/usr/share/doc/valgrind/html/drd-manual.html is in valgrind 1:3.11.0-1ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 | <html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>8. DRD: a thread error detector</title>
<link rel="stylesheet" type="text/css" href="vg_basic.css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="index.html" title="Valgrind Documentation">
<link rel="up" href="manual.html" title="Valgrind User Manual">
<link rel="prev" href="hg-manual.html" title="7. Helgrind: a thread error detector">
<link rel="next" href="ms-manual.html" title="9. Massif: a heap profiler">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
<td width="22px" align="center" valign="middle"><a accesskey="p" href="hg-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
<td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
<td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
<th align="center" valign="middle">Valgrind User Manual</th>
<td width="22px" align="center" valign="middle"><a accesskey="n" href="ms-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
</tr></table></div>
<div class="chapter">
<div class="titlepage"><div><div><h1 class="title">
<a name="drd-manual"></a>8. DRD: a thread error detector</h1></div></div></div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl class="toc">
<dt><span class="sect1"><a href="drd-manual.html#drd-manual.overview">8.1. Overview</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-progr-models">8.1.1. Multithreaded Programming Paradigms</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.pthreads-model">8.1.2. POSIX Threads Programming Model</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-problems">8.1.3. Multithreaded Programming Problems</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-race-detection">8.1.4. Data Race Detection</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="drd-manual.html#drd-manual.using-drd">8.2. Using DRD</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.options">8.2.1. DRD Command-line Options</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-races">8.2.2. Detected Errors: Data Races</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.lock-contention">8.2.3. Detected Errors: Lock Contention</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.api-checks">8.2.4. Detected Errors: Misuse of the POSIX threads API</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.clientreqs">8.2.5. Client Requests</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.C++11">8.2.6. Debugging C++11 Programs</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.gnome">8.2.7. Debugging GNOME Programs</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.boost.thread">8.2.8. Debugging Boost.Thread Programs</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.openmp">8.2.9. Debugging OpenMP Programs</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.cust-mem-alloc">8.2.10. DRD and Custom Memory Allocators</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.drd-versus-memcheck">8.2.11. DRD Versus Memcheck</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.resource-requirements">8.2.12. Resource Requirements</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.effective-use">8.2.13. Hints and Tips for Effective Use of DRD</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="drd-manual.html#drd-manual.Pthreads">8.3. Using the POSIX Threads API Effectively</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mutex-types">8.3.1. Mutex types</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.condvar">8.3.2. Condition variables</a></span></dt>
<dt><span class="sect2"><a href="drd-manual.html#drd-manual.pctw">8.3.3. pthread_cond_timedwait and timeouts</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="drd-manual.html#drd-manual.limitations">8.4. Limitations</a></span></dt>
<dt><span class="sect1"><a href="drd-manual.html#drd-manual.feedback">8.5. Feedback</a></span></dt>
</dl>
</div>
<p>To use this tool, you must specify
<code class="option">--tool=drd</code>
on the Valgrind command line.</p>
<div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="drd-manual.overview"></a>8.1. Overview</h2></div></div></div>
<p>
DRD is a Valgrind tool for detecting errors in multithreaded C and C++
programs. The tool works for any program that uses the POSIX threading
primitives or that uses threading concepts built on top of the POSIX threading
primitives.
</p>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.mt-progr-models"></a>8.1.1. Multithreaded Programming Paradigms</h3></div></div></div>
<p>
There are two possible reasons for using multithreading in a program:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
To model concurrent activities. Assigning one thread to each activity
can be a great simplification compared to multiplexing the states of
multiple activities in a single thread. This is why most server software
and embedded software is multithreaded.
</p></li>
<li class="listitem"><p>
To use multiple CPU cores simultaneously for speeding up
computations. This is why many High Performance Computing (HPC)
applications are multithreaded.
</p></li>
</ul></div>
<p>
</p>
<p>
Multithreaded programs can use one or more of the following programming
paradigms. Which paradigm is appropriate depends e.g. on the application type.
Some examples of multithreaded programming paradigms are:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Locking. Data that is shared over threads is protected from concurrent
accesses via locking. E.g. the POSIX threads library, the Qt library
and the Boost.Thread library support this paradigm directly.
</p></li>
<li class="listitem"><p>
Message passing. No data is shared between threads, but threads exchange
data by passing messages to each other. Examples of implementations of
the message passing paradigm are MPI and CORBA.
</p></li>
<li class="listitem"><p>
Automatic parallelization. A compiler converts a sequential program into
a multithreaded program. The original program may or may not contain
parallelization hints. One example of such parallelization hints is the
OpenMP standard. In this standard a set of directives are defined which
tell a compiler how to parallelize a C, C++ or Fortran program. OpenMP
is well suited for computational intensive applications. As an example,
an open source image processing software package is using OpenMP to
maximize performance on systems with multiple CPU
cores. GCC supports the
OpenMP standard from version 4.2.0 on.
</p></li>
<li class="listitem"><p>
Software Transactional Memory (STM). Any data that is shared between
threads is updated via transactions. After each transaction it is
verified whether there were any conflicting transactions. If there were
conflicts, the transaction is aborted, otherwise it is committed. This
is a so-called optimistic approach. There is a prototype of the Intel C++
Compiler available that supports STM. Research about the addition of
STM support to GCC is ongoing.
</p></li>
</ul></div>
<p>
</p>
<p>
DRD supports any combination of multithreaded programming paradigms as
long as the implementation of these paradigms is based on the POSIX
threads primitives. DRD however does not support programs that use
e.g. Linux' futexes directly. Attempts to analyze such programs with
DRD will cause DRD to report many false positives.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.pthreads-model"></a>8.1.2. POSIX Threads Programming Model</h3></div></div></div>
<p>
POSIX threads, also known as Pthreads, is the most widely available
threading library on Unix systems.
</p>
<p>
The POSIX threads programming model is based on the following abstractions:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
A shared address space. All threads running within the same
process share the same address space. All data, whether shared or
not, is identified by its address.
</p></li>
<li class="listitem"><p>
Regular load and store operations, which allow to read values
from or to write values to the memory shared by all threads
running in the same process.
</p></li>
<li class="listitem"><p>
Atomic store and load-modify-store operations. While these are
not mentioned in the POSIX threads standard, most
microprocessors support atomic memory operations.
</p></li>
<li class="listitem"><p>
Threads. Each thread represents a concurrent activity.
</p></li>
<li class="listitem"><p>
Synchronization objects and operations on these synchronization
objects. The following types of synchronization objects have been
defined in the POSIX threads standard: mutexes, condition variables,
semaphores, reader-writer synchronization objects, barriers and
spinlocks.
