This file is indexed.

/usr/share/calc/lucas.cal is in apcalc-common 2.12.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
/*
 * lucas - perform a Lucas primality test on h*2^n-1
 *
 * Copyright (C) 1999  Landon Curt Noll
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.2 $
 * @(#) $Id: lucas.cal,v 30.2 2013/09/27 08:58:46 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/lucas.cal,v $
 *
 * Under source code control:	1990/05/03 16:49:51
 * File existed as early as:	1990
 *
 * chongo <was here> /\oo/\	http://www.isthe.com/chongo/
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */

/*
 * NOTE: This is a standard calc resource file.  For information on calc see:
 *
 *	http://www.isthe.com/chongo/tech/comp/calc/index.html
 *
 * To obtain your own copy of calc, see:
 *
 *	http://www.isthe.com/chongo/tech/comp/calc/calc-download.html
 */

/*
 * HISTORICAL NOTE:
 *
 * On 6 August 1989 at 00:53 PDT, the 'Amdahl 6', a team consisting of
 * John Brown, Landon Curt Noll, Bodo Parady, Gene Smith, Joel Smith and
 * Sergio Zarantonello proved the following 65087 digit number to be prime:
 *
 *				  216193
 *			391581 * 2	-1
 *
 * At the time of discovery, this number was the largest known prime.
 * The primality was demonstrated by a program implementing the test
 * found in these routines.  An Amdahl 1200 takes 1987 seconds to test
 * the primality of this number.  A Cray 2 took several hours to
 * confirm this prime.	As of 31 Dec 1995, this prime was the 3rd
 * largest known prime and the largest known non-Mersenne prime.
 *
 * The same team also discovered the following twin prime pair:
 *
 *			   11235		   11235
 *		1706595 * 2	-1	1706595 * 2	+1
 *
 * At the time of discovery, this was the largest known twin prime pair.
 *
 * See:
 *
 *	http://www.isthe.com/chongo/tech/math/prime/amdahl6.html
 *
 * for more information on the Amdahl 6 group.
 *
 * NOTE: Both largest known and largest known twin prime records have been
 *	 broken.  Rather than update this file each time, I'll just
 *	 congratulate the finders and encourage others to try for
 *	 larger finds.	Records were made to be broken afterall!
 */

/* ON GAINING A WORLD RECORD:
 *
 * The routines in calc were designed to be portable, and to work on
 * numbers of 'sane' size.  The Amdahl 6 team used a 'ultra-high speed
 * multi-precision' package that a machine dependent collection of routines
 * tuned for a long trace vector processor to work with very large numbers.
 * The heart of the package was a multiplication and square routine that
 * was based on the PFA Fast Fourier Transform and on Winograd's radix FFTs.
 *
 * Having a fast computer, and a good multi-precision package are
 * critical, but one also needs to know where to look in order to have
 * a good chance at a record.  Knowing what to test is beyond the scope
 * of this routine.  However the following observations are noted:
 *
 *	test numbers of the form h*2^n-1
 *	fix a value of n and vary the value h
 *	n mod 2^x == 0  for some value of x, say > 7 or more
 *	h*2^n-1 is not divisible by any small prime < 2^40
 *	0 < h < 2^39
 *	h*2^n+1 is not divisible by any small prime < 2^40
 *
 * The Mersenne test for '2^n-1' is the fastest known primality test
 * for a given large numbers.  However, it is faster to search for
 * primes of the form 'h*2^n-1'.  When n is around 200000, one can find
 * a prime of the form 'h*2^n-1' in about 1/2 the time.
 *
 * Critical to understanding why 'h*2^n-1' is to observe that primes of
 * the form '2^n-1' seem to bunch around "islands".  Such "islands"
 * seem to be getting fewer and farther in-between, forcing the time
 * for each test to grow longer and longer (worse then O(n^2 log n)).
 * On the other hand, when one tests 'h*2^n-1', fixes 'n' and varies
 * 'h', the time to test each number remains relatively constant.
 *
 * It is clearly a win to eliminate potential test candidates by
 * rejecting numbers that that are divisible by 'small' primes.	 We
 * (the "Amdahl 6") rejected all numbers that were divisible by primes
 * less than '2^40'.  We stopped looking for small factors at '2^40'
 * when the rate of candidates being eliminated was slowed down to
 * just a trickle.
 *
 * The 'n mod 128 == 0' restriction allows one to test for divisibility
 * of small primes more quickly.  To test of 'q' is a factor of 'k*2^n-1',
 * one check to see if 'k*2^n mod q' == 1, which is the same a checking
 * if 'h*(2^n mod q) mod q' == 1.  One can compute '2^n mod q' by making
 * use of the following:
 *
 *	if
 *		y = 2^x mod q
 *	then
 *		2^(2x) mod q   == y^2 mod q		0 bit
 *		2^(2x+1) mod q == 2*y^2 mod q		1 bit
 *
 * The choice of which expression depends on the binary pattern of 'n'.
 * Since '1' bits require an extra step (multiply by 2), one should
 * select value of 'n' that contain mostly '0' bits.  The restriction
 * of 'n mod 128 == 0' ensures that the bottom 7 bits of 'n' are 0.
 *
 * By limiting 'h' to '2^39' and eliminating all values divisible by
 * small primes < twice the 'h' limit (2^40), one knows that all
 * remaining candidates are relatively prime.  Thus, when a candidate
 * is proven to be composite (not prime) by the big test, one knows
 * that the factors for that number (whatever they may be) will not
 * be the factors of another candidate.
 *
 * Finally, one should eliminate all values of 'h*2^n-1' where
 * 'h*2^n+1' is divisible by a small primes.  The ideas behind this
 * point is beyond the scope of this program.
 */


