This file is indexed.

/usr/share/calc/test2700.cal is in apcalc-common 2.12.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * test2700 - 2700 series of the regress.cal test suite
 *
 * Copyright (C) 1999  Ernest Bowen and Landon Curt Noll
 *
 * Primary author:  Ernest Bowen
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.2 $
 * @(#) $Id: test2700.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/test2700.cal,v $
 *
 * Under source code control:	1995/11/01 22:52:25
 * File existed as early as:	1995
 *
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */

/*
 * The following resource file gives a severe test of sqrt(x,y,z) for
 * all 128 values of z, randomly produced real and complex x, and randomly
 * produced nonzero values for y.  After loading it, testcsqrt(n) will
 * test n combinations of x and y;  testcsqrt(str,n,2) will print 1 2 3 ...
 * indicating work in process; testcsqrt(str,n,3) will give information about
 * errors detected and will print values of x and y used.
 * I've also defined a function iscomsq(x) which does for complex as well
 * as real x what issq(x) currently does for real x.
 */


defaultverbose = 1;

define mknonnegreal() {
	switch(rand(8)) {
		case 0: return rand(20);
		case 1: return rand(20,1000);
		case 2: return rand(1,10000)/rand(1,100);
		case 3: return scale(mkposreal(), rand(1,100));
		case 4: return scale(mkposreal(), -rand(1,100));
		case 5: return rand(1, 1000) + scale(mkfrac(),-rand(1,100));
		case 6: return mkposreal()^2;
		case 7: return mkposreal() * (1+scale(mkfrac(),-rand(1,100)));
	}
}

define mkposreal() {
	local x;

	x = mknonnegreal();
	while (x == 0)
		x = mknonnegreal();
	return x;
}

define mkreal_2700() = rand(2) ? mknonnegreal() : -mknonnegreal();

define mknonzeroreal() = rand(2) ? mkposreal() : -mkposreal();

/* Number > 0 and < 1, almost uniformly distributed */
define mkposfrac() {
	local x,y;

	x = rand(1,1000);
	do
		y = rand(1,1000);
	while (y == x);
	if (x > y)
		swap(x,y);
	return x/y;
}

/* Nonzero > -1 and < 1 */
define mkfrac() = rand(2) ? mkposfrac() : -mkposfrac();

define mksquarereal() = mknonnegreal()^2;

/*
 * We might be able to do better than the following.  For nonsquare
 * positive integer less than 1e6, could use:
 *		 x = rand(1, 1000);
 *		 return rand(x^2 + 1, (x + 1)^2);
 * Maybe could do:
 *		do
 *			x = mkreal_2700();
 *		while
 *			(issq(x));
 * This would of course not be satisfactory for testing issq().
 */

define mknonsquarereal() = 22 * mkposreal()^2/7;

define mkcomplex_2700() = mkreal_2700() + 1i * mkreal_2700();

define testcsqrt(str, n, verbose)
{
	local x, y, z, m, i, p, v;

	if (isnull(verbose))
		verbose = defaultverbose;
	if (verbose > 0) {
		print str:":",:;
	}
	m = 0;
	for (i = 1; i <= n; i++) {
		if (verbose > 1) print i,:;
		x = rand(3) ? mkreal_2700(): mkcomplex_2700();
		y = scale(mknonzeroreal(), -100);
		if (verbose > 2)
			printf("%d: x = %d, y = %d\n", i, x, y);

		for (z = 0; z < 128; z++) {
			v = sqrt(x,y,z);
			p = checksqrt(x,y,z,v);
			if (p) {
			if (verbose > 0)
				printf(
				 "*** Type %d failure for x = %r, "
				 "y = %r, z = %d\n",
				    p, x, y, z);
				m++;
			}
		}
	}
	if (verbose > 0) {
		if (m) {
			printf("*** %d error(s)\n", m);
		} else {
			printf("no errors\n");
		}
	}
	return m;
}


define checksqrt(x,y,z,v)	/* Returns >0 if an error is detected */
{
	local A, B, X, Y, t1, t2, eps, u, n, f, s;

	A = re(x);
	B = im(x);
	X = re(v);
	Y = im(v);