</p></li>
</ul></div>
<p>
</p>
<p>
Which source code statements generate which memory accesses depends on
the <span class="emphasis"><em>memory model</em></span> of the programming language being
used. There is not yet a definitive memory model for the C and C++
languages. For a draft memory model, see also the document
<a class="ulink" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html" target="_top">
WG21/N2338: Concurrency memory model compiler consequences</a>.
</p>
<p>
For more information about POSIX threads, see also the Single UNIX
Specification version 3, also known as
<a class="ulink" href="http://www.opengroup.org/onlinepubs/000095399/idx/threads.html" target="_top">
IEEE Std 1003.1</a>.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.mt-problems"></a>8.1.3. Multithreaded Programming Problems</h3></div></div></div>
<p>
Depending on which multithreading paradigm is being used in a program,
one or more of the following problems can occur:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Data races. One or more threads access the same memory location without
sufficient locking. Most but not all data races are programming errors
and are the cause of subtle and hard-to-find bugs.
</p></li>
<li class="listitem"><p>
Lock contention. One thread blocks the progress of one or more other
threads by holding a lock too long.
</p></li>
<li class="listitem"><p>
Improper use of the POSIX threads API. Most implementations of the POSIX
threads API have been optimized for runtime speed. Such implementations
will not complain on certain errors, e.g. when a mutex is being unlocked
by another thread than the thread that obtained a lock on the mutex.
</p></li>
<li class="listitem"><p>
Deadlock. A deadlock occurs when two or more threads wait for
each other indefinitely.
</p></li>
<li class="listitem"><p>
False sharing. If threads that run on different processor cores
access different variables located in the same cache line
frequently, this will slow down the involved threads a lot due
to frequent exchange of cache lines.
</p></li>
</ul></div>
<p>
</p>
<p>
Although the likelihood of the occurrence of data races can be reduced
through a disciplined programming style, a tool for automatic
detection of data races is a necessity when developing multithreaded
software. DRD can detect these, as well as lock contention and
improper use of the POSIX threads API.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.data-race-detection"></a>8.1.4. Data Race Detection</h3></div></div></div>
<p>
The result of load and store operations performed by a multithreaded program
depends on the order in which memory operations are performed. This order is
determined by:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem"><p>
All memory operations performed by the same thread are performed in
<span class="emphasis"><em>program order</em></span>, that is, the order determined by the
program source code and the results of previous load operations.
</p></li>
<li class="listitem"><p>
Synchronization operations determine certain ordering constraints on
memory operations performed by different threads. These ordering
constraints are called the <span class="emphasis"><em>synchronization order</em></span>.
</p></li>
</ol></div>
<p>
The combination of program order and synchronization order is called the
<span class="emphasis"><em>happens-before relationship</em></span>. This concept was first
defined by S. Adve et al in the paper <span class="emphasis"><em>Detecting data races on weak
memory systems</em></span>, ACM SIGARCH Computer Architecture News, v.19 n.3,
p.234-243, May 1991.
</p>
<p>
Two memory operations <span class="emphasis"><em>conflict</em></span> if both operations are
performed by different threads, refer to the same memory location and at least
one of them is a store operation.
</p>
<p>
A multithreaded program is <span class="emphasis"><em>data-race free</em></span> if all
conflicting memory accesses are ordered by synchronization
operations.
</p>
<p>
A well known way to ensure that a multithreaded program is data-race
free is to ensure that a locking discipline is followed. It is e.g.
possible to associate a mutex with each shared data item, and to hold
a lock on the associated mutex while the shared data is accessed.
</p>
<p>
All programs that follow a locking discipline are data-race free, but not all
data-race free programs follow a locking discipline. There exist multithreaded
programs where access to shared data is arbitrated via condition variables,
semaphores or barriers. As an example, a certain class of HPC applications
consists of a sequence of computation steps separated in time by barriers, and
where these barriers are the only means of synchronization. Although there are
many conflicting memory accesses in such applications and although such
applications do not make use mutexes, most of these applications do not
contain data races.
</p>
<p>
There exist two different approaches for verifying the correctness of
multithreaded programs at runtime. The approach of the so-called Eraser
algorithm is to verify whether all shared memory accesses follow a consistent
locking strategy. And the happens-before data race detectors verify directly
whether all interthread memory accesses are ordered by synchronization
operations. While the last approach is more complex to implement, and while it
is more sensitive to OS scheduling, it is a general approach that works for
all classes of multithreaded programs. An important advantage of
happens-before data race detectors is that these do not report any false
positives.
</p>
<p>
DRD is based on the happens-before algorithm.
</p>
</div>
</div>
<div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="drd-manual.using-drd"></a>8.2. Using DRD</h2></div></div></div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.options"></a>8.2.1. DRD Command-line Options</h3></div></div></div>
<p>The following command-line options are available for controlling the
behavior of the DRD tool itself:</p>
<div class="variablelist">
<a name="drd.opts.list"></a><dl class="variablelist">
<dt><span class="term">
<code class="option">--check-stack-var=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Controls whether DRD detects data races on stack
variables. Verifying stack variables is disabled by default because
most programs do not share stack variables over threads.
</p></dd>
<dt><span class="term">
<code class="option">--exclusive-threshold=<n> [default: off]</code>
</span></dt>
<dd><p>
Print an error message if any mutex or writer lock has been
held longer than the time specified in milliseconds. This
option enables the detection of lock contention.
</p></dd>
<dt><span class="term">
<code class="option">--join-list-vol=<n> [default: 10]</code>
</span></dt>
<dd><p>
Data races that occur between a statement at the end of one thread
and another thread can be missed if memory access information is
discarded immediately after a thread has been joined. This option
allows one to specify for how many joined threads memory access information
should be retained.
</p></dd>
<dt><span class="term">
<code class="option">
--first-race-only=<yes|no> [default: no]
</code>
</span></dt>
<dd><p>
Whether to report only the first data race that has been detected on a
memory location or all data races that have been detected on a memory
location.
</p></dd>
<dt><span class="term">
<code class="option">
--free-is-write=<yes|no> [default: no]
</code>
</span></dt>
<dd>
<p>
Whether to report races between accessing memory and freeing
memory. Enabling this option may cause DRD to run slightly
slower. Notes:</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Don't enable this option when using custom memory allocators
that use
the <code class="computeroutput">VG_USERREQ__MALLOCLIKE_BLOCK</code>
and <code class="computeroutput">VG_USERREQ__FREELIKE_BLOCK</code>
because that would result in false positives.