global pprod256;	/* product of  "primes up to 256" / "primes up to 46" */

/*
 * lucas - lucas primality test on h*2^n-1
 *
 * ABOUT THE TEST:
 *
 * This routine will perform a primality test on h*2^n-1 based on
 * the mathematics of Lucas, Lehmer and Riesel.	 One should read
 * the following article:
 *
 * Ref1:
 *	"Lucasian Criteria for the Primality of N=h*2^n-1", by Hans Riesel,
 *	Mathematics of Computation, Vol 23 #108, pp. 869-875, Oct 1969
 *
 * The following book is also useful:
 *
 * Ref2:
 *	"Prime numbers and Computer Methods for Factorization", by Hans Riesel,
 *	Birkhauser, 1985, pp 131-134, 278-285, 438-444
 *
 * A few useful Legendre identities may be found in:
 *
 * Ref3:
 *	"Introduction to Analytic Number Theory", by Tom A. Apostol,
 *	Springer-Verlag, 1984, p 188.
 *
 * This test is performed as follows:	(see Ref1, Theorem 5)
 *
 *	a) generate u(0)		(see the function gen_u0() below)
 *
 *	b) generate u(n-2) according to the rule:
 *
 *		u(i+1) = u(i)^2-2 mod h*2^n-1
 *
 *	c) h*2^n-1 is prime if and only if u(n-2) == 0		Q.E.D. :-)
 *
 * Now the following conditions must be true for the test to work:
 *
 *	n >= 2
 *	h >= 1
 *	h < 2^n
 *	h mod 2 == 1
 *
 * A few misc notes:
 *
 * In order to reduce the number of tests, as attempt to eliminate
 * any number that is divisible by a prime less than 257.  Valid prime
 * candidates less than 257 are declared prime as a special case.
 *
 * In real life, you would eliminate candidates by checking for
 * divisibility by a prime much larger than 257 (perhaps as high
 * as 2^39).
 *
 * The condition 'h mod 2 == 1' is not a problem.  Say one is testing
 * 'j*2^m-1', where j is even.	If we note that:
 *
 *	j mod 2^x == 0 for x>0	 implies   j*2^m-1 == ((j/2^x)*2^(m+x))-1,
 *
 * then we can let h=j/2^x and n=m+x and test 'h*2^n-1' which is the value.
 * We need only consider odd values of h because we can rewrite our numbers
 * do make this so.
 *
 * input:
 *	h    the h as in h*2^n-1
 *	n    the n as in h*2^n-1
 *
 * returns:
 *	1 => h*2^n-1 is prime
 *	0 => h*2^n-1 is not prime
 *     -1 => a test could not be formed, or h >= 2^n, h <= 0, n <= 0
 */
define
lucas(h, n)
{
	local testval;		/* h*2^n-1 */
	local shiftdown;	/* the power of 2 that divides h */
	local u;		/* the u(i) sequence value */
	local v1;		/* the v(1) generator of u(0) */
	local i;		/* u sequence cycle number */
	local oldh;		/* pre-reduced h */
	local oldn;		/* pre-reduced n */
	local bits;		/* highbit of h*2^n-1 */

	/*
	 * check arg types
	 */
	if (!isint(h)) {
		ldebug("lucas", "h is non-int");
		quit "FATAL: bad args: h must be an integer";
	}
	if (!isint(n)) {
		ldebug("lucas", "n is non-int");
		quit "FATAL: bad args: n must be an integer";
	}

	/*
	 * reduce h if even
	 *
	 * we will force h to be odd by moving powers of two over to 2^n
	 */
	oldh = h;
	oldn = n;
	shiftdown = fcnt(h,2);	/* h % 2^shiftdown == 0, max shiftdown */
	if (shiftdown > 0) {
		h >>= shiftdown;
		n += shiftdown;
	}

