This file is indexed.

/usr/share/calc/poly.cal is in apcalc-common 2.12.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*
 * poly - calculate with polynomials of one variable
 *
 * Copyright (C) 1999  Ernest Bowen
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.1 $
 * @(#) $Id: poly.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/poly.cal,v $
 *
 * Under source code control:	1990/02/15 01:50:35
 * File existed as early as:	before 1990
 *
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */

/*
 * A collection of functions designed for calculations involving
 *	polynomials in one variable (by Ernest W. Bowen).
 *
 * On starting the program the independent variable has identifier x
 *	and name "x", i.e. the user can refer to it as x, the
 *	computer displays it as "x".  The name of the independent
 *	variable is stored as varname, so, for example, varname = "alpha"
 *	will change its name to "alpha".  At any time, the independent
 *	variable has only one name.  For some purposes, a name like
 *	"sin(t)" or "(a + b)" or "\lambda" might be useful;
 *	names like "*" or "-27" are legal but might give expressions
 *	that are difficult to intepret.
 *
 * Polynomial expressions may be constructed from numbers and the
 *	independent variable and other polynomials by the algebraic
 *	operations +, -, *, ^, and if the result is a polynomial /.
 *	The operations // and % are defined to have the quotient and
 *	remainder meanings as usually defined for polynomials.
 *
 * When polynomials are assigned to idenfifiers, it is convenient to
 *	think of the polynomials as values.  For example, p = (x - 1)^2
 *	assigns to p a polynomial value in the same way as q = (7 - 1)^2
 *	would assign to q a number value.  As with number expressions
 *	involving operations, the expression used to define the
 *	polynomial is usually lost; in the above example, the normal
 *	computer display for p will be	x^2 - 2x + 1.  Different
 *	identifiers may of course have the same polynomial value.
 *
 * The polynomial we think of as a_0 + a_1 * x + ... + a_n * x^n,
 *	for number coefficients a_0, a_1, ... a_n may also be
 *	constructed as pol(a_0, a_1, ..., a_n).	 Note that here the
 *	coefficients are to be in ascending power order.  The independent
 *	variable is pol(0,1), so to use t, say, as an identifier for
 *	this, one may assign  t = pol(0,1).  To simultaneously specify
 *	an identifier and a name for the independent variable, there is
 *	the instruction var, used as in identifier = var(name).	 For
 *	example, to use "t" in the way "x" is initially, one may give
 *	the instruction	 t = var("t").
 *
 * There are four parameters pmode, order, iod and ims for controlling
 *	the format in which polynomials are displayed.
 *	The parameter pmode may have values "alg" or "list": the
 *	former gives a display as an algebraic formula, while
 *	the latter only lists the coefficients.	 Whether the terms or
 *	coefficients are in ascending or descending power order is
 *	controlled by order being "up" or "down".  If the
 *	parameter iod (for integer-only display), the polynomial
 *	is expressed in terms of a polynomial whose coefficients are
 *	integers with gcd = 1, the leading coefficient having positive
 *	real part, with where necessary a leading multiplying integer,
 *	a Gaussian integer multiplier if the coefficients are complex
 *	with a common complex factor, and a trailing divisor integer.
 *	If a non-zero value is assigned to the parameter ims,
 *	multiplication signs will be inserted where appropriate;
 *	this may be useful if the expression is to be copied to a
 *	program or a string to be used with eval.
 *
 * For evaluation of polynomials the standard function is ev(p, t).
 *	If p is a polynomial and t anything for which the relevant
 *	operations can be performed, this returns the value of p
 *	at t.  The function ev(p, t) also accepts lists or matrices
 *	as possible values for p; each element of p is then evaluated