</p></li>
<li class="listitem"><p>Don't enable this option when using reference-counted
objects because that will result in false positives, even when
that code has been annotated properly with
<code class="computeroutput">ANNOTATE_HAPPENS_BEFORE</code>
and <code class="computeroutput">ANNOTATE_HAPPENS_AFTER</code>. See
e.g. the output of the following command for an example:
<code class="computeroutput">valgrind --tool=drd --free-is-write=yes
drd/tests/annotate_smart_pointer</code>.
</p></li>
</ul></div>
</dd>
<dt><span class="term">
<code class="option">
--report-signal-unlocked=<yes|no> [default: yes]
</code>
</span></dt>
<dd><p>
Whether to report calls to
<code class="function">pthread_cond_signal</code> and
<code class="function">pthread_cond_broadcast</code> where the mutex
associated with the signal through
<code class="function">pthread_cond_wait</code> or
<code class="function">pthread_cond_timed_wait</code>is not locked at
the time the signal is sent. Sending a signal without holding
a lock on the associated mutex is a common programming error
which can cause subtle race conditions and unpredictable
behavior. There exist some uncommon synchronization patterns
however where it is safe to send a signal without holding a
lock on the associated mutex.
</p></dd>
<dt><span class="term">
<code class="option">--segment-merging=<yes|no> [default: yes]</code>
</span></dt>
<dd><p>
Controls segment merging. Segment merging is an algorithm to
limit memory usage of the data race detection
algorithm. Disabling segment merging may improve the accuracy
of the so-called 'other segments' displayed in race reports
but can also trigger an out of memory error.
</p></dd>
<dt><span class="term">
<code class="option">--segment-merging-interval=<n> [default: 10]</code>
</span></dt>
<dd><p>
Perform segment merging only after the specified number of new
segments have been created. This is an advanced configuration option
that allows one to choose whether to minimize DRD's memory usage by
choosing a low value or to let DRD run faster by choosing a slightly
higher value. The optimal value for this parameter depends on the
program being analyzed. The default value works well for most programs.
</p></dd>
<dt><span class="term">
<code class="option">--shared-threshold=<n> [default: off]</code>
</span></dt>
<dd><p>
Print an error message if a reader lock has been held longer
than the specified time (in milliseconds). This option enables
the detection of lock contention.
</p></dd>
<dt><span class="term">
<code class="option">--show-confl-seg=<yes|no> [default: yes]</code>
</span></dt>
<dd><p>
Show conflicting segments in race reports. Since this
information can help to find the cause of a data race, this
option is enabled by default. Disabling this option makes the
output of DRD more compact.
</p></dd>
<dt><span class="term">
<code class="option">--show-stack-usage=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Print stack usage at thread exit time. When a program creates a large
number of threads it becomes important to limit the amount of virtual
memory allocated for thread stacks. This option makes it possible to
observe how much stack memory has been used by each thread of the
client program. Note: the DRD tool itself allocates some temporary
data on the client thread stack. The space necessary for this
temporary data must be allocated by the client program when it
allocates stack memory, but is not included in stack usage reported by
DRD.
</p></dd>
<dt><span class="term">
<code class="option">--ignore-thread-creation=<yes|no> [default: no]</code>
</span></dt>
<dd>
<p>
Controls whether all activities during thread creation should be
ignored. By default enabled only on Solaris.
Solaris provides higher throughput, parallelism and scalability than
other operating systems, at the cost of more fine-grained locking
activity. This means for example that when a thread is created under
glibc, just one big lock is used for all thread setup. Solaris libc
uses several fine-grained locks and the creator thread resumes its
activities as soon as possible, leaving for example stack and TLS setup
sequence to the created thread.
This situation confuses DRD as it assumes there is some false ordering
in place between creator and created thread; and therefore many types
of race conditions in the application would not be reported. To prevent
such false ordering, this command line option is set to
<code class="computeroutput">yes</code> by default on Solaris.
All activity (loads, stores, client requests) is therefore ignored
during:</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
pthread_create() call in the creator thread
</p></li>
<li class="listitem"><p>
thread creation phase (stack and TLS setup) in the created thread
</p></li>
</ul></div>
</dd>
</dl>
</div>
<p>
The following options are available for monitoring the behavior of the
client program:
</p>
<div class="variablelist">
<a name="drd.debugopts.list"></a><dl class="variablelist">
<dt><span class="term">
<code class="option">--trace-addr=<address> [default: none]</code>
</span></dt>
<dd><p>
Trace all load and store activity for the specified
address. This option may be specified more than once.
</p></dd>
<dt><span class="term">
<code class="option">--ptrace-addr=<address> [default: none]</code>
</span></dt>
<dd><p>
Trace all load and store activity for the specified address and keep
doing that even after the memory at that address has been freed and
reallocated.
</p></dd>
<dt><span class="term">
<code class="option">--trace-alloc=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all memory allocations and deallocations. May produce a huge
amount of output.
</p></dd>
<dt><span class="term">
<code class="option">--trace-barrier=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all barrier activity.
</p></dd>
<dt><span class="term">
<code class="option">--trace-cond=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all condition variable activity.
</p></dd>
<dt><span class="term">
<code class="option">--trace-fork-join=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all thread creation and all thread termination events.
</p></dd>
<dt><span class="term">
<code class="option">--trace-hb=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace execution of the <code class="literal">ANNOTATE_HAPPENS_BEFORE()</code>,
<code class="literal">ANNOTATE_HAPPENS_AFTER()</code> and
<code class="literal">ANNOTATE_HAPPENS_DONE()</code> client requests.
</p></dd>
<dt><span class="term">
<code class="option">--trace-mutex=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all mutex activity.
</p></dd>
<dt><span class="term">
<code class="option">--trace-rwlock=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all reader-writer lock activity.
</p></dd>
<dt><span class="term">
<code class="option">--trace-semaphore=<yes|no> [default: no]</code>
</span></dt>
<dd><p>
Trace all semaphore activity.
</p></dd>
</dl>
</div>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.data-races"></a>8.2.2. Detected Errors: Data Races</h3></div></div></div>
<p>
DRD prints a message every time it detects a data race. Please keep
the following in mind when interpreting DRD's output:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Every thread is assigned a <span class="emphasis"><em>thread ID</em></span> by the DRD
tool. A thread ID is a number. Thread ID's start at one and are never
recycled.