	/*
	 * enforce the 0 < h < 2^n rule
	 */
	if (h <= 0 || n <= 0) {
		print "ERROR: reduced args violate the rule: 0 < h < 2^n";
		print "	   ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
		ldebug("lucas", "unknown: h <= 0 || n <= 0");
		return -1;
	}
	if (highbit(h) >= n) {
		print "ERROR: reduced args violate the rule: h < 2^n";
		print "	   ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
		ldebug("lucas", "unknown: highbit(h) >= n");
		return -1;
	}

	/*
	 * catch the degenerate case of h*2^n-1 == 1
	 */
	if (h == 1 && n == 1) {
		ldebug("lucas", "not prime: h == 1 && n == 1");
		return 0;	/* 1*2^1-1 == 1 is not prime */
	}

	/*
	 * catch the degenerate case of n==2
	 *
	 * n==2 and 0<h<2^n  ==>  0<h<4
	 *
	 * Since h is now odd  ==>  h==1 or h==3
	 */
	if (h == 1 && n == 2) {
		ldebug("lucas", "prime: h == 1 && n == 2");
		return 1;	/* 1*2^2-1 == 3 is prime */
	}
	if (h == 3 && n == 2) {
		ldebug("lucas", "prime: h == 3 && n == 2");
		return 1;	/* 3*2^2-1 == 11 is prime */
	}

	/*
	 * catch small primes < 257
	 *
	 * We check for only a few primes because the other primes < 257
	 * violate the checks above.
	 */
	if (h == 1) {
		if (n == 3 || n == 5 || n == 7) {
			ldebug("lucas", "prime: 3, 7, 31, 127 are prime");
			return 1;	/* 3, 7, 31, 127 are prime */
		}
	}
	if (h == 3) {
		if (n == 2 || n == 3 || n == 4 || n == 6) {
			ldebug("lucas", "prime: 11, 23, 47, 191 are prime");
			return 1;	/* 11, 23, 47, 191 are prime */
		}
	}
	if (h == 5 && n == 4) {
		ldebug("lucas", "prime: 79 is prime");
		return 1;		/* 79 is prime */
	}
	if (h == 7 && n == 5) {
		ldebug("lucas", "prime: 223 is prime");
		return 1;		/* 223 is prime */
	}
	if (h == 15 && n == 4) {
		ldebug("lucas", "prime: 239 is prime");
		return 1;		/* 239 is prime */
	}

	/*
	 * Avoid any numbers divisible by small primes
	 */
	/*
	 * check for 3 <= prime factors < 29
	 * pfact(28)/2 = 111546435
	 */
	testval = h*2^n - 1;
	if (gcd(testval, 111546435) > 1) {
		/* a small 3 <= prime < 29 divides h*2^n-1 */
		ldebug("lucas","not-prime: 3<=prime<29 divides h*2^n-1");
		return 0;
	}
	/*
	 * check for 29 <= prime factors < 47
	 * pfact(46)/pfact(28) = 5864229
	 */
	if (gcd(testval, 58642669) > 1) {
		/* a small 29 <= prime < 47 divides h*2^n-1 */
		ldebug("lucas","not-prime: 29<=prime<47 divides h*2^n-1");
		return 0;
	}
	/*
	 * check for prime 47 <= factors < 257, if h*2^n-1 is large
	 * 2^282 > pfact(256)/pfact(46) > 2^281
	 */
	bits = highbit(testval);
	if (bits >= 281) {
		if (pprod256 <= 0) {
			pprod256 = pfact(256)/pfact(46);
		}
		if (gcd(testval, pprod256) > 1) {
			/* a small 47 <= prime < 257 divides h*2^n-1 */
			ldebug("lucas",\
			    "not-prime: 47<=prime<257 divides h*2^n-1");
			return 0;
		}
	}

	/*
	 * try to compute u(0)
	 *
	 * We will use gen_v1() to give us a v(1) using the values
	 * of 'h' and 'n'.  We will then use gen_u0() to convert
	 * the v(1) into u(0).
	 *
	 * If gen_v1() returns a negative value, then we failed to
	 * generate a test for h*2^n-1.	 This is because h mod 3 == 0
	 * is hard to do, and in rare cases, exceed the tables found
	 * in this program.  We will generate an message and assume
	 * the number is not prime, even though if we had a larger
	 * table, we might have been able to show that it is prime.
	 */
	v1 = gen_v1(h, n);
	if (v1 < 0) {
		/* failure to test number */
		print "unable to compute v(1) for", h : "*2^" : n : "-1";
		ldebug("lucas", "unknown: no v(1)");
		return -1;
	}
	u = gen_u0(h, n, v1);

	/*
	 * compute u(n-2)
	 */
	for (i=3; i <= n; ++i) {
		/* u = (u^2 - 2) % testval; */
		u = hnrmod(u^2 - 2, h, n, -1);
	}