 *	at t.  For other p, t is ignored and the value of p is returned.
 *	If an identifier, a, say, is used for the polynomial, list or
 *	matrix p, the definition
 *			define a(t) = ev(a, t);
 *	permits a(t) to be used for the value of a at t as if the
 *	polynomial, list or matrix were a function.  For example,
 *	if a = 1 + x^2, a(2) will return the value 5, just as if
 *			define a(t) = 1 + t^2;
 *	had been used.	 However, when the polynomial definition is
 *	used, changing the polynomial a will change a(t) to the value
 *	of the new polynomial at t.  For example,
 *	after
 *		L = list(x, x^2, x^3, x^4);
		define a(t) = ev(a, t);
 *	the loop
 *		for (i = 0; i < 4; i++)
 *			print ev(L[[i]], 5);
 *	may be replaced by
 *		for (i = 0; i < 4; i++) {
 *			a = L[[i]];
 *			print a(5);
 *		}
 *
 * Matrices with polynomial elements may be added, subtracted and
 *	multiplied as long as the usual rules for compatibility are
 *	observed.  Also, matrices may be multiplied by polynomials,
 *	i.e. if p is a	polynomial and A a matrix whose elements
 *	may be numbers or polynomials, p * A returns the matrix of
 *	the same shape as A with each element multiplied by p.
 *	Square matrices may also be 'substituted for the variable' in
 *	polynomials, e.g. if A is an m x m matrix, and
 *	p = x^2 + 3 * x + 2, ev(p, A) returns the same as
 *	A^2 + 3 * A + 2 * I, where I is the unit m x m matrix.
 *
 * On starting this program, three demonstration polynomials a, b, c
 *	have been defined.  The functions a(t), b(t), c(t) corresponding
 *	to a, b, c, and x(t) corresponding to x, have also been
 *	defined, so the usual function notation can be used for
 *	evaluations of a, b, c and x.  For x, as long as x identifies
 *	the independent variable, x(t) should return the value of t,
 *	i.e. it acts as an identity function.
 *
 * Functions defined include:
 *
 *	monic(a) returns the monic multiple of a, i.e., if a != 0,
 *		the multiple of a with leading coefficient 1
 *	conj(a) returns the complex conjugate of a
 *	ispmult(a,b) returns 1 or 0 according as a is or is not
 *		a polynomial multiple of b
 *	pgcd(a,b) returns the monic gcd of a and b
 *	pfgcd(a,b) returns a list of three polynomials (g, u, v)
 *		where g = pgcd(a,b) and g = u * a + v * b.
 *	plcm(a,b) returns the monic lcm of a and b
 *
 *	interp(X,Y,t) returns the value at t of the polynomial given
 *		by Newtonian divided difference interpolation, where
 *		X is a list of x-values, Y a list of corresponding
 *		y-values.  If t is omitted, the interpolating
 *		polynomial is returned.	 A y-value may be replaced by
 *		list (y, y_1, y_2, ...), where y_1, y_2, ... are
 *		the reduced derivatives at the corresponding x;
 *		i.e. y_r is the r-th derivative divided by fact(r).
 *	mdet(A) returns the determinant of the square matrix A,
 *		computed by an algorithm that does not require
 *		inverses;  the built-in det function usually fails
 *		for matrices with polynomial elements.
 *	D(a,n) returns the n-th derivative of a; if n is omitted,
 *		the first derivative is returned.
 *
 * A first-time user can see what the initially defined polynomials
 *	a, b and c are, and experiment with the algebraic operations
 *	and other functions that have been defined by giving
 *	instructions like:
 *			a
 *			b
 *			c
 *			(x^2 + 1) * a
 *			a^27
 *			a * b
 *			a % b
 *			a // b
 *			a(1 + x)
 *			a(b)
 *			conj(c)
 *			g = pgcd(a, b)
 *			g
 *			a / g
 *			D(a)
 *			mat A[2,2] = {1 + x, x^2, 3, 4*x}
 *			mdet(A)
 *			D(A)
 *			A^2
 *			define A(t) = ev(A, t)
 *			A(2)
 *			A(1 + x)
 *			define L(t) = ev(L, t)
 *			L = list(x, x^2, x^3, x^4)
 *			L(5)
 *			a(L)
 *			interp(list(0,1,2,3), list(2,3,5,7))
 *			interp(list(0,1,2), list(0,list(1,0),2))
 *
 * One check on some of the functions is provided by the Cayley-Hamilton
 *	theorem:  if A is any m x m matrix and I the m x m unit matrix,
 *	and x is pol(0,1),
 *			ev(mdet(x * I - A), A)
 *	should return the zero m x m matrix.
 */


