This file is indexed.

/usr/share/axiom-20140801/algebra/gloss.text is in axiom-databases 20140801-11.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
,`{\em (syntax)} a separator for items in a \spadgloss{tuple}, e.g. to separate
arguments of a function \spad{f(x,y)}.

?`1. {\em (syntax)} a suffix character for Boolean-valued \spadfun{function} names, e.g. \spadfun{odd?}.
2. Suffix character for pattern variables.

3. The special type \spad{?} means {\em don't care}.
For example,
the declaration \newline\center{\spad{x : Polynomial ?}}\newline, 
means that values assigned to x must be polynomials over an
arbitrary \spadgloss{underlying domain}.

!`{\em (syntax)} Suffix character for \spadgloss{destructive operations}.

=>`{\em (syntax)} the expression \spad{a => b} is equivalent to \spad{if a then}
\spadgloss{exit} \spad{b}.

abstract datatype`
a programming language principle used in \Language{}
where a datatype is defined in two parts:
(1) a {\em public} part describing a set of \spadgloss{exports}, principally
operations that apply to objects of that type, and
(2) a {\em private} part describing the implementation
of the datatype usually in terms of a \spadgloss{representation} for 
objects of the type. 
Programs which create and otherwise manipulate objects of the type
may only do so through its exports.
The representation and other implementation information is
specifically hidden.

abstraction`described functionally or conceptually without regard to implementation

accuracy`the degree of exactness of an approximation or measurement. In
computer algebra systems, computations are typically carried out
with complete accuracy using integers or rational numbers of 
indefinite size. Domain \spadtype{Float} provides a function
\spadfunFrom{precision}{Float} to change the precision for 
floating point computations. Computations using \spadtype{DoubleFloat}
have a fixed precision but uncertain accuracy.

algorithm`a step-by-step procedure for a solution of a problem; a program

application`{\em (syntax)} an expression denoting "application" of 
a function to 
a set of \spadgloss{argument} parameters. 
Applications are written as
a \spadgloss{parameterized form}.
For example, the form \spad{f(x,y)} indicates
the "application of the function \spad{f} to the tuple of arguments \spad{x}
and \spad{y}".
See also \spadgloss{evaluation} and \spadgloss{invocation}.

apply`See \spadgloss{application}.

argument`1. (actual argument) a value passed to a function at the 
time of a \spadglossSee{function call}{application}; also called an {\em actual
parameter}.
2. (formal argument) a variable used in the definition of a function
to denote the actual argument passed when the function is called.

assignment`{\em (syntax)} an expression of the form \spad{x := e}, 
meaning "assign the value of \spad{e} to x".
After \spadgloss{evaluation}, the \spadgloss{variable} x \spadglossSee{points}{pointer} 
to an object obtained by evaluating the expression \spad{e}.
If x has a \spadgloss{type} as a result of a previous \spadgloss{declaration},
the object assigned to x must have that type.
An interpreter must often \spadglossSee{coerce}{coercion}
the value of e to make that happen.
For example, in the interpreter,
\center{\spad{x : Float := 11}}
first \spadglossSee{declares}{declaration} x to be a float.
This declaration causes the interpreter to coerce 11 to 11.0 in order
to assign a floating point value to x.

attribute`a name or functional form denoting {\em any} useful
computational property.
For example, \spadatt{commutative("*")} asserts that 
"\spadfun{*} is commutative".
Also, \spadatt{finiteAggregate} is used to assert that
an aggregate has a finite number of immediate components.

basis`{\em (algebra)} \spad{S} is a basis of a module \spad{M} over a \spadgloss{ring} if
\spad{S} generates \spad{M}, and \spad{S} is linearly independent

block`{\em (syntax)}
a control structure where expressions are 
sequentially \spadglossSee{evaluated}{evaluation}.

body`a \spadgloss{function body} or \spadgloss{loop body}.

boolean`objects denoted by the \spadgloss{literals} \spad{true} and \spad{false};
elements of domain \spadtype{Boolean}.
See also \spadtype{Bits}.

built-in function`a \spadgloss{function} in the standard \Language{} 
library. Contrast \spadgloss{user function}.

cache`1. (noun) a mechanism for immediate retrieval of previously
computed data. For example, a function
which does a lengthy computation might store its
values in a \spadgloss{hash table} using argument as a key.
The hash table then serves as a cache for the function
(see also \spadsyscom{)set function cache}). 
Also, when \spadgloss{recurrence relations} which depend upon
n previous values are compiled,
the previous n values are normally cached
(use \spadsyscom{)set functions recurrence} to change this).
2. (verb) to save values in a cache.

capsule`the part of the \spadglossSee{body}{function body} 
of a \spadgloss{domain constructor} that defines the
functions implemented by the constructor.

