This file is indexed.

/usr/share/calc/intnum.cal is in apcalc-common 2.12.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * intnum - implementation of tanhsinh- and Gauss-Legendre quadrature
 *
 * Copyright (C) 2013 Christoph Zurnieden
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */


static resource_debug_level;
resource_debug_level = config("resource_debug", 0);


read -once infinities;

static __CZ__tanhsinh_x;
static __CZ__tanhsinh_w;
static __CZ__tanhsinh_order;
static __CZ__tanhsinh_prec;

define quadtsdeletenodes()
{
    free(__CZ__tanhsinh_x);
    free(__CZ__tanhsinh_w);
    free(__CZ__tanhsinh_order);
    free(__CZ__tanhsinh_prec);
}

define quadtscomputenodes(order, expo, eps)
{
    local t cht sht chp sum k PI places;
    local h t0 x w;
    if (__CZ__tanhsinh_order == order && __CZ__tanhsinh_prec == eps)
	return 1;
    __CZ__tanhsinh_order = order;
    __CZ__tanhsinh_prec = eps;
    __CZ__tanhsinh_x = list();
    __CZ__tanhsinh_w = list();
    /* The tanhsinh algorithm needs a slightly higher precision than G-L */
    eps = epsilon(eps * 1e-2);
    places = highbit(1 + int (1 / epsilon())) +1;
    PI = pi();
    sum = 0;
    t0 = 2 ^ (-expo);
    h = 2 * t0;
    /*
     * The author wanted to use the mpmath trick here which was
     * advertised---and reasonably so!---to be faster. Didn't work out
     * so well with calc.
     * PI4 = PI/4;
     * expt0 = bround(exp(t0),places);
     * a = bround( PI4 * expt0,places);
     * b = bround(PI4 / expt0,places);
     * udelta = bround(exp(h),places);
     * urdelta = bround(1/udelta,places);
     */
    /* make use of x(-t) = -x(t), w(-t) = w(t)  */
    for (k = 0; k < 20 * order + 1; k++) {
	/*
	 * x = tanh(pi/2 * sinh(t))
	 * w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))^2
	 */
	t = bround(t0 + k * h, places);

	cht = bround(cosh(t), places);
	sht = bround(sinh(t), places);
	chp = bround(cosh(0.5 * PI * sht), places);
	x = bround(tanh(0.5 * PI * sht), places);
	w = bround((PI * h * cht) / (2 * chp ^ 2), places);
	/*
	 * c = bround(exp(a-b),places);
	 * d = bround(1/c,places);
	 * co =bround( (c+d)/2,places);
	 * si =bround( (c-d)/2,places);
	 * x = bround(si / co,places);
	 * w = bround((a+b) / co^2,places);
	 */
	if (abs(x - 1) <= eps)
	    break;

	append(__CZ__tanhsinh_x, x);
	append(__CZ__tanhsinh_w, w);
	/*
	 * a *= udelta;
	 * b *= urdelta;
	 */
    }

    /* Normalize the weights to make them add up to 2 (two) */
    /*
     * for(k=0;k < size(__CZ__tanhsinh_w);k++)
     * sum = bround(sum + __CZ__tanhsinh_w[k],places);
     * sum *= 2;
     * for(k=0;k < size(__CZ__tanhsinh_w);k++)
     * __CZ__tanhsinh_w[k] = bround(2.0 * __CZ__tanhsinh_w[k] / sum,places);
     */

    epsilon(eps);
    return 1;
}

define quadtscore(a, b, n)
{
    local k c d order eps places sum ret x x1 x2 xm w w1 w2 m sizel;

    eps = epsilon(epsilon() * 1e-2);
    places = highbit(1 + int (1 / epsilon())) +1;
    m = int (4 + max(0, ln(places / 30.0) / ln(2))) + 2;
    if (!isnull(n)) {
	order = n;
	m = ilog(order / 3, 2) + 1;
    } else
	order = 3 * 2 ^ (m - 1);

    quadtscomputenodes(order, m, epsilon());
    sizel = size(__CZ__tanhsinh_w);