obj poly {p};

define pol() {
	local u,i,s;
	obj poly u;
	s = list();
	for (i=1; i<= param(0); i++) append (s,param(i));
	i=size(s) -1;
	while (i>=0 && s[[i]]==0) {i--; remove(s)}
	u.p = s;
	return u;
}

define ispoly(a) {
	local y;
	obj poly y;
	return istype(a,y);
}

define findlist(a) {
	if (ispoly(a)) return a.p;
	if (a) return list(a);
	return list();
}

pmode = "alg";	/* The other acceptable pmode is "list" */
ims = 0;	/* To be non-zero if multiplication signs to be inserted */
iod = 0;	/* To be non-zero for integer-only display */
order = "down"	/* Determines order in which coefficients displayed */

define poly_print(a) {
	local f, g, t;
	if (size(a.p) == 0) {
		print 0:;
		return;
	}
	if (iod) {
		g = gcdcoeffs(a);
		t = a.p[[size(a.p) - 1]] / g;
		if (re(t) < 0) { t = -t; g = -g;}
		if (g != 1) {
			if (!isreal(t)) {
				if (im(t) > re(t)) g *= 1i;
				else if (im(t) <= -re(t)) g *= -1i;
			}
			if (isreal(g)) f = g;
			else f = gcd(re(g), im(g));
			if (num(f) != 1) {
				print num(f):;
				if (ims) print"*":;
			}
			if (!isreal(g)) {
				printf("(%d)", g/f);
				if (ims) print"*":;
			}
			if (pmode == "alg") print"(":;
			polyprint(1/g * a);
			if (pmode == "alg") print")":;
			if (den(f) > 1) print "/":den(f):;
			return;
		}
	}
	polyprint(a);
}

define polyprint(a) {
	local s,n,i,c;
	s = a.p;
	n=size(s) - 1;
	if (pmode=="alg") {
		if (order == "up") {
			i = 0;
			while (!s[[i]]) i++;
			pterm (s[[i]], i);
			for (i++ ; i <= n; i++) {
				c = s[[i]];
				if (c) {
					if (isreal(c)) {
						if (c > 0) print" + ":;
						else {
							print" - ":;
							c = -c;
						}
					}
					else print " + ":;
					pterm(c,i);
				}
			}
			return;
		}
		if (order == "down") {
			pterm(s[[n]],n);
			for (i=n-1; i>=0; i--) {
				c = s[[i]];
				if (c) {
					if (isreal(c)) {
						if (c > 0) print" + ":;
						else {
							print" - ":;
							c = -c;
						}
					}
					else print " + ":;
					pterm(c,i);
				}
			}
			return;
		}
		quit "order to be up or down";
	}
	if (pmode=="list") {
		plist(s);
		return;
	}
	print pmode,:"is unknown mode";
}


define poly_neg(a) {
	local s,i,y;
	obj poly y;
	s = a.p;
	for (i=0; i< size(s); i++) s[[i]] = -s[[i]];
	y.p = s;
	return y;
}

define poly_conj(a) {
	local s,i,y;
	obj poly y;
	s = a.p;
	for (i=0; i < size(s); i++) s[[i]] = conj(s[[i]]);
	y.p = s;
	return y;
}

define poly_inv(a) = pol(1)/a;	/* This exists only for a of zero degree */

define poly_add(a,b) {
	local sa, sb, i, y;
	obj poly y;
	sa=findlist(a); sb=findlist(b);
	if (size(sa) > size(sb)) swap(sa,sb);
	for (i=0; i< size(sa); i++) sa[[i]] += sb[[i]];
	while (i < size(sb)) append (sa, sb[[i++]]);
	while (i > 0 && sa[[--i]]==0) remove (sa);
	y.p = sa;
	return y;
}

define poly_sub(a,b) {
	 return a + (-b);
}

define poly_cmp(a,b) {
	local sa, sb;
	sa = findlist(a);
	sb=findlist(b);
	return	(sa != sb);
}

define poly_mul(a,b) {
	local sa,sb,i, j, y;
	if (ismat(a)) swap(a,b);
	if (ismat(b)) {
		y = b;
		for (i=matmin(b,1); i <= matmax(b,1); i++)
			for (j = matmin(b,2); j<= matmax(b,2); j++)
				y[i,j] = a * b[i,j];
		return y;
	}
	obj poly y;
	sa=findlist(a); sb=findlist(b);
	y.p = listmul(sa,sb);
	return y;
}

define listmul(a,b) {
	local da,db, s, i, j, u;
	da=size(a)-1; db=size(b)-1;
	s=list();
	if (da >= 0 && db >= 0) {
		for (i=0; i<= da+db; i++) { u=0;
			for (j = max(0,i-db); j <= min(i, da); j++)
			u += a[[j]]*b[[i-j]]; append (s,u);}}
	return s;
}