case`{\em (syntax)} an operator used to conditionally evaluate 
code based on the branch of a \spadgloss{Union}.
For example, if value u is \spad{Union(Integer,"failed")},
the conditional expression \spad{if u case Integer then A else B}
evaluate \spad{A} if u is an integer and \spad{B} otherwise.

character`1. an element of a character set, as represented
by a keyboard key.
2. a component of a string. 
For example, the 0th element of the string \spad{"hello there"} is
the character {\em h}.


comment`textual remarks imbedded in code.
Comments are preceded by a double dash ({\em --}).
For \Language{} library code, stylized comments for on-line documentation 
are preceded by a two plus signs ({\em ++}).

compiler`a program that generates low-level code from a higher-level source
language. \Language{} has three compilers. A {\em graphics compiler} converts
graphical formulas to a compiled subroutine so that points
can be rapidly produced for graphics commands.
An {\em interpreter compiler} optionally compiles \spadgloss{user functions}
when first \spadglossSee{invoked}{invocation} (use \spadsyscom{)set functions compile} to turn
this feature on).
A {\em library compiler} compiles all constructors (not available in Release 1)

computational object`
In \Language{}, domains are objects.
This term is used to distinquish the objects which
are members of domains rather than domains themselves.

constructor`a \spadgloss{function} which creates a \spadgloss{category}, 
\spadgloss{domain}, or \spadgloss{package}.

continuation`
when a line of a program is so long that it must be broken into
several lines, then all but the first line are called {\em continuation lines}.
If such a line is given interactively, then each incomplete line must
end with an underscore.

conditional`a \spadgloss{control structure} of the form \spad{if A then B else C};
The \spadgloss{evaluation} of \spad{A} produces \spad{true} or 
\spad{false}. If \spad{true}, \spad{B} evaluates to produce a value;
otherwise \spad{C} evaluates to produce a value.
When the value is not used, \spad{else C} part can be omitted.

constant`{\em (syntax)} a reserved word used in \spadgloss{signatures} in
\Language{} programming language to signify 
that mark an operation always returns 
the same value. For example, the signature \spad{0: constant -> $} in
the source code of \spadtype{AbelianMonoid} tells the \Language{}
compiler that \spad{0} is a constant so that suitable optimizations
might be performed.

control structure`program structures 
which can specify a departure from normal sequential execution.
\Language{} has four kinds of control structures: 
\spadgloss{blocks}, \spadgloss{case} statements,
\spadgloss{conditionals}, and \spadgloss{loops}.

copying semantics`the programming language semantics used in
Pascal but {\em not} in \Language{}. See also \spadgloss{pointer semantics} 
for details.

data structure`a structure for storing data in the computer. Examples are
\spadgloss{lists} and \spadgloss{hash tables}.

datatype`equivalent to \spadgloss{domain} in \Language{}.

delimiter`a \spadgloss{character} which marks the beginning or end of some syntactically
correct unit in the language, e.g. \spadSyntax{"} for strings, blanks for 
identifiers.

documentation`
1. on-line or hard copy descriptions of \Language{};
2. text in library code preceded by {\em ++} comments as opposed to general
comments preceded by {\em --}.

empty`the unique value of objects with type \spadtype{Void}.

environment`a set of \spadgloss{bindings}.

evaluation`a systematic process which transforms an \spadgloss{expression} into
an object called the \spadgloss{value} of the expression.
Evaluation may produce \spadgloss{side effects}.

exit`{\em (reserved word)} an \spadgloss{operator} which forces an exit 
from the current block.
For example, the \spadgloss{block} \spad{(a := 1; if i > 0 then exit a; a := 2)}
will prematurely exit at the second statement with value 1 if the value of i is
greater than 0. See \spadgloss{=>} for an alternate syntax.

expose`
some constructors are {\em exposed}, others {\em unexposed}.
Exposed domains and packages are recognized 
by the interpreter.
Use \spadsys{)set expose} to control change what is exposed.
To see both exposed and unexposed constructors,
use \Browse{} with give the 
system command \spadsyscom{)set hyperdoc browse exposure on}.
Unexposed constructors will now appear prefixed by star(\spad{*}).

expression`1. any syntactically correct program fragment.
2. an element of domain \spadtype{Expression}

extend`see \spadgloss{category extension} or \spadgloss{domain extension}

field`{\em (algebra)}
a \spadgloss{domain} which is \spadgloss{ring} where every non-zero
element is invertible and where \spad{xy=yx};
a member of category \spadtype{Field}.
For a complete list of fields, click on {\em Domains} under {\em Cross Reference}
for \spadtype{Field}.

file`a program or collection of data stored on disk, tape or other
medium.