	/*
	 * return 1 if prime, 0 is not prime
	 */
	if (u == 0) {
		ldebug("lucas", "prime: end of test");
		return 1;
	} else {
		ldebug("lucas", "not-prime: end of test");
		return 0;
	}
}

/*
 * gen_u0 - determine the initial Lucas sequence for h*2^n-1
 *
 * According to Ref1, Theorem 5:
 *
 *	u(0) = alpha^h + alpha^(-h)
 *
 * Now:
 *
 *	v(x) = alpha^x + alpha^(-x)	(Ref1, bottom of page 872)
 *
 * Therefore:
 *
 *	u(0) = v(h)
 *
 * We calculate v(h) as follows:	(Ref1, top of page 873)
 *
 *	v(0) = alpha^0 + alpha^(-0) = 2
 *	v(1) = alpha^1 + alpha^(-1) = gen_v1(h,n)
 *	v(n+2) = v(1)*v(n+1) - v(n)
 *
 * This function does not concern itself with the value of 'alpha'.
 * The gen_v1() function is used to compute v(1), and identity
 * functions take it from there.
 *
 * It can be shown that the following are true:
 *
 *	v(2*n) = v(n)^2 - 2
 *	v(2*n+1) = v(n+1)*v(n) - v(1)
 *
 * To prevent v(x) from growing too large, one may replace v(x) with
 * `v(x) mod h*2^n-1' at any time.
 *
 * See the function gen_v1() for details on the value of v(1).
 *
 * input:
 *	h	- h as in h*2^n-1
 *	n	- n as in h*2^n-1
 *	v1	- gen_v1(h,n)		(see function below)
 *
 * returns:
 *	u(0)	- initial value for Lucas test on h*2^n-1
 *	-1	- failed to generate u(0)
 */
define
gen_u0(h, n, v1)
{
	local shiftdown;	/* the power of 2 that divides h */
	local r;		/* low value: v(n) */
	local s;		/* high value: v(n+1) */
	local hbits;		/* highest bit set in h */
	local i;

	/*
	 * check arg types
	 */
	if (!isint(h)) {
		quit "bad args: h must be an integer";
	}
	if (!isint(n)) {
		quit "bad args: n must be an integer";
	}
	if (!isint(v1)) {
		quit "bad args: v1 must be an integer";
	}
	if (v1 <= 0) {
		quit "bogus arg: v1 is <= 0";
	}

	/*
	 * enforce the h > 0 and n >= 2 rules
	 */
	if (h <= 0 || n < 1) {
		quit "reduced args violate the rule: 0 < h < 2^n";
	}
	hbits = highbit(h);
	if (hbits >= n) {
		quit "reduced args violate the rule: 0 < h < 2^n";
	}

	/*
	 * build up u2 based on the reversed bits of h
	 */
	/* setup for bit loop */
	r = v1;
	s = (r^2 - 2);

	/*
	 * deal with small h as a special case
	 *
	 * The h value is odd > 0, and it needs to be
	 * at least 2 bits long for the loop below to work.
	 */
	if (h == 1) {
		ldebug("gen_u0", "quick h == 1 case");
		/* return r%(h*2^n-1); */
		return hnrmod(r, h, n, -1);
	}

	/* cycle from second highest bit to second lowest bit of h */
	for (i=hbits-1; i > 0; --i) {

		/* bit(i) is 1 */
		if (bit(h,i)) {

			/* compute v(2n+1) = v(r+1)*v(r)-v1 */
			/* r = (r*s - v1) % (h*2^n-1); */
			r = hnrmod((r*s - v1), h, n, -1);

			/* compute v(2n+2) = v(r+1)^2-2 */
			/* s = (s^2 - 2) % (h*2^n-1); */
			s = hnrmod((s^2 - 2), h, n, -1);

		/* bit(i) is 0 */
		} else {

			/* compute v(2n+1) = v(r+1)*v(r)-v1 */
			/* s = (r*s - v1) % (h*2^n-1); */
			s = hnrmod((r*s - v1), h, n, -1);

			/* compute v(2n) = v(r)^-2 */
			/* r = (r^2 - 2) % (h*2^n-1); */
			r = hnrmod((r^2 - 2), h, n, -1);
		}
	}

	/* we know that h is odd, so the final bit(0) is 1 */
	/* r = (r*s - v1) % (h*2^n-1); */
	r = hnrmod((r*s - v1), h, n, -1);