define ev(a,t) {
	local v, i, j;
	if (ismat(a)) {
		v = a;
		for (i = matmin(a,1); i <= matmax(a,1); i++)
			for (j = matmin(a,2); j <= matmax(a,2); j++)
				v[i,j] = ev(a[i,j], t);
		return v;
	}
	if (islist(a)) {
		v = list();
		for (i = 0; i < size(a); i++)
			append(v, ev(a[[i]], t));
		return v;
	}
	if (!ispoly(a)) return a;
	if (islist(t)) {
		v = list();
		for (i = 0; i < size(t); i++)
			append(v, ev(a, t[[i]]));
		return v;
	}
	if (ismat(t)) return evpm(a.p, t);
	return evp(a.p, t);
}

define evp(s,t) {
	local n,v,i;
	n = size(s);
	if (!n) return 0;
	v = s[[n-1]];
	for (i = n - 2; i >= 0; i--) v=t * v +s[[i]];
	return v;
}

define evpm(s,t) {
	local m, n, V, i, I;
	n = size(s);
	m = matmax(t,1) - matmin(t,1);
	if (matmax(t,2) - matmin(t,2) != m) quit "Non-square matrix";
	mat V[m+1, m+1];
	if (!n) return V;
	mat I[m+1, m+1];
	matfill(I, 0, 1);
	V = s[[n-1]] * I;
	for (i = n - 2; i >= 0; i--) V = t * V + s[[i]] * I;
	return V;
}
pzero = pol(0);
x = pol(0,1);
varname = "x";
define x(t) = ev(x, t);

define iszero(a) {
	if (ispoly(a))
		return !size(a.p);
	return a == 0;
}

define isstring(a) = istype(a, " ");

define var(name) {
	if (!isstring(name)) quit "Argument of var is to be a string";
	varname = name;
	return pol(0,1);
}

define pcoeff(a) {
		if (isreal(a)) print a:;
		else print "(":a:")":;
}

define pterm(a,n) {
	if (n==0) {
		pcoeff(a);
		return;
	}
	if (n==1) {
		if (a!=1) {
			pcoeff(a);
			if (ims) print"*":;
		}
		print varname:;
		return;
	}
	if (a!=1) {
		pcoeff(a);
		if (ims) print"*":;
	}
	print varname:"^":n:;
}

define plist(s) {
	local i, n;
	n = size(s);
	print "( ":;
	if (order == "up") {
		for (i=0; i< n-1 ; i++)
			print s[[i]]:",",:;
		if (n) print s[[i]],")":;
		else print "0 )":;
	}
	else {
		if (n) print s[[n-1]]:;
		for (i = n - 2; i >= 0; i--)
			print ", ":s[[i]]:;
		print " )":;
	}
}

define deg(a) = size(a.p) - 1;

define polydiv(a,b) {
	local d, u, i, m, n, sa, sb, sq;
	local obj poly q;
	local obj poly r;
	sa=findlist(a); sb = findlist(b); sq = list();
	m=size(sa)-1; n=size(sb)-1;
	if (n<0) quit "Zero divisor";
	if (m<n) return list(pzero, a);
	d = sb[[n]];
	while ( m >= n) { u = sa[[m]]/d;
		for (i = 0; i< n; i++) sa[[m-n+i]] -= u*sb[[i]];
		push(sq,u); remove(sa); m--;
		while (m>=n && sa[[m]]==0) { m--; remove(sa); push(sq,0)}}
	while (m>=0 && sa[[m]]==0) { m--; remove(sa);}
	q.p = sq;  r.p = sa;
	return list(q, r);}

define poly_mod(a,b)  {
	local u;
	u=polydiv(a,b);
	return u[[1]];
}

define poly_quo(a,b) {
	local p;
	p = polydiv(a,b);
	return p[[0]];
}

define ispmult(a,b) = iszero(a % b);

define poly_div(a,b) {
	if (!ispmult(a,b)) quit "Result not a polynomial";
	return poly_quo(a,b);
}

define pgcd(a,b) {
	local r;
	if (iszero(a) && iszero(b)) return pzero;
	while (!iszero(b)) {
		r = a % b;
		a = b;
		b = r;
	}
	return monic(a);
}

define plcm(a,b) = monic( a * b // pgcd(a,b));

define pfgcd(a,b) {
	local u, v, u1, v1, s, q, r, d, w;
	u = v1 = pol(1); v = u1 = pol(0);
	while (size(b.p) > 0) {s = polydiv(a,b);
		q = s[[0]];
		a = b; b = s[[1]]; u -= q*u1; v -= -q*v1;
		swap(u,u1); swap(v,v1);}
	d=size(a.p)-1; if (d>=0 && (w= 1/a.p[[d]]) !=1)
		 { a *= w; u *= w; v *= w;}
	return list(a,u,v);
}