float`a floating-point number with user-specified precision;
an element of domain \spadtype{Float}.
Floats are \spadgloss{literals} which are written two ways: without an exponent
(e.g. \spad{3.1416}), or with an exponent
(e.g. \spad{3.12E-12}).
Use function \spadgloss{precision} to change the precision of
the mantissage (20 digits by default). See also \spadgloss{small float}.

formal parameter`(of a function) an identifier 
\spadglossSee{bound}{binding} to 
the value of an actual \spadgloss{argument} on \spadgloss{invocation}.
In the function definition \spad{f(x,y) == u}, for example,
x and y are the formal parameter.

frame`
the basic unit of an interactive session;
each frame has its own \spadgloss{step number}, \spadgloss{environment},
and \spadgloss{history}. In one interactive session, users can 
can create and drop frames, and have several active frames simultaneously.

function`
implementation of \spadgloss{operation}; it
takes zero or more \spadgloss{argument} parameters
and produces zero or more values.
Functions are objects which can be passed as parameters
to functions and can be returned as values of functions.
Functions can also create other functions (see also \spadtype{InputForm}).
See also \spadgloss{application} and \spadgloss{invocation}.

The terms {\em operation} and {\em function} are
distinct notions in \Language{}.
An operation is an abstraction of a function, described
by declaring a \spadgloss{signature}.
A function is created by providing an implementation of that
operation by some piece of \Language{} code.
Consider the example of defining
a user-function \spad{fact} to compute the \spadfun{factorial} of
a nonnegative integer. 
The \Language{} statement \spad{fact: Integer -> Integer}
describes the operation, whereas the
statement \spad{fact(n) = reduce(*,[1..n])}
defines the functions.
See also \spadgloss{generic function}.

function body`the part of a \spadgloss{function}'s definition which
is evaluated when the function is called at \spadgloss{run-time};
the part of the function definition to the right of the \spadSyntax{==}.

garbage collection`a system function that automatically recycles memory
cells from the \spadgloss{heap}.
\Language{} is built upon \spadgloss{Common LISP} which provides this
facility.

generic function`the use of one function to operate on
objects of different types;
One might regard \Language{} as supporting generic 
\spadgloss{operations} but not generic functions.
One operation
\spad{+: (D,D) -> D} exists
for adding elements in a ring; each ring however provides its own
type-specific function for implementing this operation.

Gaussian`a complex-valued expression, e.g. one with both a real and 
imaginary part;
a member of a \spadtype{Complex} domain.

Groebner basis`{\em (algebra)} a special basis for a polynomial ideal that allows a simple
test for membership. It is useful in solving systems of polynomial
equations.

group`{\em (algebra)} a monoid where every element has a multiplicative inverse.

history`a mechanism which records the results for an interactive 
computation.
Using the history facility, users
can save computations, review previous steps of a computation,
and restore a previous interactive session at some later time.
For details, issue the system command {\em )history ?} to the
interpreter.
See also \spadgloss{frame}.

ideal`{\em (algebra)} a subset of a ring that is closed under addition and 
multiplication by arbitrary ring elements, i.e. it's a module over the ring.

identifier`{\em (syntax)} an \Language{} name; 
a \spadgloss{literal} of type \spadtype{Symbol}.
An identifier begins with an alphabetical character or %
and may be followed by alphabetic characters, digits, ? or !.
Certain distinquished \spadgloss{reserved words} are not allowed as identifiers
but have special meaning in the \Language{}.

immutable`an object is immutable if it cannot be changed by an \spadgloss{operation};
not a \spadglossSee{mutable object}{mutable}.
Algebraic objects generally immutable:
changing an algebraic expression involves copying parts of
the original object.
One exception is a matrix object of type \spadtype{Matrix}.
Examples of mutable objects are data structures such as those of 
type \spadtype{List}.
See also \spadgloss{pointer semantics}.

index`1. a variable that counts the number of times a \spadgloss{loop} is repeated.  
2. the "address" of an element in a data structure (see also category \spadtype{LinearAggregate}).

instantiate`to build a \spadgloss{category}, \spadgloss{domain}, or \spadgloss{package}
at run-time

interactive`a system where the user interacts with the computer
step-by-step

integer`a \spadgloss{literal} object of domain \spadtype{Integer}, the class of
integers with an unbounded number of digits.
Integer literals consist of one or more consecutive digits (0-9)
with no embedded blanks.
Underscores can be used to separate digits in long integers if desirable.

interpreter`
the subsysystem of \Language{} responsible for handling user
input during an interactive session.
The following somewhat simplified description of the
typical action of the interpreter.
The interpreter 
parsers the user's input expression to
create an expression tree then does a 
bottom-up traversal of the tree.
Each subtree encountered which is not a value consists of a root node
denoting an operation name and one or more leaf nodes denoting 
\spadgloss{operands}.
The interpreter resolves type mismatches and
uses type-inferencing and a library database
to determine appropriate types of the operands and
the result, and an operation to be performed.
The interpreter then builds
a domain to perform the indicated operation, then
invokes a function from the domain to compute a value.
The subtree is then replaced by that value and the process
continues.
Once the entire tree has been processed, the value
replacing the top node of the tree is displayed
back to the user as the value of the expression.

iteration`
repeated evaluation of an expression or a sequence of expressions.
Iterations use the reserved words
\spadSyntax{for}, \spadSyntax{while}, and \spadSyntax{repeat}.