	/* compute the final u2 return value */
	return r;
}

/*
 * Trial tables used by gen_v1()
 *
 * When h mod 3 == 0, one needs particular values of D, a and b (see gen_v1
 * documentation) in order to find a value of v(1).
 *
 * This table defines 'quickmax' possible tests to be taken in ascending
 * order.  The v1_qval[x] refers to a v(1) value from Ref1, Table 1.  A
 * related D value is found in d_qval[x].  All D values expect d_qval[1]
 * are also taken from Ref1, Table 1.  The case of D == 21 as listed in
 * Ref1, Table 1 can be changed to D == 7 for the sake of the test because
 * of {note 6}.
 *
 * It should be noted that the D values all satisfy the selection values
 * as outlined in the gen_v1() function comments.  That is:
 *
 *	   D == P*(2^f)*(3^g)
 *
 * where f == 0 and g == 0, P == D.  So we simply need to check that
 * one of the following two cases are true:
 *
 *	   P mod 4 ==  1  and  J(h*2^n-1 mod P, P) == -1
 *	   P mod 4 == -1  and  J(h*2^n-1 mod P, P) ==  1
 *
 * In all cases, the value of r is:
 *
 *	   r == Q*(2^j)*(3^k)*(z^2)
 *
 * where Q == 1.  No further processing is needed to compute v(1) when r
 * is of this form.
 */
quickmax = 8;
mat d_qval[quickmax];
mat v1_qval[quickmax];
d_qval[0] = 5;		v1_qval[0] = 3;		/* a=1	 b=1  r=4  */
d_qval[1] = 7;		v1_qval[1] = 5;		/* a=3	 b=1  r=12  D=21 */
d_qval[2] = 13;		v1_qval[2] = 11;	/* a=3	 b=1  r=4  */
d_qval[3] = 11;		v1_qval[3] = 20;	/* a=3	 b=1  r=2  */
d_qval[4] = 29;		v1_qval[4] = 27;	/* a=5	 b=1  r=4  */
d_qval[5] = 53;		v1_qval[5] = 51;	/* a=53	 b=1  r=4  */
d_qval[6] = 17;		v1_qval[6] = 66;	/* a=17	 b=1  r=1  */
d_qval[7] = 19;		v1_qval[7] = 74;	/* a=38	 b=1  r=2  */