</p></li>
<li class="listitem"><p>
The term <span class="emphasis"><em>segment</em></span> refers to a consecutive
sequence of load, store and synchronization operations, all
issued by the same thread. A segment always starts and ends at a
synchronization operation. Data race analysis is performed
between segments instead of between individual load and store
operations because of performance reasons.
</p></li>
<li class="listitem"><p>
There are always at least two memory accesses involved in a data
race. Memory accesses involved in a data race are called
<span class="emphasis"><em>conflicting memory accesses</em></span>. DRD prints a
report for each memory access that conflicts with a past memory
access.
</p></li>
</ul></div>
<p>
</p>
<p>
Below you can find an example of a message printed by DRD when it
detects a data race:
</p>
<pre class="programlisting">
$ valgrind --tool=drd --read-var-info=yes drd/tests/rwlock_race
...
==9466== Thread 3:
==9466== Conflicting load by thread 3 at 0x006020b8 size 4
==9466== at 0x400B6C: thread_func (rwlock_race.c:29)
==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
==9466== Other segment start (thread 2)
==9466== at 0x4C2847D: pthread_rwlock_rdlock* (drd_pthread_intercepts.c:813)
==9466== by 0x400B6B: thread_func (rwlock_race.c:28)
==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
==9466== Other segment end (thread 2)
==9466== at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
==9466== by 0x400B84: thread_func (rwlock_race.c:30)
==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
...
</pre>
<p>
The above report has the following meaning:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
The number in the column on the left is the process ID of the
process being analyzed by DRD.
</p></li>
<li class="listitem"><p>
The first line ("Thread 3") tells you the thread ID for
the thread in which context the data race has been detected.
</p></li>
<li class="listitem"><p>
The next line tells which kind of operation was performed (load or
store) and by which thread. On the same line the start address and the
number of bytes involved in the conflicting access are also displayed.
</p></li>
<li class="listitem"><p>
Next, the call stack of the conflicting access is displayed. If
your program has been compiled with debug information
(<code class="option">-g</code>), this call stack will include file names and
line numbers. The two
bottommost frames in this call stack (<code class="function">clone</code>
and <code class="function">start_thread</code>) show how the NPTL starts
a thread. The third frame
(<code class="function">vg_thread_wrapper</code>) is added by DRD. The
fourth frame (<code class="function">thread_func</code>) is the first
interesting line because it shows the thread entry point, that
is the function that has been passed as the third argument to
<code class="function">pthread_create</code>.
</p></li>
<li class="listitem"><p>
Next, the allocation context for the conflicting address is
displayed. For dynamically allocated data the allocation call
stack is shown. For static variables and stack variables the
allocation context is only shown when the option
<code class="option">--read-var-info=yes</code> has been
specified. Otherwise DRD will print <code class="computeroutput">Allocation
context: unknown</code>.
</p></li>
<li class="listitem">
<p>
A conflicting access involves at least two memory accesses. For
one of these accesses an exact call stack is displayed, and for
the other accesses an approximate call stack is displayed,
namely the start and the end of the segments of the other
accesses. This information can be interpreted as follows:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem"><p>
Start at the bottom of both call stacks, and count the
number stack frames with identical function name, file
name and line number. In the above example the three
bottommost frames are identical
(<code class="function">clone</code>,
<code class="function">start_thread</code> and
<code class="function">vg_thread_wrapper</code>).
</p></li>
<li class="listitem"><p>
The next higher stack frame in both call stacks now tells
you between in which source code region the other memory
access happened. The above output tells that the other
memory access involved in the data race happened between
source code lines 28 and 30 in file
<code class="computeroutput">rwlock_race.c</code>.
</p></li>
</ol></div>
<p>
</p>
</li>
</ul></div>
<p>
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.lock-contention"></a>8.2.3. Detected Errors: Lock Contention</h3></div></div></div>
<p>
Threads must be able to make progress without being blocked for too long by
other threads. Sometimes a thread has to wait until a mutex or reader-writer
synchronization object is unlocked by another thread. This is called
<span class="emphasis"><em>lock contention</em></span>.
</p>
<p>
Lock contention causes delays. Such delays should be as short as
possible. The two command line options
<code class="literal">--exclusive-threshold=<n></code> and
<code class="literal">--shared-threshold=<n></code> make it possible to
detect excessive lock contention by making DRD report any lock that
has been held longer than the specified threshold. An example:
</p>
<pre class="programlisting">
$ valgrind --tool=drd --exclusive-threshold=10 drd/tests/hold_lock -i 500
...
==10668== Acquired at:
==10668== at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
==10668== by 0x400D92: main (hold_lock.c:51)
==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
==10668== at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
==10668== by 0x400DB5: main (hold_lock.c:55)
...
</pre>
<p>
The <code class="literal">hold_lock</code> test program holds a lock as long as
specified by the <code class="literal">-i</code> (interval) argument. The DRD
output reports that the lock acquired at line 51 in source file
<code class="literal">hold_lock.c</code> and released at line 55 was held during
503 ms, while a threshold of 10 ms was specified to DRD.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.api-checks"></a>8.2.4. Detected Errors: Misuse of the POSIX threads API</h3></div></div></div>
<p>
DRD is able to detect and report the following misuses of the POSIX
threads API:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Passing the address of one type of synchronization object
(e.g. a mutex) to a POSIX API call that expects a pointer to
another type of synchronization object (e.g. a condition
variable).
</p></li>
<li class="listitem"><p>
Attempts to unlock a mutex that has not been locked.
</p></li>
<li class="listitem"><p>
Attempts to unlock a mutex that was locked by another thread.
</p></li>
<li class="listitem"><p>
Attempts to lock a mutex of type
<code class="literal">PTHREAD_MUTEX_NORMAL</code> or a spinlock
recursively.
</p></li>
<li class="listitem"><p>
Destruction or deallocation of a locked mutex.
</p></li>
<li class="listitem"><p>
Sending a signal to a condition variable while no lock is held
on the mutex associated with the condition variable.
</p></li>
<li class="listitem"><p>
Calling <code class="function">pthread_cond_wait</code> on a mutex
that is not locked, that is locked by another thread or that
has been locked recursively.
</p></li>
<li class="listitem"><p>
Associating two different mutexes with a condition variable
through <code class="function">pthread_cond_wait</code>.
</p></li>
<li class="listitem"><p>
Destruction or deallocation of a condition variable that is
being waited upon.
</p></li>
<li class="listitem"><p>
Destruction or deallocation of a locked reader-writer synchronization
object.
</p></li>
<li class="listitem"><p>
Attempts to unlock a reader-writer synchronization object that was not
locked by the calling thread.