Join`a primitive \Language{} function taking two or more categories
as arguments and producing a category containing all of the
operations and attributes from the respective categories.

library`
In \Language{}, a
coolection of compiled modules
respresenting the
a \spadgloss{category} or \spadgloss{domain} constructor.

list`an object of a \spadtype{List} domain.

loop`1. an expression containing a \spadSyntax{repeat}
2. a collection expression having a \spadSyntax{for} or a \spadSyntax{while},
e.g. \spad{[f(i) for i in S]}.

loop body`the part of a loop following the \spadSyntax{repeat} that
tells what to do each iteration.
For example, the body of the loop \spad{for x in S repeat B} is B. 
For a collection expression, the body of the loop precedes the
initial \spadSyntax{for} or \spadSyntax{while}.

literal`an object with a special syntax in the language.
In \Language{}, there are five types of literals:
\spadgloss{booleans},
\spadgloss{integers},
\spadgloss{floats},
\spadgloss{strings},
and \spadgloss{symbols}.

mode`a type expression containing a question-mark ({\em ?}).
For example, the mode {\em P ?} designates 
{\em the class of all polynomials over an arbitrary ring}.

mutable`
objects which contain \spadgloss{pointers} to other objects and which have 
operations defined on them which
alter these pointers. Contrast \spadgloss{immutable}.
\Language{} uses \spadgloss{pointer semantics} as does \spadgloss{LISP}
in contrast with many other languages such as Pascal which use
\spadgloss{copying semantics}.
See \spadgloss{pointer semantics} for details.

name`
1. a \spadgloss{symbol} denoting a \spadgloss{variable}, 
i.e. the variable \spad{x}.
2. a \spadgloss{symbol} denoting an \spadgloss{operation},
i.e. the operation \spad{divide: (Integer,Integer) -> Integer}.

nullary`a function with no arguments, e.g. \spadfun{characteristic}.
 
quote`the prefix \spadgloss{operator} \spadSyntax{'} meaning 
{\em do not evaluate}.

Object`a category with no operations or attributes, from which
most categories in \Language{} are \spadglossSee{extensions}{category extension}.

object`a data entity created or manipulated by programs.
Elements of domains, functions, and domains themselves
are objects. Whereas categories are created by functions,
they cannot be dynamically manipulated in the current system and
are thus not considered as objects.
The most basic objects are \spadgloss{literals}; all other
objects must be created \spadgloss{functions}.
Objects can refer to other objects using \spadgloss{pointers}.
\Language{} language uses \spadgloss{pointer semantics} when dealing
with \spadgloss{mutable} objects.

object code`code which can be directly executed by hardware;
also known as {\em machine language}.

operand`an argument of an \spadgloss{operator}
(regarding an operator as a \spadgloss{function}).

operation`
an abstraction of a \spadgloss{function},
described by a \spadgloss{signature}. 
For example,
\center{\spad{fact: NonNegativeInteger -> NonNegativeInteger}}
describes an operation for "the factorial of a
(non-negative) integer".

operator`special reserved words in the language such as \spadop{+} and 
\spadop{*}; operators can be either \spadgloss{prefix}
or \spadgloss{infix} and have a relative \spadgloss{precedence}.

overloading`the use of the same name to denote
distinct functions;
a function is identified by a \spadgloss{signature} identifying its
name, the number and types of its arguments, and its return types.
If two functions can have identical signatures,
a \spadgloss{package call} must be made to distinquish the two.

package call`{\em (syntax)} an expression of the form \spad{f(x,y)$D} used to identify
that the function f is to be one from D.

package`
a domain whose exported operations depend solely
on the parameters and other explicit domains, e.g.
a package for solving systems of equations of polynomials over
any field, e.g. floats, rational numbers, complex rational functions,
or power series. 
Facilities for integration, differential equations,
solution of linear or polynomial equations, and group theory
are provided by "packages".