/*
 * gen_v1 - compute the v(1) for a given h*2^n-1 if we can
 *
 * This function assumes:
 *
 *	n > 2			(n==2 has already been eliminated)
 *	h mod 2 == 1
 *	h < 2^n
 *	h*2^n-1 mod 3 != 0	(h*2^n-1 has no small factors, such as 3)
 *
 * The generation of v(1) depends on the value of h.  There are two cases
 * to consider, h mod 3 != 0, and h mod 3 == 0.
 *
 ***
 *
 * Case 1:	(h mod 3 != 0)
 *
 * This case is easy and always finds v(1).
 *
 * In Ref1, page 869, one finds that if:	(or see Ref2, page 131-132)
 *
 *	h mod 6 == +/-1
 *	h*2^n-1 mod 3 != 0
 *
 * which translates, gives the functions assumptions, into the condition:
 *
 *	h mod 3 != 0
 *
 * If this case condition is true, then:
 *
 *	u(0) = (2+sqrt(3))^h + (2-sqrt(3))^h		(see Ref1, page 869)
 *	     = (2+sqrt(3))^h + (2+sqrt(3))^(-h)
 *
 * and since Ref1, Theorem 5 states:
 *
 *	u(0) = alpha^h + alpha^(-h)
 *	r = abs(2^2 - 1^2*3) = 1
 *
 * and the bottom of Ref1, page 872 states:
 *
 *	v(x) = alpha^x + alpha^(-x)
 *
 * If we let:
 *
 *	alpha = (2+sqrt(3))
 *
 * then
 *
 *	u(0) = v(h)
 *
 * so we simply return
 *
 *	v(1) = alpha^1 + alpha^(-1)
 *	     = (2+sqrt(3)) + (2-sqrt(3))
 *	     = 4
 *
 ***
 *
 * Case 2:	(h mod 3 == 0)
 *
 * This case is not so easy and finds v(1) in most all cases.  In this
 * version of this program, we will simply return -1 (failure) if we
 * hit one of the cases that fall thru the cracks.  This does not happen
 * often, so this is not too bad.
 *
 * Ref1, Theorem 5 contains the following definitions:
 *
 *	    r = abs(a^2 - b^2*D)
 *	    alpha = (a + b*sqrt(D))^2/r
 *
 * where D is 'square free', and 'alpha = epsilon^s' (for some s>0) are units
 * in the quadratic field K(sqrt(D)).
 *
 * One can find possible values for a, b and D in Ref1, Table 1 (page 872).
 * (see the file lucas_tbl.cal)
 *
 * Now Ref1, Theorem 5 states that if:
 *
 *	L(D, h*2^n-1) = -1				[condition 1]
 *	L(r, h*2^n-1) * (a^2 - b^2*D)/r = -1		[condition 2]
 *
 * where L(x,y) is the Legendre symbol (see below), then:
 *
 *	u(0) = alpha^h + alpha^(-h)
 *
 * The bottom of Ref1, page 872 states:
 *
 *	v(x) = alpha^x + alpha^(-x)
 *
 * thus since:
 *
 *	u(0) = v(h)
 *
 * so we want to return:
 *
 *	v(1) = alpha^1 + alpha^(-1)
 *
 * Therefore we need to take a given (D,a,b), determine if the two conditions
 * are true, and return the related v(1).
 *
 * Before we address the two conditions, we need some background information
 * on two symbols, Legendre and Jacobi.	 In Ref 2, pp 278, 284-285, we find
 * the following definitions of J(a,p) and L(a,n):
 *
 * The Legendre symbol L(a,p) takes the value:
 *
 *	L(a,p) == 1	=> a is a quadratic residue of p
 *	L(a,p) == -1	=> a is NOT a quadratic residue of p
 *
 * when
 *
 *	p is prime
 *	p mod 2 == 1
 *	gcd(a,p) == 1
 *
 * The value x is a quadratic residue of y if there exists some integer z
 * such that:
 *
 *	z^2 mod y == x
 *
 * The Jacobi symbol J(x,y) takes the value:
 *
 *	J(x,y) == 1	=> y is not prime, or x is a quadratic residue of y
 *	J(x,y) == -1	=> x is NOT a quadratic residue of y
 *
 * when
 *
 *	y mod 2 == 1
 *	gcd(x,y) == 1
 *
 * In the following comments on Legendre and Jacobi identities, we shall
 * assume that the arguments to the symbolic are valid over the symbol
 * definitions as stated above.
 *
 * In Ref2, pp 280-284, we find that:
 *
 *	L(a,p)*L(b,p) == L(a*b,p)				{A3.5}
 *	J(x,y)*J(z,y) == J(x*z,y)				{A3.14}
 *	L(a,p) == L(p,a) * (-1)^((a-1)*(p-1)/4)			{A3.8}
 *	J(x,y) == J(y,x) * (-1)^((x-1)*(y-1)/4)			{A3.17}
 *
 * The equality L(a,p) == J(a,p) when:				{note 0}
 *
 *	p is prime
 *	p mod 2 == 1
 *	gcd(a,p) == 1
 *
 * It can be shown that (see Ref3):
 *
 *	L(a,p) == L(a mod p, p)					{note 1}
 *	L(z^2, p) == 1						{note 2}
 *
 * From Ref2, table 32:
 *
 *	p mod 8 == +/-1	  implies  L(2,p) == 1			{note 3}
 *	p mod 12 == +/-1  implies  L(3,p) == 1			{note 4}
 *
 * Since h*2^n-1 mod 8 == -1, for n>2, note 3 implies:
 *
 *	L(2, h*2^n-1) == 1			(n>2)		{note 5}
 *
 * Since h=3*A, h*2^n-1 mod 12 == -1, for A>0, note 4 implies:
 *
 *	L(3, h*2^n-1) == 1					{note 6}
 *
 * By use of {A3.5}, {note 2}, {note 5} and {note 6}, one can show:
 *
 *	L((2^g)*(3^l)*(z^2), h*2^n-1) == 1  (g>=0,l>=0,z>0,n>2) {note 7}
 *
 * Returning to the testing of conditions, take condition 1:
 *
 *	L(D, h*2^n-1) == -1			[condition 1]
 *
 * In order for J(D, h*2^n-1) to be defined, we must ensure that D
 * is not a factor of h*2^n-1.	This is done by pre-screening h*2^n-1 to
 * not have small factors and selecting D less than that factor check limit.
 *
 * By use of {note 7}, we can show that when we choose D to be:
 *
 *	D is square free
 *	D = P*(2^f)*(3^g)			(P is prime>2)
 *
 * The square free condition implies f = 0 or 1, g = 0 or 1.  If f and g
