (--log-learning)
                # with onboard over ~3 months.
                # How valid those settings are under different conditions
                # remains to be seen, but for now this is the best I have.
                m.recency_ratio = 0.811
                m.recency_halflife = 96
                m.recency_smoothing = "jelinek-mercer"
                m.recency_lambdas = [0.404, 0.831, 0.444]

        model = pypredict.overlay(models)
        # model = pypredict.linint(models, weights)
        # model = pypredict.loglinint(models, weights)

        choices = model.predictp(context, limit, options=options)

        return choices

    def remove_context(self, context):
        """
        Remove the last word of context in the given context.
        If len(context) == 1 then all occurences of the word will be removed.
        """
        lmids, weights = self._model_cache.parse_lmdesc(self.auto_learn_models)
        models = self._model_cache.get_models(lmids)
        for i, m in enumerate(models):
            changes = m.remove_context(context)

            # debug output
            _logger.debug("removing {} from '{}': {} n-grams affected"
                          .format(context, lmids[i], len(changes)))
            if _logger.isEnabledFor(logging.DEBUG):
                changes = sorted(sorted(changes.items()),
                                 key=lambda x: -len(x[0]))
                for ng in changes:
                    _logger.debug("    remove: {}, count {}"
                                  .format(ng[0], ng[1]))


class ModelCache:
    """ Loads and caches language models """

    def __init__(self):
        self._language_models = {}

    def clear(self):
        self._language_models = {}

    def get_models(self, lmids):
        models = []
        for lmid in lmids:
            model = self.get_model(lmid)
            if model:
                models.append(model)
        return models

    def get_model(self, lmid):
        """ get language model from cache or load it from disk"""
        lmid = self.canonicalize_lmid(lmid)
        if lmid in self._language_models:
            model = self._language_models[lmid]
        else:
            model = self.load_model(lmid)
            if model:
                self._language_models[lmid] = model
        return model

    def find_available_model_names(self, _class):
        names = []
        models = self._find_models(_class)
        for model in models:
            name = os.path.basename(model)
            name, ext = os.path.splitext(name)
            names.append(name)
        return names

    @staticmethod
    def _find_models(_class):
        models = []

        if _class == "system":
            path = config.get_system_model_dir()
        else:
            path = config.get_user_model_dir()

        try:
            files = os.listdir(path)
            extension = "lm"
            for filename in files:
                if filename.endswith("." + extension):
                    models.append(os.path.join(path, filename))
        except OSError as e:
            _logger.warning("Failed to find language models in '{}': {} ({})"
                            .format(path, os.strerror(e.errno), e.errno))
        return models

    @staticmethod
    def parse_lmdesc(lmdesc):
        """
        Extract language model ids and interpolation weights from
        the language model description.
        """
        lmids = []
        weights = []

        for entry in lmdesc:
            fields = entry.split(",")

            lmids.append(fields[0])

            weight = 1.0
            if len(fields) >= 2:  # weight is optional
                try:
                    weight = float(fields[1])
                except:
                    pass
            weights.append(weight)

        return lmids, weights

    @staticmethod
    def canonicalize_lmid(lmid):
        """
        Fully qualifies and unifies language model ids.
        Fills in missing fields with default values.
        The result is of the format "type:class:name".
        """
        # default values
        result = ["lm", "system", "en"]
        for i, field in enumerate(lmid.split(":")[:3]):
            result[i] = field
        return ":".join(result)

    @staticmethod
    def split_lmid(lmid):
        lmid = ModelCache.canonicalize_lmid(lmid)
        return lmid.split(":")

    @staticmethod
    def is_user_lmid(lmid):
        type_, class_, name = ModelCache.split_lmid(lmid)
        return class_ == "user"

    def load_model(self, lmid):
        type_, class_, name  = lmid.split(":")

        filename = self.get_filename(lmid)

        if type_ == "lm":
            if class_ == "system":
                if pypredict.read_order(filename) == 1:
                    model = pypredict.UnigramModel()
                else:
                    model = pypredict.DynamicModel()
            elif class_ == "user":
                model = pypredict.CachedDynamicModel()
            elif class_ == "mem":
                model = pypredict.DynamicModel()
            else:
                _logger.error("Unknown class component '{}' in lmid '{}'"
                              .format(class_, lmid))
                return None
        else:
            _logger.error("Unknown type component '{}' in lmid '{}'"
                          .format(type_, lmid))
            return None

        if filename:
            self.do_load_model(model, filename, class_)

        return model

    @staticmethod
    def do_load_model(model, filename, class_):
        _logger.info("Loading language model '{}'.".format(filename))

        if not os.path.exists(filename):
            if class_ == "system":
                _logger.warning("System language model '{}' "
                                "doesn't exist, skipping."
                                .format(filename))
        else:
            try:
                model.load(filename)
            except IOError as ex:
                if ex.errno is not None:  # not n-gram count mismatch
                    errno = ex.errno
                    errstr = os.strerror(errno)
                    msg = _format(
                            "Failed to load language model '{}': {} ({})",
                            filename, errstr, errno)
                else:
                    msg = unicode_str(ex)
                _logger.error(msg)
                model.load_error_msg = msg

                if class_ == "user":
                    _logger.error("Saving word suggestions disabled "
                                  "to prevent further data loss.")