Technically, a package is a domain 
which has no \spadgloss{signature} containing 
the symbol $. While domains intuitively 
provide computational objects you can compute with,
packages intuitively provide 
functions (\spadgloss{polymorphic} functions) which will work
over a variety of datatypes. 

package constructor`same as \spadgloss{domain constructor}.

package call`{\em (syntax)} an expression of the form \spad{e $ D}
where \spad{e} is an \spadgloss{application} and \spad{D}
denotes some \spadgloss{package} (or \spadgloss{domain}).

parameter`see \spadgloss{argument}

pile`alternate syntax for a block, using indentation and column alignment
(see also \spadgloss{block}).

parameterized datatype`a domain that is built on another, for example,
polynomials with integer coefficients.

partially ordered set`a set with a reflexive, transitive and antisymetric
\spadgloss{binary} operation.

parse`1. (verb) to produce an internal representation 
of a user input string;
the resultant internal representation is then "interpreted"
by \Language{} to perform some indicated action.

parameterized form`a expression of the form \spad{f(x,y)},
an \spadgloss{application} of a function.

postfix`an \spadgloss{operator} that follows its single \spadgloss{operand}.
Postfix operators are not available in \Language{}.

pointer`a reference implemented by a link directed from one object to another 
in the computer memory.
An object is said to {\em refer} to another if it has a pointer to
that other object.
Objects can also refer to themselves (cyclic references are legal).
Also more than one object can refer to the same object.
See also \spadgloss{pointer semantics}.

reference`see \spadgloss{pointer}

pointer semantics`the programming language semantics used in
languages such as LISP which allow objects to be \spadgloss{mutable}.

Consider the following sequence of \Language{} statements:\begin{items}
\item \spad{x : Vector Integer := [1,4,7]}
\item \spad{y := x}
\item \spad{swap!(x,2,3)}    
\end{items}
The function \spadfunFrom{swap!}{Vector} is used to interchange the
2nd and 3rd value in the list x producing the value \spad{[1,7,4]}.
What value does y have after evaluation of the third statement?
The answer is different in \Language{} than it is in a language
with \spadgloss{copying semantics}.

In \Language{}, first the vector [1,2,3] is created and the variable
x set to \spadglossSee{point}{pointer} to this object. Let's call this object V.
Now V refers to its \spadgloss{immutable} components 1,2, and 3.
Next, the variable y is made to point to V just as x does.
Now the third statement interchanges the last 2 elements of V
(the {\em !} at the end of the name \spadfunFrom{swap!}{Vector} tells 
you that this operation is destructive, that is, it changes
the elements {\em in place}). Both x and y perceive this change to V.
Thus both x and y then have the value \spad{[1,7,4]}. 

In Pascal, the second statement causes a copy of V to be stored
under y. Thus the change to V made by the third statement does
not affect y.

precision`the number of digits in the specification of a number, e.g.
as set by \spadfunFrom{precision}{Float}.

predicate`
1. a Boolean valued function, e.g. \spad{odd: Integer -> Boolean}.
2. an Boolean valued expression 

Rep`a special identifier
used as \spadgloss{local variable} of a domain constructor body
to denote the representation domain for
objects of a domain.

recurrence relation`
A relation which can be expressed
as a function f with some argument n
which depends on the value of f at k previous values.
In many cases, \Language{} will rewrite a recurrence relation
on compilation so as to \spadgloss{cache} its previous k values
and therefore make the computation significantly more efficient.

recursive`
1. A function that calls itself, either directly or indirectly
through another function.
2. self-referential. See also \spadgloss{recursive}.

recursion`use of a self-reference within the body of a function. Indirect
recursion is when a function uses a function below it in the call chain.

reserved word`a special sequence of non-blank characters with
special meaning in the \Language{} language.
Examples of reserved words are names such as
\spadSyntax{for}, \spadSyntax{if}, and \spadSyntax{free}, operator
names such as \spadSyntax{+} and \spad{mod},
special character strings such as spadSyntax{==} and spadSyntax{:=}.

retraction`to move an object in a parameterized domain back to the
underlying domain, 
for example to move the object \spad{7} from a "fraction of integers"
(domain \spadtype{Fraction Integer})
to "the integers" (domain \spadtype{Integer}).

return`when leaving a function, the value of the expression following
\spadSyntax{return} becomes the value of the function.

ring`a set with a commutative addition, associative multiplication, a unit
element, and multiplication distributes over addition and subtraction.

run-time check`an error-checking which can be done only when the program
receives user input; for example, confirming that a value is in the proper
range for a computation.


semantics`the relationships between symbols and their meanings. The rules
for obtaining the {\em meaning} of any syntactically valid expression.

semigroup`{\em (algebra)} a \spadgloss{monoid} which need not have an identity; it is closed and
associative.

side effect`
action which changes a component or structure of a value.
See \spadgloss{destructive operation} for details.

destructive operation`
An operation which changes a component or structure of a value.
In \Language{}, all destructive operations have
names which end with an exclamation mark ({\em !}).
For example, domain \spadtype{List} has two operations to reverse
the elements of a list, one named \spadfunFrom{reverse}{List}
which returns a copy of the original list with the elements
reversed, another named
\spadfunFrom{reverse!}{List} which reverses the elements {\em in place}
thus destructively changing the original list.