 * are both 1, P must be a prime > 3.
 *
 * So given such a D value:
 *
 *	L(D, h*2^n-1) == L(P*(2^g)*(3^l), h*2^n-1)
 *		      == L(P, h*2^n-1) * L((2^g)*(3^l), h*2^n-1)       {A3.5}
 *		      == L(P, h*2^n-1) * 1			       {note 7}
 *		      == L(h*2^n-1, P)*(-1)^((h*2^n-2)*(P-1)/4)	       {A3.8}
 *		      == L(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4)  {note 1}
 *		      == J(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4)  {note 0}
 *
 * When does J(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4) take the value of -1,
 * thus satisfy [condition 1]?	The answer depends on P.  Now P is a prime>2,
 * thus P mod 4 == 1 or -1.
 *
 * Take P mod 4 == 1:
 *
 *	P mod 4 == 1  implies  (-1)^((h*2^n-2)*(P-1)/4) == 1
 *
 * Thus:
 *
 *	L(D, h*2^n-1) == L(h*2^n-1 mod P, P) * (-1)^((h*2^n-2)*(P-1)/4)
 *		      == L(h*2^n-1 mod P, P)
 *		      == J(h*2^n-1 mod P, P)
 *
 * Take P mod 4 == -1:
 *
 *	P mod 4 == -1  implies	(-1)^((h*2^n-2)*(P-1)/4) == -1
 *
 * Thus:
 *
 *	L(D, h*2^n-1) == L(h*2^n-1 mod P, P) * (-1)^((h*2^n-2)*(P-1)/4)
 *		      == L(h*2^n-1 mod P, P) * -1
 *		      == -J(h*2^n-1 mod P, P)
 *
 * Therefore [condition 1] is met if, and only if, one of the following
 * to cases are true:
 *
 *	P mod 4 ==  1  and  J(h*2^n-1 mod P, P) == -1
 *	P mod 4 == -1  and  J(h*2^n-1 mod P, P) ==  1
 *
 * Now consider [condition 2]:
 *
 *	L(r, h*2^n-1) * (a^2 - b^2*D)/r == -1	[condition 2]
 *
 * We select only a, b, r and D values where:
 *
 *	(a^2 - b^2*D)/r == -1
 *
 * Therefore in order for [condition 2] to be met, we must show that:
 *
 *	L(r, h*2^n-1) == 1
 *
 * If we select r to be of the form:
 *
 *	r == Q*(2^j)*(3^k)*(z^2)		(Q == 1, j>=0, k>=0, z>0)
 *
 * then by use of {note 7}:
 *
 *	L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
 *		      == L((2^j)*(3^k)*(z^2), h*2^n-1)
 *		      == 1					       {note 2}
 *
 * and thus, [condition 2] is met.
 *
 * If we select r to be of the form:
 *
 *	r == Q*(2^j)*(3^k)*(z^2)		(Q is prime>2, j>=0, k>=0, z>0)
 *
 * then by use of {note 7}:
 *
 *	L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
 *		      == L(Q, h*2^n-1) * L((2^j)*(3^k)*(z^2), h*2^n-1) {A3.5}
 *		      == L(Q, h*2^n-1) * 1			       {note 2}
 *		      == L(h*2^n-1, Q) * (-1)^((h*2^n-2)*(Q-1)/4)      {A3.8}
 *		      == L(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4)  {note 1}
 *		      == J(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4)  {note 0}
 *
 * When does J(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4) take the value of 1,
 * thus satisfy [condition 2]?	The answer depends on Q.  Now Q is a prime>2,
 * thus Q mod 4 == 1 or -1.
 *
 * Take Q mod 4 == 1:
 *
 *	Q mod 4 == 1  implies  (-1)^((h*2^n-2)*(Q-1)/4) == 1
 *
 * Thus:
 *
 *	L(D, h*2^n-1) == L(h*2^n-1 mod Q, Q) * (-1)^((h*2^n-2)*(Q-1)/4)
 *		      == L(h*2^n-1 mod Q, Q)
 *		      == J(h*2^n-1 mod Q, Q)
 *
 * Take Q mod 4 == -1:
 *
 *	Q mod 4 == -1  implies	(-1)^((h*2^n-2)*(Q-1)/4) == -1
 *
 * Thus:
 *
 *	L(D, h*2^n-1) == L(h*2^n-1 mod Q, Q) * (-1)^((h*2^n-2)*(Q-1)/4)
 *		      == L(h*2^n-1 mod Q, Q) * -1
 *		      == -J(h*2^n-1 mod Q, Q)
 *
 * Therefore [condition 2] is met by selecting	D = Q*(2^j)*(3^k)*(z^2),
 * where Q is prime>2, j>=0, k>=0, z>0; if and only if one of the following
 * to cases are true:
 *
 *	Q mod 4 ==  1  and  J(h*2^n-1 mod Q, Q) == 1
 *	Q mod 4 == -1  and  J(h*2^n-1 mod Q, Q) == -1
 *
 ***
 *
 * In conclusion, we can compute v(1) by attempting to do the following:
 *
 * h mod 3 != 0
 *
 *     we return:
 *
 *	   v(1) == 4
 *
 * h mod 3 == 0
 *
 *     define:
 *
 *	   r == abs(a^2 - b^2*D)
 *	   alpha == (a + b*sqrt(D))^2/r
 *
 *     we return:
 *
 *	   v(1) = alpha^1 + alpha^(-1)
 *
 *     if and only if we can find a given a, b, D that obey all the
 *     following selection rules:
 *
 *	   D is square free
 *
 *	   D == P*(2^f)*(3^g)		(P is prime>2, f,g == 0 or 1)
 *
 *	   (a^2 - b^2*D)/r == -1
 *
 *	   r == Q*(2^j)*(3^k)*(z^2)	(Q==1 or Q is prime>2, j>=0, k>=0, z>0)
 *
 *	   one of the following is true:
 *	       P mod 4 ==  1  and  J(h*2^n-1 mod P, P) == -1
 *	       P mod 4 == -1  and  J(h*2^n-1 mod P, P) ==  1
 *
 *	   if Q is prime, then one of the following is true:
 *	       Q mod 4 ==  1  and  J(h*2^n-1 mod Q, Q) == 1
 *	       Q mod 4 == -1  and  J(h*2^n-1 mod Q, Q) == -1
 *
 *     If we cannot find a v(1) quickly enough, then we will give up
 *     testing h*2^n-1.	 This does not happen too often, so this hack
 *     is not too bad.
 *
 ***
 *
 * input:
 *	h	h as in h*2^n-1
 *	n	n as in h*2^n-1
 *
 * output:
 *	returns v(1), or -1 is there is no quick way
 */
define
gen_v1(h, n)
{
	local d;	/* the 'D' value to try */
	local val_mod;	/* h*2^n-1 mod 'D' */
	local i;