</p></li>
<li class="listitem"><p>
Attempts to recursively lock a reader-writer synchronization object
exclusively.
</p></li>
<li class="listitem"><p>
Attempts to pass the address of a user-defined reader-writer
synchronization object to a POSIX threads function.
</p></li>
<li class="listitem"><p>
Attempts to pass the address of a POSIX reader-writer synchronization
object to one of the annotations for user-defined reader-writer
synchronization objects.
</p></li>
<li class="listitem"><p>
Reinitialization of a mutex, condition variable, reader-writer
lock, semaphore or barrier.
</p></li>
<li class="listitem"><p>
Destruction or deallocation of a semaphore or barrier that is
being waited upon.
</p></li>
<li class="listitem"><p>
Missing synchronization between barrier wait and barrier destruction.
</p></li>
<li class="listitem"><p>
Exiting a thread without first unlocking the spinlocks, mutexes or
reader-writer synchronization objects that were locked by that thread.
</p></li>
<li class="listitem"><p>
Passing an invalid thread ID to <code class="function">pthread_join</code>
or <code class="function">pthread_cancel</code>.
</p></li>
</ul></div>
<p>
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.clientreqs"></a>8.2.5. Client Requests</h3></div></div></div>
<p>
Just as for other Valgrind tools it is possible to let a client program
interact with the DRD tool through client requests. In addition to the
client requests several macros have been defined that allow to use the
client requests in a convenient way.
</p>
<p>
The interface between client programs and the DRD tool is defined in
the header file <code class="literal"><valgrind/drd.h></code>. The
available macros and client requests are:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
The macro <code class="literal">DRD_GET_VALGRIND_THREADID</code> and the
corresponding client
request <code class="varname">VG_USERREQ__DRD_GET_VALGRIND_THREAD_ID</code>.
Query the thread ID that has been assigned by the Valgrind core to the
thread executing this client request. Valgrind's thread ID's start at
one and are recycled in case a thread stops.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">DRD_GET_DRD_THREADID</code> and the corresponding
client request <code class="varname">VG_USERREQ__DRD_GET_DRD_THREAD_ID</code>.
Query the thread ID that has been assigned by DRD to the thread
executing this client request. These are the thread ID's reported by DRD
in data race reports and in trace messages. DRD's thread ID's start at
one and are never recycled.
</p></li>
<li class="listitem"><p>
The macros <code class="literal">DRD_IGNORE_VAR(x)</code>,
<code class="literal">ANNOTATE_TRACE_MEMORY(&x)</code> and the corresponding
client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>. Some
applications contain intentional races. There exist e.g. applications
where the same value is assigned to a shared variable from two different
threads. It may be more convenient to suppress such races than to solve
these. This client request allows one to suppress such races.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">DRD_STOP_IGNORING_VAR(x)</code> and the
corresponding client request
<code class="varname">VG_USERREQ__DRD_FINISH_SUPPRESSION</code>. Tell DRD
to no longer ignore data races for the address range that was suppressed
either via the macro <code class="literal">DRD_IGNORE_VAR(x)</code> or via the
client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">DRD_TRACE_VAR(x)</code>. Trace all load and store
activity for the address range starting at <code class="literal">&x</code> and
occupying <code class="literal">sizeof(x)</code> bytes. When DRD reports a data
race on a specified variable, and it's not immediately clear which
source code statements triggered the conflicting accesses, it can be
very helpful to trace all activity on the offending memory location.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">DRD_STOP_TRACING_VAR(x)</code>. Stop tracing load
and store activity for the address range starting
at <code class="literal">&x</code> and occupying <code class="literal">sizeof(x)</code>
bytes.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_TRACE_MEMORY(&x)</code>. Trace all
load and store activity that touches at least the single byte at the
address <code class="literal">&x</code>.
</p></li>
<li class="listitem"><p>
The client request <code class="varname">VG_USERREQ__DRD_START_TRACE_ADDR</code>,
which allows one to trace all load and store activity for the specified
address range.
</p></li>
<li class="listitem"><p>
The client
request <code class="varname">VG_USERREQ__DRD_STOP_TRACE_ADDR</code>. Do no longer
trace load and store activity for the specified address range.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> tells DRD to
insert a mark. Insert this macro just after an access to the variable at
the specified address has been performed.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_HAPPENS_AFTER(addr)</code> tells DRD that
the next access to the variable at the specified address should be
considered to have happened after the access just before the latest
<code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> annotation that
references the same variable. The purpose of these two macros is to tell
DRD about the order of inter-thread memory accesses implemented via
atomic memory operations. See
also <code class="literal">drd/tests/annotate_smart_pointer.cpp</code> for an
example.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_RWLOCK_CREATE(rwlock)</code> tells DRD
that the object at address <code class="literal">rwlock</code> is a
reader-writer synchronization object that is not a
<code class="literal">pthread_rwlock_t</code> synchronization object. See
also <code class="literal">drd/tests/annotate_rwlock.c</code> for an example.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_RWLOCK_DESTROY(rwlock)</code> tells DRD
that the reader-writer synchronization object at
address <code class="literal">rwlock</code> has been destroyed.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_WRITERLOCK_ACQUIRED(rwlock)</code> tells
DRD that a writer lock has been acquired on the reader-writer
synchronization object at address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_READERLOCK_ACQUIRED(rwlock)</code> tells
DRD that a reader lock has been acquired on the reader-writer
synchronization object at address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_RWLOCK_ACQUIRED(rwlock, is_w)</code>
tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
a reader lock (when <code class="literal">is_w == 0</code>) has been acquired on
the reader-writer synchronization object at
address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_WRITERLOCK_RELEASED(rwlock)</code> tells
DRD that a writer lock has been released on the reader-writer
synchronization object at address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_READERLOCK_RELEASED(rwlock)</code> tells
DRD that a reader lock has been released on the reader-writer
synchronization object at address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_RWLOCK_RELEASED(rwlock, is_w)</code>
tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
a reader lock (when <code class="literal">is_w == 0</code>) has been released on
the reader-writer synchronization object at
address <code class="literal">rwlock</code>.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BARRIER_INIT(barrier, count,
reinitialization_allowed)</code> tells DRD that a new barrier object
at the address <code class="literal">barrier</code> has been initialized,
that <code class="literal">count</code> threads participate in each barrier and
also whether or not barrier reinitialization without intervening
destruction should be reported as an error. See
also <code class="literal">drd/tests/annotate_barrier.c</code> for an example.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BARRIER_DESTROY(barrier)</code>
tells DRD that a barrier object is about to be destroyed.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BARRIER_WAIT_BEFORE(barrier)</code>
tells DRD that waiting for a barrier will start.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BARRIER_WAIT_AFTER(barrier)</code>
tells DRD that waiting for a barrier has finished.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BENIGN_RACE_SIZED(addr, size,
descr)</code> tells DRD that any races detected on the specified
address are benign and hence should not be
reported. The <code class="literal">descr</code> argument is ignored but can be
used to document why data races on <code class="literal">addr</code> are benign.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_BENIGN_RACE_STATIC(var, descr)</code>
tells DRD that any races detected on the specified static variable are
benign and hence should not be reported. The <code class="literal">descr</code>
argument is ignored but can be used to document why data races
on <code class="literal">var</code> are benign. Note: this macro can only be
used in C++ programs and not in C programs.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_READS_BEGIN</code> tells
DRD to ignore all memory loads performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_READS_END</code> tells
DRD to stop ignoring the memory loads performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_WRITES_BEGIN</code> tells
DRD to ignore all memory stores performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_WRITES_END</code> tells
DRD to stop ignoring the memory stores performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN</code> tells
DRD to ignore all memory accesses performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_END</code> tells
DRD to stop ignoring the memory accesses performed by the current thread.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_NEW_MEMORY(addr, size)</code> tells
DRD that the specified memory range has been allocated by a custom
memory allocator in the client program and that the client program
will start using this memory range.