    if (isinfinite(a) || isinfinite(b)) {
	/*
	 *           x
	 * t =  ------------
	 *                2
	 *      sqrt(1 - y )
	 */
	if (isninf(a) && ispinf(b)) {
	    for (k = 0; k < sizel; k++) {
		x1 = __CZ__tanhsinh_x[k];
		x2 = -__CZ__tanhsinh_x[k];
		w1 = __CZ__tanhsinh_w[k];

		x = bround(x1 * (1 - x1 ^ 2) ^ (-1 / 2), places);
		xm = bround(x2 * (1 - x2 ^ 2) ^ (-1 / 2), places);
		w = bround(w1 * (((1 - x1 ^ 2) ^ (-1 / 2)) / (1 - x1 ^ 2)),
			   places);
		w2 = bround(w1 * (((1 - x2 ^ 2) ^ (-1 / 2)) / (1 - x2 ^ 2)),
			    places);
		sum += bround(w * f(x), places);
		sum += bround(w2 * f(xm), places);
	    }
	}
	/*
	 *        1
	 * t =  - - + b + 1
	 *        x
	 */
	else if (isninf(a) && !iscinf(b)) {
	    for (k = 0; k < sizel; k++) {
		x1 = __CZ__tanhsinh_x[k];
		x2 = -__CZ__tanhsinh_x[k];
		w1 = __CZ__tanhsinh_w[k];

		x = bround((b + 1) - (2 / (x1 + 1)), places);
		xm = bround((b + 1) - (2 / (x2 + 1)), places);
		w = bround(w1 * (1 / 2 * (2 / (x1 + 1)) ^ 2), places);
		w2 = bround(w1 * (1 / 2 * (2 / (x2 + 1)) ^ 2), places);
		sum += bround(w * f(x), places);
		sum += bround(w2 * f(xm), places);
	    }
	}
	/*
	 *      1
	 * t =  - + a - 1
	 *      x
	 */
	else if (!iscinf(a) && ispinf(b)) {
	    for (k = 0; k < sizel; k++) {
		x1 = __CZ__tanhsinh_x[k];
		x2 = -__CZ__tanhsinh_x[k];
		w1 = __CZ__tanhsinh_w[k];
		x = bround((a - 1) + (2 / (x1 + 1)), places);
		xm = bround((a - 1) + (2 / (x2 + 1)), places);
		w = bround(w1 * (((1 / 2) * (2 / (x1 + 1)) ^ 2)), places);
		w2 = bround(w1 * (((1 / 2) * (2 / (x2 + 1)) ^ 2)), places);
		sum += bround(w * f(x), places);
		sum += bround(w2 * f(xm), places);
	    }
	} else if (isninf(a) || isninf(b)) {
	    /*TODO: swap(a,b) and negate(w)? Lookup! */
	    return newerror("quadtscore: reverse limits?");
	} else {
	    return
		newerror("quadtscore: complex infinity not yet implemented");
        }
	ret = sum;
    } else {
	/* Avoid rounding errors */
	if (a == -1 && b == 1) {
	    c = 1;
	    d = 0;
	} else {
	    c = (b - a) / 2;
	    d = (b + a) / 2;
	}
	sum = 0;
	for (k = 0; k < sizel; k++) {
	    sum +=
		bround(__CZ__tanhsinh_w[k] * f(c * __CZ__tanhsinh_x[k] + d),
		       places);
	    sum +=
		bround(__CZ__tanhsinh_w[k] * f(c * -__CZ__tanhsinh_x[k] + d),
		       places);
	}
	ret = c * sum;
    }
    epsilon(eps);
    return ret;
}

static __CZ__quadts_error;