signature`{\em (syntax)} an expression describing an \spadgloss{operation}.
A signature has the form
as \spad{name : source -> target}, where
\spad{source} gives the type of the arguments of the operation,
and \spad{target} gives the type of the result.

small float`the domain for hardware floating point arithmetic 
as provided by the computer hardware.

small integer`the domain for hardware integer arithmetic.
as provided by the computer hardware.

source`the \spadgloss{type} of the argument of a \spadgloss{function};
the type expression before the \spad{->} in a \spadgloss{signature}.
For example, the source of \spad{f : (Integer,Integer) -> Integer}
is \spad{(Integer,Integer)}.

target`the \spadgloss{type} of the result of a \spadgloss{function};
the type expression following the \spad{->} in a \spadgloss{signature}.

sparse`data structure whose elements are mostly identical (a sparse matrix
is one filled with mostly zeroes).

step number`the number which precedes user input lines in an
interactive session; the output of user results is also labeled by this number.

stream`an object of \spadtype{Stream(R)}, a generalization of a \spadgloss{list} to allow 
an infinite number of elements.
Elements of a stream are computed "on demand".
Strings are used to implement various forms of power series (\ignore{???}).

string`an object of domain \spadtype{String}.
Strings are \spadgloss{literals} consisting of
an arbitrary sequence of \spadgloss{characters} surrounded by
double-quotes (\spadSyntax{"}), 
e.g. \spad{"Look here!"}.

such that clause`the use of \spadSyntax{|} followed by an expression to filter
an iteration.

syntax`rules of grammar, punctuation etc. for forming correct expressions.

symbol`objects denoted by \spadgloss{identifier} \spadgloss{literals};
an element of domain \spadtype{Symbol}.
The interpreter defaultly converts a symbol x into \spadtype{Variable(x)}.

system commands`top-level \Language{} statements that begin with 
{\em )}. System commands allow users to query the database, 
read files, trace functions, and so on.

top-level`
refers to direct user interactions with the \Language{} interpreter.

totally ordered set`{\em (algebra)} a partially ordered set where any two elements are
comparable.

trace`use of system function \spadsys{)trace} to
track the arguments passed to a function and the values returned.

tuple`an expression of two or more other expressions separated by commas,
e.g. \spad{4,7,11}. 
Tuples are also used for multiple arguments 
both for \spadgloss{applications} (e.g. \spad{f(x,y)}) 
and in \spadgloss{signatures} (e.g. \spad{(Integer,Integer) -> Integer}).
A tuple is not a data structure,
rather a syntax mechanism for grouping expressions.

type checking`a system function which determines whether the datatype of an
object is appropriate for a given operation.

type inference`when the interpreter chooses the type for an object based on
context. 
For example, if the user interactively issues the 
definition \center{\spad{f(x) == (x + %i)**2}}
then issues \spad{f(2)}, the interpreter will infer
the type of f to be \spad{Integer -> Complex Integer}.

underlying domain`for a \spadgloss{domain} that has a single
domain-valued parameter, the {\em underlying domain} refers to that
parameter. 
For example, the domain "matrices of integers" (\spadtype{Matrix Integer})
has underlying domain \spadtype{Integer}.




unit`{\em (algebra)} an invertible element. 

user function`a function defined by a user during an interactive session.
Contrast \spadgloss{built-in function}.

value`
1. the result of \spadglossSee{evaluating}{evaluation} an expression.
2. a property associated with a \spadgloss{variable} in a \spadgloss{binding}
in an \spadgloss{environment}.

user variable`a variable created by the user at top-level during an interactive
session

Void`the type given when the \spadgloss{value} and \spadgloss{type}
of an expression are not needed.  Also used when there is no guarantee
at run-time that a value and predictable mode will result.

workspace`an interactive record of the user input and output held in an
interactive history file.
Each user input and corresponding output expression in the
workspace has a corresponding \spadgloss{step number}.
The current output expression in the workspace is referred
to as \spad{\%}.
The output expression associated with 
step number n is referred to by \spad{\%\%(n)}.
The k-th previous output expression relative to the current step number n
is referred to by \spad{\%\%(- k)}.
Each interactive \spadgloss{frame} has its own workspace.

dot notation`using an infix dot ({\em .}) for function application.  If u is
the list \spad{[7,4,-11]} then both \spad{u(2)} and \spad{u.2} return 4.
Dot notation nests to left. Thus \spad{f . g . h} is equivalent to
\spad{(f . g) . h}.

domain`{\em (basic concept)}
a domain corresponds to the usual notion of abstract datatypes: that of
a set of values and a set of "exported operations" for
the creation and manipulation of these values.
Datatypes are parameterized, dynamically constructed, and can combine
with others in any meaningful way, e.g. 
"lists of floats" (\spadtype{List Float}),
"fractions of polynomials with integer coefficients" 
(\spadtype{Fraction Polynomial Integer}),
"matrices of infinite \spadgloss{streams} of cardinal numbers"
(\spadtype{Matrix Stream CardinalNumber}).