	/*
	 * check for case 1
	 */
	if (h % 3 != 0) {
		/* v(1) is easy to compute */
		return 4;
	}

	/*
	 * We will try all 'D' values until we find a proper v(1)
	 * or run out of 'D' values.
	 */
	for (i=0; i < quickmax; ++i) {

		/* grab our 'D' value */
		d = d_qval[i];

		/* compute h*2^n-1 mod 'D' quickly */
		val_mod = (h*pmod(2,n%(d-1),d)-1) % d;

		/*
		 * if 'D' mod 4 == 1, then
		 *	(h*2^n-1) mod 'D' can not be a quadratic residue of 'D'
		 * else
		 *	(h*2^n-1) mod 'D' must be a quadratic residue of 'D'
		 */
		if (d%4 == 1) {
			/* D mod 4 == 1, so check for J(D, h*2^n-1) == -1 */
			if (jacobi(val_mod, d) == -1) {
				/* it worked, return the related v(1) value */
				return v1_qval[i];
			}
		} else {
			/* D mod 4 == -1, so check for J(D, h*2^n-1) == 1 */
			if (jacobi(val_mod, d) == 1) {
				/* it worked, return the related v(1) value */
				return v1_qval[i];
			}
		}
	}

	/*
	 * This is an example of a more complex proof construction.
	 * The code above will not be able to find the v(1) for:
	 *
	 *			81*2^81-1
	 *
	 * We will check with:
	 *
	 *	v(1)=81	     D=6557	 a=79	   b=1	    r=316
	 *
	 * Now, D==79*83 and r=79*2^2.	If we show that:
	 *
	 *	J(h*2^n-1 mod 79, 79) == -1
	 *	J(h*2^n-1 mod 83, 83) == 1
	 *
	 * then we will satisfy [condition 1].	Observe:
	 *
	 *	79 mod 4 == -1	implies	 (-1)^((h*2^n-2)*(79-1)/4) == -1
	 *	83 mod 4 == -1	implies	 (-1)^((h*2^n-2)*(83-1)/4) == -1
	 *
	 *	J(D, h*2^n-1) == J(83, h*2^n-1) * J(79, h*2^n-1)
	 *		      == J(h*2^n-1, 83) * (-1)^((h*2^n-2)*(83-1)/4) *
	 *			 J(h*2^n-1, 79) * (-1)^((h*2^n-2)*(79-1)/4)
	 *		      == J(h*2^n-1 mod 83, 83) * -1 *
	 *			 J(h*2^n-1 mod 79, 79) * -1
	 *		      ==  1 * -1 *
	 *			 -1 * -1
	 *		      == -1
	 *
	 * We will also satisfy [condition 2].	Observe:
	 *
	 *	(a^2 - b^2*D)/r == (79^2 - 1^1*6557)/316
	 *			== -1
	 *
	 *	L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
	 *		      == L(79, h*2^n-1) * L(2^2, h*2^n-1)
	 *		      == L(79, h*2^n-1) * 1
	 *		      == L(h*2^n-1, 79) * (-1)^((h*2^n-2)*(79-1)/4)
	 *		      == L(h*2^n-1, 79) * -1
	 *		      == L(h*2^n-1 mod 79, 79) * -1
	 *		      == J(h*2^n-1 mod 79, 79) * -1
	 *		      == -1 * -1
	 *		      == 1
	 */
	if (jacobi( ((h*pmod(2,n%(79-1),79)-1)%79), 79 ) == -1 &&
	    jacobi( ((h*pmod(2,n%(83-1),83)-1)%83), 83 ) == 1) {
		/* return the associated v(1)=81 */
		return 81;
	}

	/* no quick and dirty v(1), so return -1 */
	return -1;
}

/*
 * ldebug - print a debug statement
 *
 * input:
 *	funct	name of calling function
 *	str	string to print
 */
define
ldebug(funct, str)
{
	if (config("resource_debug") & 8) {
		print "DEBUG:", funct:":", str;
	}
	return;
}