define quadts(a, b, points)
{
    local k sp results epsbits nsect interval length segment slope C ;
    local x1 x2 y1 y2  sum D1 D2 D3 D4;
    if (param(0) < 2)
	return newerror("quadts: not enough arguments");
    epsbits = highbit(1 + int (1 / epsilon())) +1;
    if (param(0) < 3 || isnull(points)) {
	/* return as given */
	return quadtscore(a, b);
    } else {
	if ((isinfinite(a) || isinfinite(b))
	    && (!ismat(points) && !islist(points)))
	    return
		newerror(strcat
			 ("quadts: segments of infinite length ",
			  "are not yet supported"));
	if (ismat(points) || islist(points)) {
	    sp = size(points);
	    if (sp == 0)
		return
		    newerror(strcat
			     ("quadts: variable 'points` must be a list or ",
			      "1d-matrix of a length > 0"));
	    /* check if all points are numbers */
	    for (k = 0; k < sp; k++) {
		if (!isnum(points[k]))
		    return
			newerror(strcat
				 ("quadts: elements of 'points` must be",
				  " numbers only"));
	    }
	    /* We have n-1 intervals and a and b, hence n-1 + 2 results */
	    results = mat[sp + 1];
            if (a != points[0]) {
	        results[0] = quadtscore(a, points[0]);
            } else {
                results[0] = 0;
            }
	    if (sp == 1) {
                if (b != points[0]) {
		    results[1] = quadtscore(points[0], b);
                } else {
                    results[1] = 0;
                }
	    } else {
		for (k = 1; k < sp; k++) {
		    results[k] = quadtscore(points[k - 1], points[k]);
		}
                if (b != points[k - 1]) {
		    results[k] = quadtscore(points[k - 1], b);
                } else {
                    results[k] = 0;
                }
	    }
	} else {
	    if (!isint(points) || points <= 0)
		return newerror(strcat("quadts: variable 'points` must be a ",
				       "list or a positive integer"));
	    /* Taking "points" as the number of equally spaced intervals */
	    results = mat[points + 1];
	    /* It is easy if a,b lie on the real line */
	    if (isreal(a) && isreal(b)) {
		length = abs(a - b);
		segment = length / points;

		for (k = 1; k <= points; k++) {
		    results[k - 1] =
			quadtscore(a + (k - 1) * segment, a + k * segment);
		}
	    } else {
		/* We have at least one complex limit but treat "points" still
                 * as the number of equally spaced intervals on a straight line
                 * connecting a and b. Computing the segments here is a bit
                 * more complicated but not much, it should have been taught in
                 * highschool.
		 * Other contours by way of a list of points */
		slope = (im(b) - im(a)) / (re(b) - re(a));
		C = (im(a) + slope) * re(a);
		length = abs(re(a) - re(b));
		segment = length / points;

		/* y = mx+C where m is the slope, x is the real part and y the
		 * imaginary part  */
                if(re(a)>re(b))swap(a,b);
		for (k = re(a); k <= (re(b)); k+=segment) {
		    x1 = slope*(k) +  C;
		    results[k] = quadtscore(k + x1 * 1i);
		}
	    }			/* else of isreal */
	}			/* else of ismat|islist */
    }				/* else of isnull(points) */
    /* With a bit of undeserved luck we have a result by now. */
    sp = size(results);
    for (k = 0; k < sp; k++) {
	sum += results[k];
    }
    return sum;
}

static __CZ__gl_x;
static __CZ__gl_w;
static __CZ__gl_order;
static __CZ__gl_prec;

define quadglcomputenodes(N)
{
    local places k l x w t1 t2 t3 t4 t5 r tmp;

    if (__CZ__gl_order == N && __CZ__gl_prec == epsilon())
	return;

    __CZ__gl_x = mat[N];
    __CZ__gl_w = mat[N];
    __CZ__gl_order = N;
    __CZ__gl_prec = epsilon();

    places = highbit(1 + int (1 / epsilon())) +1;

