/usr/share/audacity/nyquist/dspprims.lsp is in audacity-data 2.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 | ;; dspprims.lsp -- interface to dsp primitives
;; ARESON - notch filter
;;
(defun areson (s c b &optional (n 0))
(multichan-expand #'nyq:areson s c b n))
(setf areson-implementations
(vector #'snd-areson #'snd-aresonvc #'snd-aresoncv #'snd-aresonvv))
;; NYQ:ARESON - notch filter, single channel
;;
(defun nyq:areson (signal center bandwidth normalize)
(select-implementation-1-2 areson-implementations
signal center bandwidth normalize))
;; hp - highpass filter
;;
(defun hp (s c)
(multichan-expand #'nyq:hp s c))
(setf hp-implementations
(vector #'snd-atone #'snd-atonev))
;; NYQ:hp - highpass filter, single channel
;;
(defun nyq:hp (s c)
(select-implementation-1-1 hp-implementations s c))
;; comb-delay-from-hz -- compute the delay argument
;;
(defun comb-delay-from-hz (hz caller)
(recip hz))
;; comb-feedback-from-decay -- compute the feedback argument
;;
(defun comb-feedback (decay delay)
(s-exp (mult -6.9087 delay (recip decay))))
;; COMB - comb filter
;;
;; this is just a feedback-delay with different arguments
;;
(defun comb (snd decay hz)
(multichan-expand #'nyq:comb snd decay hz))
(defun nyq:comb (snd decay hz)
(let (delay feedback len d)
; convert decay to feedback, iterate over array if necessary
(setf delay (comb-delay-from-hz hz "comb"))
(setf feedback (comb-feedback decay delay))
(nyq:feedback-delay snd delay feedback)))
;; ALPASS - all-pass filter
;;
(defun alpass (snd decay hz &optional min-hz)
(multichan-expand #'nyq:alpass snd decay hz min-hz))
(defun nyq:alpass (snd decay hz min-hz)
(let (delay feedback len d)
; convert decay to feedback, iterate over array if necessary
(setf delay (comb-delay-from-hz hz "alpass"))
(setf feedback (comb-feedback decay delay))
(nyq:alpass1 snd delay feedback min-hz)))
;; CONST -- a constant at control-srate
;;
(defun const (value &optional (dur 1.0))
(let ((d (get-duration dur)))
(snd-const value *rslt* *CONTROL-SRATE* d)))
;; CONVOLVE - slow convolution
;;
(defun convolve (s r)
(multichan-expand #'snd-convolve s r))
;; FEEDBACK-DELAY -- (delay is quantized to sample period)
;;
(defun feedback-delay (snd delay feedback)
(multichan-expand #'nyq:feedback-delay snd delay feedback))
;; SND-DELAY-ERROR -- report type error
;;
(defun snd-delay-error (snd delay feedback)
(error "feedback-delay with variable delay is not implemented"))
(setf feedback-delay-implementations
(vector #'snd-delay #'snd-delay-error #'snd-delaycv #'snd-delay-error))
;; NYQ:FEEDBACK-DELAY -- single channel delay
;;
(defun nyq:feedback-delay (snd delay feedback)
(select-implementation-1-2 feedback-delay-implementations
snd delay feedback))
;; SND-ALPASS-ERROR -- report type error
;;
(defun snd-alpass-error (snd delay feedback)
(error "alpass with constant decay and variable hz is not implemented"))
(if (not (fboundp 'snd-alpasscv))
(defun snd-alpasscv (snd delay feedback min-hz)
(error "snd-alpasscv (ALPASS with variable decay) is not implemented")))
(if (not (fboundp 'snd-alpassvv))
(defun snd-alpassvv (snd delay feedback min-hz)
(error "snd-alpassvv (ALPASS with variable decay and feedback) is not implemented")))
(defun nyq:alpassvv (the-snd delay feedback min-hz)
(let (max-delay)
(cond ((or (not (numberp min-hz))
(<= min-hz 0))
(error "alpass needs numeric (>0) 4th parameter (min-hz) when delay is variable")))
(setf max-delay (/ 1.0 min-hz))
; make sure delay is between 0 and max-delay
; use clip function, which is symetric, with an offset
(setf delay (snd-offset (clip (snd-offset delay (* max-delay -0.5))
(* max-delay 0.5))
(* max-delay 0.5)))
; now delay is between 0 and max-delay, so we won't crash nyquist when
; we call snd-alpassvv, which doesn't test for out-of-range data
(snd-alpassvv the-snd delay feedback max-delay)))
;; NYQ:SND-ALPASS -- ignores min-hz argument and calls snd-alpass
;;
(defun nyq:snd-alpass (snd delay feedback min-hz)
(snd-alpass snd delay feedback))