	/* checking signs of X and Y */

	if (B == 0 && A <= 0)		/* t1 = sgn(re(tvsqrt)) */
		t1 = 0;
	else
		t1 = (z & 64) ? -1 : 1;

	t2 = B ? sgn(B) : (A < 0);	/* t2 = sgn(im(tvsqrt)) */
	if (z & 64)
		t2 = -t2;

	if (t1 == 0 && X != 0)
		return 1;

	if (t2 == 0 && Y != 0) {
		printf("x = %d, Y = %d, t2 = %d\n", x, Y, t2);
		return 2;
	}

	if (X && sgn(X) != t1)
		return 3;

	if (Y && sgn(Y) != t2)
		return 4;

	if (z & 32 && iscomsq(x))
		return 5 * (x != v^2);

	eps = (z & 16) ? abs(y)/2 : abs(y);
	u = sgn(y);

	/* Checking X */

	n = X/y;
	if (!isint(n))
		return 6;

	if (t1) {
		f = checkavrem(A, B, abs(X), eps);

		if (z & 16 && f < 0)
			return 7;
		if (!(z & 16) && f <= 0)
			return 8;

		if (!(z & 16) || f == 0) {
			s = X ? t1 * sgn(A - X^2 + B^2/4/X^2) : t1;
			if (s && !checkrounding(s,n,t1,u,z))
			return 9;
		}
	}

	/* Checking Y */

	n = Y/y;
	if (!isint(n))
		return 10;

	if (t2) {
		f = checkavrem(-A, B, abs(Y), eps);

		if (z & 16 && f < 0)
			return 11;
		if (!(z & 16) && f <= 0)
			return 12;

		if (!(z & 16) || f == 0) {
			s = Y ? t2 * sgn(-A - Y^2 + B^2/4/Y^2) : t2;
			if (s && !checkrounding(s,n,t2,u,z))
				return 13;
		}
	}
	return 0;
}

/*
 * Check that the calculated absolute value X of the real part of
 * sqrt(A + Bi) is between (true value - eps) and (true value + eps).
 * Returns -1 if it is outside, 0 if on boundary, 1 if between.
 */

define checkavrem(A, B, X, eps)
{
	local f;

	f = sgn(A - (X + eps)^2 + B^2/4/(X + eps)^2);
	if (f > 0)
		return -1;		/* X < tv - eps */
	if (f == 0)
		return 0;		/* X = tv - eps */

	if (X > eps) {
		f = sgn(A - (X - eps)^2 + B^2/4/(X - eps)^2);

		if (f < 0)
			return -1;	/* X > tv + eps */
		if (f == 0)
			return 0;	/* X = tv + eps */
	}
	return 1;		/* tv - eps < X < tv + eps */
}


define checkrounding(s,n,t,u,z)
{
	local w;

	switch (z & 15) {
		case 0: w = (s == u); break;
		case 1: w = (s == -u); break;
		case 2: w = (s == t); break;
		case 3: w = (s == -t); break;
		case 4: w = (s > 0); break;
		case 5: w = (s < 0); break;
		case 6: w = (s == u/t); break;
		case 7: w = (s == -u/t); break;
		case 8: w = iseven(n); break;
		case 9: w = isodd(n); break;
		case 10: w = (u/t > 0) ? iseven(n) : isodd(n); break;
		case 11: w = (u/t > 0) ? isodd(n) : iseven(n); break;
		case 12: w = (u > 0) ? iseven(n) : isodd(n); break;
		case 13: w = (u > 0) ? isodd(n) : iseven(n); break;
		case 14: w = (t > 0) ? iseven(n) : isodd(n); break;
		case 15: w = (t > 0) ? isodd(n) : iseven(n); break;
	}
	return w;
}

define iscomsq(x)
{
	local c;

	if (isreal(x))
		return issq(abs(x));
	c = norm(x);
	if (!issq(c))
		return 0;
	return issq((re(x) + sqrt(c,1,32))/2);
}

/*
 * test2700 - perform all of the above tests a bunch of times
 */
define test2700(verbose, tnum)
{
	local n;	/* test parameter */
	local ep;	/* test parameter */
	local i;

	/* set test parameters */
	n = 32;		/* internal test loop count */
	if (isnull(verbose)) {
		verbose = defaultverbose;
	}
	if (isnull(tnum)) {
		tnum = 1;	/* initial test number */
	}

	/*
	 * test a lot of stuff
	 */
	srand(2700e2700);
	for (i=0; i < n; ++i) {
		err += testcsqrt(strcat(str(tnum++),": complex sqrt",str(i)),
				 1, verbose);
	}
	if (verbose > 1) {
		if (err) {
			print "***", err, "error(s) found in testall";
		} else {
			print "no errors in testall";
		}
	}
	return tnum;
}