    /*
     * Compute roots and weights (doing it inline seems to be fastest)
     * Trick shamelessly stolen from D. Bailey et .al (program "arprec")
     */
    for (k = 1; k <= N//2; k++) {
	r = bround(cos(pi() * (k - .25) / (N + .5)), places);
	while (1) {
	    t1 = 1, t2 = 0;
	    for (l = 1; l <= N; l++) {
		t3 = t2;
		t2 = t1;
		t1 = bround(((2 * l - 1) * r * t2 - (l - 1) * t3) / l, places);
	    }
	    t4 = bround(N * (r * t1 - t2) / ((r ^ 2) - 1), places);
	    t5 = r;
	    tmp = t1 / t4;
	    r = r - tmp;
	    if (abs(tmp) <= epsilon())
		break;
	}
	x = r;
	w = bround(2 / ((1 - r ^ 2) * t4 ^ 2), places);

	__CZ__gl_x[k - 1] = x;
	__CZ__gl_w[k - 1] = w;
	__CZ__gl_x[N - k] = -__CZ__gl_x[k - 1];
	__CZ__gl_w[N - k] = __CZ__gl_w[k - 1];
    }
    return;
}

define quadgldeletenodes()
{
    free(__CZ__gl_x);
    free(__CZ__gl_w);
    free(__CZ__gl_order);
    free(__CZ__gl_prec);
}

define quadglcore(a, b, n)
{
    local k c d digs order eps places sum ret err x x1 w w1 m;
    local phalf x2 px1 spx1 u b1 a1 half;

    eps = epsilon(epsilon() * 1e-2);
    places = highbit(1 + int (1 / epsilon())) +1;
    if (!isnull(n))
	order = n;
    else {
	m = int (4 + max(0, ln(places / 30.0) / ln(2))) + 2;
	order = 3 * 2 ^ (m - 1);
    }


    quadglcomputenodes(order, 1);

    if (isinfinite(a) || isinfinite(b)) {
	if (isninf(a) && ispinf(b)) {
	    for (k = 0; k < order; k++) {
		x1 = __CZ__gl_x[k];
		w1 = __CZ__gl_w[k];

		x = bround(x1 * (1 - x1 ^ 2) ^ (-1 / 2), places);
		w = bround(w1 * (((1 - x1 ^ 2) ^ (-1 / 2)) / (1 - x1 ^ 2)),
			   places);
		sum += bround(w * f(x), places);
	    }
	} else if (isninf(a) && !iscinf(b)) {
	    for (k = 0; k < order; k++) {
		x1 = __CZ__gl_x[k];
		w1 = __CZ__gl_w[k];

		x = bround((b + 1) - (2 / (x1 + 1)), places);
		w = bround(w1 * (1 / 2 * (2 / (x1 + 1)) ^ 2), places);
		sum += bround(w * f(x), places);
	    }
	} else if (!iscinf(a) && ispinf(b)) {
	    for (k = 0; k < order; k++) {
		x1 = __CZ__gl_x[k];
		w1 = __CZ__gl_w[k];
		x = bround((a - 1) + (2 / (x1 + 1)), places);
		w = bround(w1 * (((1 / 2) * (2 / (x1 + 1)) ^ 2)), places);
		sum += bround(w * f(x), places);
	    }
	} else if (isninf(a) || isninf(b)) {
	    /*TODO: swap(a,b) and negate(w)? Lookup! */
	    return newerror("quadglcore: reverse limits?");
	} else
	    return
		newerror("quadglcore: complex infinity not yet implemented");
	ret = sum;
    } else {
	/* Avoid rounding errors */
	if (a == -1 && b == 1) {
	    c = 1;
	    d = 0;
	} else {
	    c = (b - a) / 2;
	    d = (b + a) / 2;
	}
	sum = 0;
	for (k = 0; k < order; k++) {
	    sum += bround(__CZ__gl_w[k] * f(c * __CZ__gl_x[k] + d), places);
	}
	ret = c * sum;
    }
    epsilon(eps);
    return ret;
}