;; NYQ:SND-ALPASSCV -- ignores min-hz argument and calls snd-alpasscv
;;
(defun nyq:snd-alpasscv (snd delay feedback min-hz)
(snd-alpasscv snd delay feedback))
(setf alpass-implementations
(vector #'nyq:snd-alpass #'snd-alpass-error
#'nyq:snd-alpasscv #'nyq:alpassvv))
;; NYQ:ALPASS1 -- single channel alpass
;;
(defun nyq:alpass1 (snd delay feedback min-hz)
(select-implementation-1-2 alpass-implementations
snd delay feedback min-hz))
;; CONGEN -- contour generator, patterned after gated analog env gen
;;
(defun congen (gate rise fall) (multichan-expand #'snd-congen gate rise fall))
;; S-EXP -- exponentiate a sound
;;
(defun s-exp (s) (multichan-expand #'nyq:exp s))
;; NYQ:EXP -- exponentiate number or sound
;;
(defun nyq:exp (s) (if (soundp s) (snd-exp s) (exp s)))
;; S-ABS -- absolute value of a sound
;;
(defun s-abs (s) (multichan-expand #'nyq:abs s))
;; NYQ:ABS -- absolute value of number or sound
;;
(defun nyq:abs (s) (if (soundp s) (snd-abs s) (abs s)))
;; S-SQRT -- square root of a sound
;;
(defun s-sqrt (s) (multichan-expand #'nyq:sqrt s))
;; NYQ:SQRT -- square root of a number or sound
;;
(defun nyq:sqrt (s) (if (soundp s) (snd-sqrt s) (sqrt s)))
;; INTEGRATE -- integration
;;
(defun integrate (s) (multichan-expand #'snd-integrate s))
;; S-LOG -- natural log of a sound
;;
(defun s-log (s) (multichan-expand #'nyq:log s))
;; NYQ:LOG -- log of a number or sound
;;
(defun nyq:log (s) (if (soundp s) (snd-log s) (log s)))
;; NOISE -- white noise
;;
(defun noise (&optional (dur 1.0))
(let ((d (get-duration dur)))
(snd-white *rslt* *SOUND-SRATE* d)))
(defun noise-gate (snd &optional (lookahead 0.5) (risetime 0.02) (falltime 0.5)
(floor 0.01) (threshold 0.01))
(let ((rms (lp (mult snd snd) (/ *control-srate* 10.0))))
(setf threshold (* threshold threshold))
(mult snd (gate rms floor risetime falltime lookahead threshold))))
;; QUANTIZE -- quantize a sound
;;
(defun quantize (s f) (multichan-expand #'snd-quantize s f))
;; RECIP -- reciprocal of a sound
;;
(defun recip (s) (multichan-expand #'nyq:recip s))
;; NYQ:RECIP -- reciprocal of a number or sound
;;
(defun nyq:recip (s) (if (soundp s) (snd-recip s) (/ (float s))))
;; RMS -- compute the RMS of a sound
;;
(defun rms (s &optional (rate 100.0) window-size)
(let (rslt step-size)
(cond ((not (eq (type-of s) 'SOUND))
(break "in RMS, first parameter must be a monophonic SOUND")))
(setf step-size (round (/ (snd-srate s) rate)))
(cond ((null window-size)
(setf window-size step-size)))
(setf s (prod s s))
(setf result (snd-avg s window-size step-size OP-AVERAGE))
;; compute square root of average
(s-exp (scale 0.5 (s-log result)))))
;; RESON - bandpass filter
;;
(defun reson (s c b &optional (n 0))
(multichan-expand #'nyq:reson s c b n))
(setf reson-implementations
(vector #'snd-reson #'snd-resonvc #'snd-resoncv #'snd-resonvv))
;; NYQ:RESON - bandpass filter, single channel
;;
(defun nyq:reson (signal center bandwidth normalize)
(select-implementation-1-2 reson-implementations
signal center bandwidth normalize))
;; SHAPE -- waveshaper
;;
(defun shape (snd shape origin)
(multichan-expand #'snd-shape snd shape origin))
;; SLOPE -- calculate the first derivative of a signal
;;
(defun slope (s) (multichan-expand #'nyq:slope s))
;; NYQ:SLOPE -- first derivative of single channel
;;
(defun nyq:slope (s)
(let* ((sr (snd-srate s))
(sr-inverse (/ sr)))
(snd-xform (snd-slope s) sr 0 sr-inverse MAX-STOP-TIME 1.0)))
;; lp - lowpass filter
;;
(defun lp (s c)
(multichan-expand #'nyq:lp s c))
(setf lp-implementations
(vector #'snd-tone #'snd-tonev))
;; NYQ:lp - lowpass filter, single channel
;;
(defun nyq:lp (s c)
(select-implementation-1-1 lp-implementations s c))
;;; fixed-parameter filters based on snd-biquad
;;; note: snd-biquad is implemented in biquadfilt.[ch],
;;; while BiQuad.{cpp,h} is part of STK
(setf Pi 3.14159265358979)
(defun square (x) (* x x))
(defun sinh (x) (* 0.5 (- (exp x) (exp (- x)))))
; remember that snd-biquad uses the opposite sign convention for a_i's
; than Matlab does.