define monic(a) {
	local s, c, i, d, y;
	if (iszero(a)) return pzero;
	obj poly y;
	s = findlist(a);
	d = size(s)-1;
	for (i=0; i<=d; i++) s[[i]] /= s[[d]];
	y.p = s;
	return y;
}

define coefficient(a,n) = (n < size(a.p)) ? a.p[[n]] : 0;

define D(a, n) {
	local i,j,v;
	if (isnull(n)) n = 1;
	if (!isint(n) || n < 1) quit "Bad order for derivative";
	if (ismat(a)) {
		v = a;
		for (i = matmin(a,1); i <= matmax(a,1); i++)
			for (j = matmin(a,2); j <= matmax(a,2); j++)
				v[i,j] = D(a[i,j], n);
		return v;
	}
	if (!ispoly(a)) return 0;
	return Dp(a,n);
}

define Dp(a,n) {
	local i, v;
	if (n > 1) return Dp(Dp(a, n-1), 1);
	obj poly v;
	v.p=list();
	for (i=1; i<size(a.p); i++) append (v.p, i*a.p[[i]]);
	return v;
}


define cgcd(a,b) {
	if (isreal(a) && isreal(b)) return gcd(a,b);
	while (a) {
		b -= bround(b/a) * a;
		swap(a,b);
	}
	if (re(b) < 0) b = -b;
	if (im(b) > re(b)) b *= -1i;
	else if (im(b) <= -re(b)) b *= 1i;
	return b;
}

define gcdcoeffs(a) {
	local s,i,g, c;
	s = a.p;
	g=0;
	for (i=0; i < size(s) && g != 1; i++)
		if (c = s[[i]]) g = cgcd(g, c);
	return g;
}

define interp(X, Y, t) = evalfd(makediffs(X,Y), t);

define makediffs(X,Y) {
	local U, D, d, x, y, i, j, k, m, n, s;
	U = D = list();
	n = size(X);
	if (size(Y) != n) quit"Arguments to be lists of same size";
	for (i = n-1; i >= 0; i--) {
		x = X[[i]];
		y = Y[[i]];
		m = size(U);
		if (isnum(y)) {
			d = y;
			for (j = 0; j < m; j++) {
				d = D[[j]] = (D[[j]]-d)/(U[[j]] - x);
			}
			push(U, x);
			push(D, y);
		}
		else {
			s = size(y);
			for (k = 0; k < s ; k++) {
				d = y[[k]];
				for (j = 0; j < m; j++) {
					d = D[[j]] = (D[[j]] - d)/(U[[j]] - x);
				}
			}
			for (j=s-1; j >=0; j--) {
				push(U,x);
				push(D, y[[j]]);
			}
		}
	}
	return list(U, D);
}

define evalfd(T, t) {
	local U, D, n, i, v;
	if (isnull(t)) t = pol(0,1);
	U = T[[0]];
	D = T[[1]];
	n = size(U);
	v = D[[n-1]];
	for (i = n-2; i >= 0; i--)
		v = v * (t - U[[i]]) + D[[i]];
	return v;
}


define mdet(A) {
	local n, i, j, k, I, J;
	n = matmax(A,1) - (i = matmin(A,1));
	if (matmax(A,2) - (j = matmin(A,2)) != n)
		quit "Non-square matrix for mdet";
	I = J = list();
	k = n + 1;
	while (k--) {
		append(I,i++);
		append(J,j++);
	}
	return M(A, n+1, I, J);
}

define M(A, n, I, J) {
	local v, J0, i, j, j1;
	if (n == 1) return A[ I[[0]], J[[0]] ];
	v = 0;
	i = remove(I);
	for (j = 0; j < n; j++) {
		J0 = J;
		j1 = delete(J0, j);
		v += (-1)^(n-1+j) * A[i, j1] * M(A, n-1, I, J0);
	}
	return v;
}

define mprint(A) {
	local i,j;
	if (!ismat(A)) quit "Argument to be a matrix";
	for (i = matmin(A,1); i <= matmax(A,1); i++) {
		for (j = matmin(A,2); j <= matmax(A,2); j++)
			printf("%8.4d ", A[i,j]);
		printf("\n");
	}
}

obj poly a;
obj poly b;
obj poly c;

define a(t) = ev(a,t);
define b(t) = ev(b,t);
define c(t) = ev(c,t);

a=pol(1,4,4,2,3,1);
b=pol(5,16,8,1);
c=pol(1+2i,3+4i,5+6i);

if (config("resource_debug") & 3) {
	print "obj poly {p} defined";
}