define quadgl(a, b, points)
{
    local k sp results epsbits nsect interval length segment slope C x1 y1 x2
	y2;
    local sum D1 D2 D3 D4;
    if (param(0) < 2)
	return newerror("quadgl: not enough arguments");
    epsbits = highbit(1 + int (1 / epsilon())) +1;
    if (isnull(points)) {
	/* return as given */
	return quadglcore(a, b);
    } else {
	/* But if we could half the time needed to execute a single operation
	 * we could do all of it in just twice that time. */
	if (isinfinite(a) || isinfinite(b)
	    && (!ismat(points) && !islist(points)))
	    return
		newerror(strcat
			 ("quadgl: multiple segments of infinite length ",
			  "are not yet supported"));
	if (ismat(points) || islist(points)) {
	    sp = size(points);
	    if (sp == 0)
		return
		    newerror(strcat
			     ("quadgl: variable 'points` must be a list or ",
			      "1d-matrix of a length > 0"));
	    /* check if all points are numbers */
	    for (k = 0; k < sp; k++) {
		if (!isnum(points[k]))
		    return
			newerror(strcat
				 ("quadgl: elements of 'points` must be ",
				  "numbers only"));
	    }
	    /* We have n-1 intervals and a and b, hence n-1 + 2 results */
	    results = mat[sp + 1];
            if (a != points[0]) {
	        results[0] = quadglcore(a, points[0]);
            } else {
                results[0] = 0;
            }
	    if (sp == 1) {
		if (b != points[0]) {
		    results[1] = quadglcore(points[0], b);
                } else {
                    results[1] = 0;
                }
	    } else {
		for (k = 1; k < sp; k++) {
		    results[k] = quadglcore(points[k - 1], points[k]);
		}
                if (b != points[k - 1]) {
		    results[k] = quadglcore(points[k - 1], b);
                } else {
                    results[k] = 0;
                }
	    }
	} else {
	    if (!isint(points) || points <= 0)
		return newerror(strcat("quadgl: variable 'points` must be a ",
				       "list or a positive integer"));
	    /* Taking "points" as the number of equally spaced intervals */
	    results = mat[points + 1];
	    /* It is easy if a,b lie on the real line */
	    if (isreal(a) && isreal(b)) {
		length = abs(a - b);
		segment = length / points;

		for (k = 1; k <= points; k++) {
		    results[k - 1] =
			quadglcore(a + (k - 1) * segment, a + k * segment);
		}
	    } else {
		/* Other contours by way of a list of points */
		slope = (im(b) - im(a)) / (re(b) - re(a));
		C = (im(a) + slope) * re(a);
		length = abs(re(a) - re(b));
		segment = length / points;

		/* y = mx+C where m is the slope, x is the real part and y the
		 * imaginary part  */
                if(re(a)>re(b))swap(a,b);
		for (k = re(a); k <= (re(b)); k+=segment) {
		    x1 = slope*(k) +  C;
		    results[k] = quadglcore(k + x1 * 1i);
		}
	    }			/* else of isreal */
	}			/* else of ismat|islist */
    }				/* else of isnull(points) */
    /* With a bit of undeserved luck we have a result by now. */
    sp = size(results);
    for (k = 0; k < sp; k++) {
	sum += results[k];
    }
    return sum;
}

define quad(a, b, points = -1, method = "tanhsinh")
{
    if (isnull(a) || isnull(b) || param(0) < 2)
	return newerror("quad: both limits must be given");
    if (isstr(a)) {
	if (strncmp(a, "cinf", 1) == 0)
	    return
		newerror(strcat
			 ("quad: complex infinity not yet supported, use",
			  " 'pinf' or 'ninf' respectively"));
    }
    if (isstr(b)) {
	if (strncmp(b, "cinf", 1) == 0)
	    return
		newerror(strcat
			 ("quad: complex infinity not yet supported, use",
			  " 'pinf' or 'ninf' respectively"));
    }

    if (param(0) == 3) {
	if (isstr(points))
	    method = points;
    }

    if (strncmp(method, "tanhsinh", 1) == 0) {
	if (!isstr(points)) {
	    if (points == -1) {
		return quadts(a, b);
	    } else {
		return quadts(a, b, points);
	    }
	} else {
	    return quadts(a, b);
	}
    }

    if (strncmp(method, "gausslegendre", 1) == 0) {
	if (!isstr(points)) {
	    if (points == -1) {
		return quadgl(a, b);
	    } else {
		return quadgl(a, b, points);
	    }
	} else {
	    return quadgl(a, b);
	}
    }
}