The term {\em domain} is actually 
abbreviates {\em domain of computation}.
Technically, a domain denotes a class of objects,
a class of \spadgloss{operations} for creating and other manipulating
these objects, and a class of \spadgloss{attributes} describing
computationally useful properties.
Domains also provide \spadgloss{functions} for each operation often 
in terms of some \spadgloss{representation} for the objects.
A domain itself is an \spadgloss{object} 
created by a \spadgloss{function} called a \spadgloss{domain constructor}.

domain constructor`a function that creates domains,
described by an abstract datatype in the \Language{} programming language.
Simple domains like \spadtype{Integer} and \spadtype{Boolean}
are created by domain constructors with no arguments.
Most domain constructors take
one or more parameters, one usually denoting an
\spadgloss{underlying domain}. 
For example, the domain \spadtype{Matrix(R)} denotes
"matrices over R". 
Domains {\em Mapping}, {\em Record}, and {\em Union} are
primitive domains.
All other domains are written in the \Language{} programming language
and can be modified by users with access to the library source code.

domain extension`a domain constructor \spad{A} is said to 
{\em extend} a domain constructor \spad{B} if \spad{A}'s
definition has the form \spad{A == B add ...}.
This intuitively means "functions 
not defined by \spad{A} are assumed to come from \spad{B}".
Successive domain extensions form \spadgloss{add-chains} affecting the
the \spadglossSee{search order}{lineage} for functions not implemented
directly by the domain during \spadgloss{dynamic lookup}.

add-chain`a hierarchy formed by \spadgloss{domain extensions}.
If domain \spad{A} extends domain \spad{B} and 
domain \spad{B} extends domain \spad{C},
then \spad{A} has {\em add-chain} \spad{B}-\spad{C}.

category hierarchy`hierarchy formed by category extensions.
The root category is \spadtype{Object}. 
A category can be defined as a \spadgloss{Join} of two or more categories so
as to have multiple \spadgloss{parents}. Categories may also have parameterized so as
to allow conditional inheritance.

default package`a optional \spadgloss{package} of \spadgloss{functions} 
associated with a category. Such functions are necessarily defined in terms
over other functions exported by the category.

category`{\em (basic concept)}
second-order types which serve to
define useful "classification worlds" for domains, such as
algebraic constructs (e.g. groups, rings, fields), and
data structures (e.g. homogeneous aggregates, collections, dictionaries).
Examples of categories are 
\spadtype{Ring} ("the class of all rings") and
\spadtype{Aggregate} ("the class of all aggregates").
The categories of a given world are arranged in a hierarchy
(formally, a directed acyclic
graph). Each category inherits the properties of all its ancestors.
Thus, for example, the category of ordered rings (\spadtype{OrderedRing})
inherits the properties of the category of rings (\spadtype{Ring}) 
and those of the ordered sets (\spadtype{OrderedSet}).
Categories provide a database of algebraic knowledge and
ensure mathematical correctness, e.g. that
"matrices of polynomials" is correct but
"polynomials of hash tables" is not, that the multiply operation
for "polynomials of continued fractions" is commutative,
but that for "matrices of power series" is not.
optionally provide "default definitions" for operations they export.

Categories are defined in \Language{}
by functions called \spadgloss{category constructors}.
Technically, a category designates a class of domains with common
\spadgloss{operations} and \spadgloss{attributes} but usually with
different \spadgloss{functions} and \spadgloss{representations} for its
constituent \spadgloss{objects}. 
Categories are always defined using the \Language{} library language
(see also \spadgloss{category extension}). See also file {\em catdef.spad} for 
definitions of basic algebraic categories in \Language{}.

Category`the distinguished object denoting the type of a category; the
class of all categories.

category constructor`a function that creates categories,
described by an abstract datatype in the \Language{} programming language. 
For example, the
category constructor \spadtype{Module} is a function which takes a domain
parameter \spad{R} and creates the category "modules over \spad{R}".

category extension`created by a category definition, an expression
usually of the form \spad{A == B with ...}.
In English, this means "category A is a B with the new operations
and attributes as given by ... .
See, for example, file {\em catdef.spad} for a definitions of the
algebra categories in \Language{}, {\em aggcat.spad} for data structure
categories. 

coercion`an automatic transformation of an object of one \spadgloss{type}
to an object of a similar or desired target type.
In the interpreter, coercions and
\spadgloss{retractions} are done automatically by the interpreter
when a type mismatch occurs.
Compare \spadgloss{conversion}.