</p></li>
<li class="listitem"><p>
The macro <code class="literal">ANNOTATE_THREAD_NAME(name)</code> tells DRD to
associate the specified name with the current thread and to include this
name in the error messages printed by DRD.
</p></li>
<li class="listitem"><p>
The macros <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code> and
<code class="literal">VALGRIND_FREELIKE_BLOCK</code> from the Valgrind core are
implemented; they are described in
<a class="xref" href="manual-core-adv.html#manual-core-adv.clientreq" title="3.1. The Client Request mechanism">The Client Request mechanism</a>.
</p></li>
</ul></div>
<p>
</p>
<p>
Note: if you compiled Valgrind yourself, the header file
<code class="literal"><valgrind/drd.h></code> will have been installed in
the directory <code class="literal">/usr/include</code> by the command
<code class="literal">make install</code>. If you obtained Valgrind by
installing it as a package however, you will probably have to install
another package with a name like <code class="literal">valgrind-devel</code>
before Valgrind's header files are available.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.C++11"></a>8.2.6. Debugging C++11 Programs</h3></div></div></div>
<p>If you want to use the C++11 class std::thread you will need to do the
following to annotate the std::shared_ptr<> objects used in the
implementation of that class:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<p>Add the following code at the start of a common header or at the
start of each source file, before any C++ header files are included:</p>
<pre class="programlisting">
#include <valgrind/drd.h>
#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr) ANNOTATE_HAPPENS_BEFORE(addr)
#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr) ANNOTATE_HAPPENS_AFTER(addr)
</pre>
</li>
<li class="listitem"><p>Download the gcc source code and from source file
libstdc++-v3/src/c++11/thread.cc copy the implementation of the
<code class="computeroutput">execute_native_thread_routine()</code>
and <code class="computeroutput">std::thread::_M_start_thread()</code>
functions into a source file that is linked with your application. Make
sure that also in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.</p></li>
</ul></div>
<p>
</p>
<p>For more information, see also <span class="emphasis"><em>The
GNU C++ Library Manual, Debugging Support</em></span>
(<a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html" target="_top">http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html</a>).</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.gnome"></a>8.2.7. Debugging GNOME Programs</h3></div></div></div>
<p>
GNOME applications use the threading primitives provided by the
<code class="computeroutput">glib</code> and
<code class="computeroutput">gthread</code> libraries. These libraries
are built on top of POSIX threads, and hence are directly supported by
DRD. Please keep in mind that you have to call
<code class="function">g_thread_init</code> before creating any threads, or
DRD will report several data races on glib functions. See also the
<a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Threads.html" target="_top">GLib
Reference Manual</a> for more information about
<code class="function">g_thread_init</code>.
</p>
<p>
One of the many facilities provided by the <code class="literal">glib</code>
library is a block allocator, called <code class="literal">g_slice</code>. You
have to disable this block allocator when using DRD by adding the
following to the shell environment variables:
<code class="literal">G_SLICE=always-malloc</code>. See also the <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html" target="_top">GLib
Reference Manual</a> for more information.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.boost.thread"></a>8.2.8. Debugging Boost.Thread Programs</h3></div></div></div>
<p>
The Boost.Thread library is the threading library included with the
cross-platform Boost Libraries. This threading library is an early
implementation of the upcoming C++0x threading library.
</p>
<p>
Applications that use the Boost.Thread library should run fine under DRD.
</p>
<p>
More information about Boost.Thread can be found here:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Anthony Williams, <a class="ulink" href="http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html" target="_top">Boost.Thread</a>
Library Documentation, Boost website, 2007.
</p></li>
<li class="listitem"><p>
Anthony Williams, <a class="ulink" href="http://www.ddj.com/cpp/211600441" target="_top">What's New in Boost
Threads?</a>, Recent changes to the Boost Thread library,
Dr. Dobbs Magazine, October 2008.
</p></li>
</ul></div>
<p>
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.openmp"></a>8.2.9. Debugging OpenMP Programs</h3></div></div></div>
<p>
OpenMP stands for <span class="emphasis"><em>Open Multi-Processing</em></span>. The OpenMP
standard consists of a set of compiler directives for C, C++ and Fortran
programs that allows a compiler to transform a sequential program into a
parallel program. OpenMP is well suited for HPC applications and allows one to
work at a higher level compared to direct use of the POSIX threads API. While
OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still
contain data races. So it definitely makes sense to verify OpenMP programs
with a thread checking tool.