define makerange(start, end, steps)
{
    local ret k l step C length slope x1 x2 y1 y2;
    local segment;
    steps = int (steps);
    if (steps < 1) {
	return newerror("makerange: number of steps must be > 0");
    }
    if (!isnum(start) || !isnum(end)) {
	return newerror("makerange: only numbers are supported yet");
    }
    if (isreal(start) && isreal(end)) {
	step = (end - start) / (steps);
	print step;
	ret = mat[steps + 1];
	for (k = 0; k <= steps; k++) {
	    ret[k] = k * step + start;
	}
    } else {
	ret = mat[steps + 1];
	if (re(start) > re(end)) {
	    swap(start, end);
	}

	slope = (im(end) - im(start)) / (re(end) - re(start));
	C = im(start) - slope * re(start);
	length = abs(re(start) - re(end));
	segment = length / (steps);

	for (k = re(start), l = 0; k <= (re(end)); k += segment, l++) {
	    x1 = slope * (k) + C;
	    ret[l] = k + x1 * 1i;
	}

    }
    return ret;
}

define makecircle(radius, center, points)
{
    local ret k a b twopi centerx centery;
    if (!isint(points) || points < 2) {
	return
	    newerror("makecircle: number of points is not a positive integer");
    }
    if (!isnum(center)) {
	return newerror("makecircle: center does not lie on the complex plane");
    }
    if (!isreal(radius) || radius <= 0) {
	return newerror("makecircle: radius is not a real > 0");
    }
    ret = mat[points];
    twopi = 2 * pi();
    centerx = re(center);
    centery = im(center);
    for (k = 0; k < points; k++) {
	a = centerx + radius * cos(twopi * k / points);
	b = centery + radius * sin(twopi * k / points);
	ret[k] = a + b * 1i;
    }
    return ret;
}

define makeellipse(angle, a, b, center, points)
{
    local ret k x y twopi centerx centery;
    if (!isint(points) || points < 2) {
	return
	    newerror("makeellipse: number of points is not a positive integer");
    }
    if (!isnum(center)) {
	return
	    newerror("makeellipse: center does not lie on the complex plane");
    }
    if (!isreal(a) || a <= 0) {
	return newerror("makecircle: a is not a real > 0");
    }
    if (!isreal(b) || b <= 0) {
	return newerror("makecircle: b is not a real > 0");
    }
    if (!isreal(angle)) {
	return newerror("makecircle: angle is not a real");
    }
    ret = mat[points];
    twopi = 2 * pi();
    centerx = re(center);
    centery = im(center);
    for (k = 0; k < points; k++) {
	x = centerx + a * cos(twopi * k / points) * cos(angle)
	    - b * sin(twopi * k / points) * sin(angle);
	y = centerx + a * cos(twopi * k / points) * sin(angle)
	    + b * sin(twopi * k / points) * cos(angle);
	ret[k] = x + y * 1i;
    }
    return ret;
}

define makepoints()
{
    local ret k;
    ret = mat[param(0)];
    for (k = 0; k < param(0); k++) {
	if (!isnum(param(k + 1))) {
	    return
		newerror(strcat
			 ("makepoints: parameter number \"", str(k + 1),
			  "\" is not a number"));
	}
	ret[k] = param(k + 1);
    }
    return ret;
}


config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
    print "quadtsdeletenodes()";
    print "quadtscomputenodes(order, expo, eps)";
    print "quadtscore(a,b,n)";
    print "quadts(a,b,points)";
    print "quadglcomputenodes(N)";
    print "quadgldeletenodes()";
    print "quadglcore(a,b,n)";
    print "quadgl(a,b,points)";
    print "quad(a,b,points=-1,method=\"tanhsinh\")";
    print "makerange(start, end, steps)";
    print "makecircle(radius, center, points)";
    print "makeellipse(angle, a, b, center, points)";
    print "makepoints(a1,[...])";
}