    def save_models(self):
        for lmid, model in list(self._language_models.items()):
            if self.can_save(lmid):
                self.save_model(model, lmid)

    @staticmethod
    def can_save(lmid):
        type_, class_, name  = lmid.split(":")
        return class_ == "user"

    def save_model(self, model, lmid):
        type_, class_, name  = lmid.split(":")
        filename = self.get_filename(lmid)

        backup_filename = self.get_backup_filename(filename)

        if filename and \
           model.modified:

            if model.load_error:
                _logger.warning("Not saving modified language model '{}' "
                                "due to previous error on load."
                                .format(filename))
            else:
                _logger.info("Saving language model '{}'".format(filename))
                try:
                    # create the path
                    path = os.path.dirname(filename)
                    XDGDirs.assure_user_dir_exists(path)

                    if 1:
                        # save to temp file
                        basename, ext = os.path.splitext(filename)
                        tempfile = basename + ".tmp"
                        model.save(tempfile)

                        # rename to final file
                        if os.path.exists(filename):
                            os.rename(filename, backup_filename)
                        os.rename(tempfile, filename)

                    model.modified = False
                except (IOError, OSError) as e:
                    _logger.warning(
                        "Failed to save language model '{}': {} ({})"
                        .format(filename, os.strerror(e.errno), e.errno))

    @staticmethod
    def get_filename(lmid):
        type_, class_, name  = lmid.split(":")
        if class_ == "mem":
            filename = ""
        else:
            if class_ == "system":
                path = config.get_system_model_dir()
            else:  # if class_ == "user":
                path = config.get_user_model_dir()
            ext = type_
            filename = os.path.join(path, name + "." + ext)

        return filename

    @staticmethod
    def get_backup_filename(filename):
        return filename + ".bak"

    @staticmethod
    def get_broken_filename(filename):
        """
        Filename broken files are renamed to.

        Doctests:
        >>> import tempfile
        >>> import subprocess
        >>> from os.path import basename
        >>> td = tempfile.TemporaryDirectory(prefix="test_onboard_")
        >>> dir = td.name
        >>> fn = os.path.join(dir, "en_US.lm")
        >>>
        >>> def test(fn):
        ...     bfn = ModelCache.get_broken_filename(fn)
        ...     print(repr(basename(bfn)))
        ...     _ignore = subprocess.call(["touch", bfn])

        >>> test(fn)   # doctest: +ELLIPSIS
        'en_US.lm.broken-..._001'

        >>> test(fn)   # doctest: +ELLIPSIS
        'en_US.lm.broken-..._002'

        >>> test(fn)   # doctest: +ELLIPSIS
        'en_US.lm.broken-..._003'
        """
        count = 1
        while True:
            fn = "{}.broken-{}_{:03}".format(filename,
                                             time.strftime("%Y-%m-%d"),
                                             count)
            if not os.path.exists(fn):
                break
            count += 1
        return fn


class AutoSaveTimer(Timer):
    """ Auto-save modified language models periodically """

    def __init__(self, mode_cache,
                 interval_min=10 * 60,
                 interval_max=30 * 60,
                 postpone_delay=10):
        self._model_cache = mode_cache
        self._interval_min = interval_min  # in seconds
        self._interval_max = interval_max  # in seconds
        self._postpone_delay = postpone_delay
        self._interval = self._interval_min  # in seconds
        self._last_save_time = time.time()
        self._pause = 0
        self._timer_interval = 5
        self.start(self._timer_interval, self._on_timer)

    def pause(self, duration=None):
        """
        No auto-saving while paused, e.g. during key-press.
        """
        self._pause = duration

    def resume(self):
        """
        Allow auto-saving again.
        """
        self._pause = 0

    def postpone(self):
        """
        Postpone saving a little, while the user is still typing.
        Helps to mask the delay when saving large models during which
        Onboard briefly becomes unresponsive.
        """
        elapsed = time.time() - self._last_save_time
        if self._interval < elapsed + self._postpone_delay:
            self._interval = elapsed + self._postpone_delay
            if self._interval > self._interval_max:
                self._interval = self._interval_max
        _logger.debug("postponing autosave: current interval {}, "
                      "elapsed since last save {}"
                      .format(self._interval, elapsed))

    def _on_timer(self):
        now = time.time()
        elapsed = now - self._last_save_time
        if self._interval < elapsed and \
           self._pause == 0:
            self._last_save_time = now
            self._interval = self._interval_min
            _logger.debug("auto-saving language models; "
                          "interval {}, elapsed time {}"
                          .format(self._interval, elapsed))
            self._model_cache.save_models()

        if self._pause:
            self._pause = max(0, self._pause - self._timer_interval)

        return True  # run again