</p>
<p>
DRD supports OpenMP shared-memory programs generated by GCC. GCC
supports OpenMP since version 4.2.0. GCC's runtime support
for OpenMP programs is provided by a library called
<code class="literal">libgomp</code>. The synchronization primitives implemented
in this library use Linux' futex system call directly, unless the
library has been configured with the
<code class="literal">--disable-linux-futex</code> option. DRD only supports
libgomp libraries that have been configured with this option and in
which symbol information is present. For most Linux distributions this
means that you will have to recompile GCC. See also the script
<code class="literal">drd/scripts/download-and-build-gcc</code> in the
Valgrind source tree for an example of how to compile GCC. You will
also have to make sure that the newly compiled
<code class="literal">libgomp.so</code> library is loaded when OpenMP programs
are started. This is possible by adding a line similar to the
following to your shell startup script:
</p>
<pre class="programlisting">
export LD_LIBRARY_PATH=~/gcc-4.4.0/lib64:~/gcc-4.4.0/lib:
</pre>
<p>
As an example, the test OpenMP test program
<code class="literal">drd/tests/omp_matinv</code> triggers a data race
when the option -r has been specified on the command line. The data
race is triggered by the following code:
</p>
<pre class="programlisting">
#pragma omp parallel for private(j)
for (j = 0; j < rows; j++)
{
if (i != j)
{
const elem_t factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -= a[i * cols + k] * factor;
}
}
}
</pre>
<p>
The above code is racy because the variable <code class="literal">k</code> has
not been declared private. DRD will print the following error message
for the above code:
</p>
<pre class="programlisting">
$ valgrind --tool=drd --check-stack-var=yes --read-var-info=yes drd/tests/omp_matinv 3 -t 2 -r
...
Conflicting store by thread 1/1 at 0x7fefffbc4 size 4
at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
by 0x401211: gj (omp_matinv.c:159)
by 0x40166A: invert_matrix (omp_matinv.c:238)
by 0x4019B4: main (omp_matinv.c:316)
Location 0x7fefffbc4 is 0 bytes inside local var "k"
declared at omp_matinv.c:160, in frame #0 of thread 1
...
</pre>
<p>
In the above output the function name <code class="function">gj.omp_fn.0</code>
has been generated by GCC from the function name
<code class="function">gj</code>. The allocation context information shows that the
data race has been caused by modifying the variable <code class="literal">k</code>.
</p>
<p>
Note: for GCC versions before 4.4.0, no allocation context information is
shown. With these GCC versions the most usable information in the above output
is the source file name and the line number where the data race has been
detected (<code class="literal">omp_matinv.c:203</code>).
</p>
<p>
For more information about OpenMP, see also
<a class="ulink" href="http://openmp.org/" target="_top">openmp.org</a>.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.cust-mem-alloc"></a>8.2.10. DRD and Custom Memory Allocators</h3></div></div></div>
<p>
DRD tracks all memory allocation events that happen via the
standard memory allocation and deallocation functions
(<code class="function">malloc</code>, <code class="function">free</code>,
<code class="function">new</code> and <code class="function">delete</code>), via entry
and exit of stack frames or that have been annotated with Valgrind's
memory pool client requests. DRD uses memory allocation and deallocation
information for two purposes:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
To know where the scope ends of POSIX objects that have not been
destroyed explicitly. It is e.g. not required by the POSIX
threads standard to call
<code class="function">pthread_mutex_destroy</code> before freeing the
memory in which a mutex object resides.
</p></li>
<li class="listitem"><p>
To know where the scope of variables ends. If e.g. heap memory
has been used by one thread, that thread frees that memory, and
another thread allocates and starts using that memory, no data
races must be reported for that memory.
</p></li>
</ul></div>
<p>
</p>
<p>
It is essential for correct operation of DRD that the tool knows about
memory allocation and deallocation events. When analyzing a client program
with DRD that uses a custom memory allocator, either instrument the custom
memory allocator with the <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code>
and <code class="literal">VALGRIND_FREELIKE_BLOCK</code> macros or disable the
custom memory allocator.
</p>
<p>
As an example, the GNU libstdc++ library can be configured
to use standard memory allocation functions instead of memory pools by
setting the environment variable
<code class="literal">GLIBCXX_FORCE_NEW</code>. For more information, see also
the <a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html" target="_top">libstdc++
manual</a>.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.drd-versus-memcheck"></a>8.2.11. DRD Versus Memcheck</h3></div></div></div>
<p>
It is essential for correct operation of DRD that there are no memory
errors such as dangling pointers in the client program. Which means that
it is a good idea to make sure that your program is Memcheck-clean
before you analyze it with DRD. It is possible however that some of
the Memcheck reports are caused by data races. In this case it makes
sense to run DRD before Memcheck.
</p>
<p>
So which tool should be run first? In case both DRD and Memcheck
complain about a program, a possible approach is to run both tools
alternatingly and to fix as many errors as possible after each run of
each tool until none of the two tools prints any more error messages.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.resource-requirements"></a>8.2.12. Resource Requirements</h3></div></div></div>
<p>
The requirements of DRD with regard to heap and stack memory and the
effect on the execution time of client programs are as follows:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
When running a program under DRD with default DRD options,
between 1.1 and 3.6 times more memory will be needed compared to
a native run of the client program. More memory will be needed
if loading debug information has been enabled
(<code class="literal">--read-var-info=yes</code>).
</p></li>
<li class="listitem"><p>
DRD allocates some of its temporary data structures on the stack
of the client program threads. This amount of data is limited to
1 - 2 KB. Make sure that thread stacks are sufficiently large.
</p></li>
<li class="listitem"><p>
Most applications will run between 20 and 50 times slower under
DRD than a native single-threaded run. The slowdown will be most
noticeable for applications which perform frequent mutex lock /
unlock operations.
</p></li>
</ul></div>
<p>
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.effective-use"></a>8.2.13. Hints and Tips for Effective Use of DRD</h3></div></div></div>
<p>
The following information may be helpful when using DRD:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
Make sure that debug information is present in the executable
being analyzed, such that DRD can print function name and line
number information in stack traces. Most compilers can be told
to include debug information via compiler option
<code class="option">-g</code>.
</p></li>
<li class="listitem"><p>
Compile with option <code class="option">-O1</code> instead of
<code class="option">-O0</code>. This will reduce the amount of generated
code, may reduce the amount of debug info and will speed up
DRD's processing of the client program. For more information,
see also <a class="xref" href="manual-core.html#manual-core.started" title="2.2. Getting started">Getting started</a>.
</p></li>
<li class="listitem"><p>
If DRD reports any errors on libraries that are part of your
Linux distribution like e.g. <code class="literal">libc.so</code> or
<code class="literal">libstdc++.so</code>, installing the debug packages
for these libraries will make the output of DRD a lot more
detailed.