; convenient biquad: normalize a0, and use zero initial conditions.
; convenient biquad: normalize a0, and use zero initial conditions.
(defun nyq:biquad (x b0 b1 b2 a0 a1 a2)
(if (<= a0 0.0)
(error (format nil "a0 < 0 (unstable parameter a0 = ~A) in biquad~%" a0)))
(let ((a0r (/ 1.0 a0)))
(setf a1 (* a0r a1)
a2 (* a0r a2))
(if (or (<= a2 -1.0) (<= (- 1.0 a2) (abs a1)))
(error (format nil
"(a2 <= -1) or (1 - a2 <= |a1|) (~A a1 = ~A, a2 = ~A) in biquad~%"
"unstable parameters" a1 a2)))
(snd-biquad x (* a0r b0) (* a0r b1) (* a0r b2)
a1 a2 0 0)))
(defun biquad (x b0 b1 b2 a0 a1 a2)
(multichan-expand #'nyq:biquad x b0 b1 b2 a0 a1 a2))
; biquad with Matlab sign conventions for a_i's.
(defun biquad-m (x b0 b1 b2 a0 a1 a2)
(multichan-expand #'nyq:biquad-m x b0 b1 b2 a0 a1 a2))
(defun nyq:biquad-m (x b0 b1 b2 a0 a1 a2)
(nyq:biquad x b0 b1 b2 a0 (- a1) (- a2)))
; two-pole lowpass
(defun lowpass2 (x hz &optional (q 0.7071))
(multichan-expand #'nyq:lowpass2 x hz q))
;; NYQ:LOWPASS2 -- operates on single channel
(defun nyq:lowpass2 (x hz q)
(if (or (> hz (* 0.5 (snd-srate x)))
(< hz 0))
(error "cutoff frequency out of range" hz))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- 1.0 cw))
(b0 (* 0.5 b1))
(b2 b0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole highpass
(defun highpass2 (x hz &optional (q 0.7071))
(multichan-expand #'nyq:highpass2 x hz q))
(defun nyq:highpass2 (x hz q)
(if (or (> hz (* 0.5 (snd-srate x)))
(< hz 0))
(error "cutoff frequency out of range" hz))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- -1.0 cw))
(b0 (* -0.5 b1))
(b2 b0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole bandpass. max gain is unity.
(defun bandpass2 (x hz q)
(multichan-expand #'nyq:bandpass2 x hz q))
(defun nyq:bandpass2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 alpha)
(b1 0.0)
(b2 (- alpha)))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole notch.
(defun notch2 (x hz q)
(multichan-expand #'nyq:notch2 x hz q))
(defun nyq:notch2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 1.0)
(b1 (* -2.0 cw))
(b2 1.0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole allpass.