</p></li>
<li class="listitem">
<p>
When using C++, do not send output from more than one thread to
<code class="literal">std::cout</code>. Doing so would not only
generate multiple data race reports, it could also result in
output from several threads getting mixed up. Either use
<code class="function">printf</code> or do the following:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem"><p>Derive a class from <code class="literal">std::ostreambuf</code>
and let that class send output line by line to
<code class="literal">stdout</code>. This will avoid that individual
lines of text produced by different threads get mixed
up.</p></li>
<li class="listitem"><p>Create one instance of <code class="literal">std::ostream</code>
for each thread. This makes stream formatting settings
thread-local. Pass a per-thread instance of the class
derived from <code class="literal">std::ostreambuf</code> to the
constructor of each instance. </p></li>
<li class="listitem"><p>Let each thread send its output to its own instance of
<code class="literal">std::ostream</code> instead of
<code class="literal">std::cout</code>.</p></li>
</ol></div>
<p>
</p>
</li>
</ul></div>
<p>
</p>
</div>
</div>
<div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="drd-manual.Pthreads"></a>8.3. Using the POSIX Threads API Effectively</h2></div></div></div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.mutex-types"></a>8.3.1. Mutex types</h3></div></div></div>
<p>
The Single UNIX Specification version two defines the following four
mutex types (see also the documentation of <a class="ulink" href="http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html" target="_top"><code class="function">pthread_mutexattr_settype</code></a>):
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
<span class="emphasis"><em>normal</em></span>, which means that no error checking
is performed, and that the mutex is non-recursive.
</p></li>
<li class="listitem"><p>
<span class="emphasis"><em>error checking</em></span>, which means that the mutex
is non-recursive and that error checking is performed.
</p></li>
<li class="listitem"><p>
<span class="emphasis"><em>recursive</em></span>, which means that a mutex may be
locked recursively.
</p></li>
<li class="listitem"><p>
<span class="emphasis"><em>default</em></span>, which means that error checking
behavior is undefined, and that the behavior for recursive
locking is also undefined. Or: portable code must neither
trigger error conditions through the Pthreads API nor attempt to
lock a mutex of default type recursively.
</p></li>
</ul></div>
<p>
</p>
<p>
In complex applications it is not always clear from beforehand which
mutex will be locked recursively and which mutex will not be locked
recursively. Attempts lock a non-recursive mutex recursively will
result in race conditions that are very hard to find without a thread
checking tool. So either use the error checking mutex type and
consistently check the return value of Pthread API mutex calls, or use
the recursive mutex type.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.condvar"></a>8.3.2. Condition variables</h3></div></div></div>
<p>
A condition variable allows one thread to wake up one or more other
threads. Condition variables are often used to notify one or more
threads about state changes of shared data. Unfortunately it is very
easy to introduce race conditions by using condition variables as the
only means of state information propagation. A better approach is to
let threads poll for changes of a state variable that is protected by
a mutex, and to use condition variables only as a thread wakeup
mechanism. See also the source file
<code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
example of how to implement this concept in C++. The monitor concept
used in this example is a well known and very useful concept -- see
also Wikipedia for more information about the <a class="ulink" href="http://en.wikipedia.org/wiki/Monitor_(synchronization)" target="_top">monitor</a>
concept.
</p>
</div>
<div class="sect2">
<div class="titlepage"><div><div><h3 class="title">
<a name="drd-manual.pctw"></a>8.3.3. pthread_cond_timedwait and timeouts</h3></div></div></div>
<p>
Historically the function
<code class="function">pthread_cond_timedwait</code> only allowed the
specification of an absolute timeout, that is a timeout independent of
the time when this function was called. However, almost every call to
this function expresses a relative timeout. This typically happens by
passing the sum of
<code class="computeroutput">clock_gettime(CLOCK_REALTIME)</code> and a
relative timeout as the third argument. This approach is incorrect
since forward or backward clock adjustments by e.g. ntpd will affect
the timeout. A more reliable approach is as follows:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
When initializing a condition variable through
<code class="function">pthread_cond_init</code>, specify that the timeout of
<code class="function">pthread_cond_timedwait</code> will use the clock
<code class="literal">CLOCK_MONOTONIC</code> instead of
<code class="literal">CLOCK_REALTIME</code>. You can do this via
<code class="computeroutput">pthread_condattr_setclock(...,
CLOCK_MONOTONIC)</code>.
</p></li>
<li class="listitem"><p>
When calling <code class="function">pthread_cond_timedwait</code>, pass
the sum of
<code class="computeroutput">clock_gettime(CLOCK_MONOTONIC)</code>
and a relative timeout as the third argument.
</p></li>
</ul></div>
<p>
See also
<code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
example.
</p>
</div>
</div>
<div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="drd-manual.limitations"></a>8.4. Limitations</h2></div></div></div>
<p>DRD currently has the following limitations:</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem"><p>
DRD, just like Memcheck, will refuse to start on Linux
distributions where all symbol information has been removed from
<code class="filename">ld.so</code>. This is e.g. the case for the PPC editions
of openSUSE and Gentoo. You will have to install the glibc debuginfo
package on these platforms before you can use DRD. See also openSUSE
bug <a class="ulink" href="http://bugzilla.novell.com/show_bug.cgi?id=396197" target="_top">
396197</a> and Gentoo bug <a class="ulink" href="http://bugs.gentoo.org/214065" target="_top">214065</a>.
</p></li>
<li class="listitem"><p>
With gcc 4.4.3 and before, DRD may report data races on the C++
class <code class="literal">std::string</code> in a multithreaded program. This is
a know <code class="literal">libstdc++</code> issue -- see also GCC bug
<a class="ulink" href="http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518" target="_top">40518</a>
for more information.
</p></li>
<li class="listitem"><p>
If you compile the DRD source code yourself, you need GCC 3.0 or
later. GCC 2.95 is not supported.
</p></li>
<li class="listitem"><p>
Of the two POSIX threads implementations for Linux, only the
NPTL (Native POSIX Thread Library) is supported. The older
LinuxThreads library is not supported.
</p></li>
</ul></div>
</div>
<div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="drd-manual.feedback"></a>8.5. Feedback</h2></div></div></div>
<p>
If you have any comments, suggestions, feedback or bug reports about
DRD, feel free to either post a message on the Valgrind users mailing
list or to file a bug report. See also <a class="ulink" href="http://www.valgrind.org/" target="_top">http://www.valgrind.org/</a> for more information.
</p>
</div>
</div>
<div>
<br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
<tr>
<td rowspan="2" width="40%" align="left">
<a accesskey="p" href="hg-manual.html"><< 7. Helgrind: a thread error detector</a> </td>
<td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
<td rowspan="2" width="40%" align="right"> <a accesskey="n" href="ms-manual.html">9. Massif: a heap profiler >></a>
</td>
</tr>
<tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
</table>
</div>
</body>
</html>
|