(defun allpass2 (x hz q)
(multichan-expand #'nyq:allpass x hz q))
(defun nyq:allpass (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(k (exp (* -0.5 w (/ 1.0 q))))
(a0 1.0)
(a1 (* -2.0 cw k))
(a2 (* k k))
(b0 a2)
(b1 a1)
(b2 1.0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; bass shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-lowshelf (x hz gain &optional (slope 1.0))
(multichan-expand #'nyq:eq-lowshelf x hz gain slope))
(defun nyq:eq-lowshelf (x hz gain slope)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 (- amc) bs )))
(b1 (* 2.0 A (+ A -1.0 (- apc) )))
(b2 (* A (+ A 1.0 (- amc) (- bs) )))
(a0 (+ A 1.0 amc bs ))
(a1 (* -2.0 (+ A -1.0 apc )))
(a2 (+ A 1.0 amc (- bs) )))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; treble shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-highshelf (x hz gain &optional (slope 1.0))
(multichan-expand #'nyq:eq-highshelf x hz gain slope))
(defun nyq:eq-highshelf (x hz gain slope)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 amc bs )))
(b1 (* -2.0 A (+ A -1.0 apc )))
(b2 (* A (+ A 1.0 amc (- bs) )))
(a0 (+ A 1.0 (- amc) bs ))
(a1 (* 2.0 (+ A -1.0 (- apc) )))
(a2 (+ A 1.0 (- amc) (- bs) )))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
(defun nyq:eq-band (x hz gain width)
(cond ((and (numberp hz) (numberp gain) (numberp width))
(eq-band-ccc x hz gain width))
((and (soundp hz) (soundp gain) (soundp width))
(snd-eqbandvvv x hz (db-to-linear gain) width))
(t
(error "eq-band hz, gain, and width must be all numbers or all sounds"))))
; midrange EQ. gain in dB, width in octaves (half-gain width).
(defun eq-band (x hz gain width)
(multichan-expand #'nyq:eq-band x hz gain width))
(defun eq-band-ccc (x hz gain width)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(J (sqrt (expt 10.0 (/ gain 20.0))))
;(dummy (display "eq-band-ccc" gain J))
(g (* sw (sinh (* 0.5 (log 2.0) width (/ w sw)))))
;(dummy2 (display "eq-band-ccc" width w sw g))
(b0 (+ 1.0 (* g J)))
(b1 (* -2.0 cw))
(b2 (- 1.0 (* g J)))
(a0 (+ 1.0 (/ g J)))
(a1 (- b1))
(a2 (- (/ g J) 1.0)))
(biquad x b0 b1 b2 a0 a1 a2)))
; see failed attempt in eub-reject.lsp to do these with higher-order fns:
; four-pole Butterworth lowpass
(defun lowpass4 (x hz)
(lowpass2 (lowpass2 x hz 0.60492333) hz 1.33722126))
; six-pole Butterworth lowpass
(defun lowpass6 (x hz)
(lowpass2 (lowpass2 (lowpass2 x hz 0.58338080)
hz 0.75932572)
hz 1.95302407))
; eight-pole Butterworth lowpass
(defun lowpass8 (x hz)
(lowpass2 (lowpass2 (lowpass2 (lowpass2 x hz 0.57622191)
hz 0.66045510)
hz 0.94276399)
hz 2.57900101))
; four-pole Butterworth highpass
(defun highpass4 (x hz)
(highpass2 (highpass2 x hz 0.60492333) hz 1.33722126))
; six-pole Butterworth highpass
(defun highpass6 (x hz)
(highpass2 (highpass2 (highpass2 x hz 0.58338080)
hz 0.75932572)
hz 1.95302407))
; eight-pole Butterworth highpass
(defun highpass8 (x hz)
(highpass2 (highpass2 (highpass2 (highpass2 x hz 0.57622191)
hz 0.66045510)
hz 0.94276399)
hz 2.57900101))
; YIN
; maybe this should handle multiple channels, etc.
(setfn yin snd-yin)
; FOLLOW
(defun follow (sound floor risetime falltime lookahead)
;; use 10000s as "infinite" -- that's about 2^30 samples at 96K
(setf lookahead (round (* lookahead (snd-srate sound))))
(extract (/ lookahead (snd-srate sound)) 10000
(snd-follow sound floor risetime falltime lookahead)))
; Note: gate implementation moved to nyquist.lsp
;(defun gate (sound floor risetime falltime lookahead threshold)
; (setf lookahead (round (* lookahead (snd-srate sound))))
; (setf lookahead (/ lookahead (snd-srate sound)))
; (extract lookahead 10000
; (snd-gate sound lookahead risetime falltime floor threshold)))
|