conversion`the transformation of an object on one \spadgloss{type}
to one of another type.
Conversions performed automatically are called \spadgloss{coercions}.
These happen when the interpreter has a type mismatch and
a similar or declared target type is needed.
In general, the user must use the infix operation \spadSyntax{::}
to cause this transformation.

polymorphic`
a \spadgloss{function} parameterized by one or more \spadgloss{domains};
a \spadgloss{algorithm} defined \spadglossSee{categorically}{category}.
Every function defined in a domain or package constructor
with a domain-valued parameter is polymorphic.
For example, the same matrix \spadSyntax{*} function is used to multiply
"matrices over integers" as "matrices over matrices over integers"
Likewise, various \ignore{???} in \ignore{???} solves polynomial equations
over any \spadgloss{field}.

representation`
a \spadgloss{domain} providing a data structure 
for elements of a domain;
generally denoted by the special identifier \spadgloss{Rep}
in the \Language{} programming language.
As domains are \spadgloss{abstract datatypes}, this
representation is not available to users of the domain,
only to functions defined in the \spadgloss{function body}
for a domain constructor.
Any domain can be used as a representation.

type constructor`a \spadgloss{domain constructor} or \spadgloss{category constructor}.

search string`a string entered into an \spadgloss{input area} on a
\HyperName{} screen

input area`a rectangular area on a \HyperName{} screen into which users can
enter text.

wild card`a symbol which matches any substring including the empty string;
for example, the search string {\em *an*} matches 
an word containing the consecutive letters {\em a} and {\em n}

ancestor`(of a domain) 
a category which is a \spadgloss{parent} of the domain, or
a \spadgloss{parent} of a \spadgloss{parent}, and so on.

parent`(of a domain)
a category which is explicitly declared in the source
code definition for the domain to be an \spadgloss{export} of the domain.

benefactor`(of a given domain)
a domain or package that the given domain explicitly references
(for example, calls functions from)
in its implementation 

client`(of a given domain)
any domain or package that explicitly calls functions from the given domain

default definition`
a function defined by a \spadgloss{category}.
Such definitions appear category definitions 
of the form \spad{C: Category == T add I} in 
an optional implmentation part \spad{I} to the right of the
keyword \spad{add}.

aggregate`a data structure designed to hold multiple values.
Examples of aggregates are \spadtype{List}, 
\spadtype{Set}, \spadtype{Matrix} and \spadtype{Bits}.

hash table`
A data structure that efficiency maps a given object to another.
A hash table consists of a set of {\em entries},
each of which associates a {\em key} with a {\em value}.
Finding the object stored under a key can be very fast even if 
there are a large number of entries since keys are {\em hashed}
into numerical codes for fast lookup.


dynamic`that which is done at \spadgloss{run-time} 
as opposed to \spadgloss{compile-time}.
For example, the interpreter will build the domain
"matrices over integers" dynamically in response to user input.
However, the compilation of all functions for matrices and integers
is done during \spadgloss{compile-time}.
Constrast \spadgloss{static}.

run-time`the time of doing a computation.
Contrast \spadgloss{compile-time}.
rather than prior to it; \spadgloss{dynamic} as opposed to \spadgloss{static}.
For example, the decision of the intepreter to build 
a structure such as "matrices with power
series entries" in response to user input is made 
at run-time.

compile-time`the time when category or domain constructors are
compiled. Contrast \spadgloss{run-time}.

static`that computation done before run-time,
such as compilation. 
Contrast \spadgloss{dynamic}.

variable`a means of 
referring to an object but itself 
{\bf not} an object.
A variable has a name and an associated \spadgloss{binding}
created by \spadgloss{evaluation} of \Language{} expressions
such as \spadgloss{declarations}, \spadgloss{assignments}, and \spadgloss{definitions}.
In the top-level \spadgloss{environment} of the interpreter,
variables are \spadgloss{global variables}. 
Such variables can be freely referenced
in user-defined functions although a \spadgloss{free} declaration
is needed to assign values to them.
See \spadgloss{local variable} for details.

local variable`(of a function) a variable \spadglossSee{bound}{binding} 
by that function and such that its binding
is invisible to any function that function calls.
Also called a {\em lexical} variable.
By default in the interpreter:\begin{items}
\item 1. any variable x which appears on the
left hand side of an assignment is regarded 
a local variable of that function.
If the intention of an assignment
is to change the value of a \spadgloss{global variable} x,
the body of the function must then contain the statement \spad{free x}.
\item 2. any other variable is regarded as a \spadgloss{free variable}.
\end{items}
An optional declaration \spad{local x} is available to
explicitly declare a variable to be a local variable.
All \spadgloss{formal parameters} to the function can be
regarded as local variables to the function.

local`{\em (syntax)} A keyword used in user-defined functions to declare
that a variable is a \spadgloss{local variable} of that function.
Because of default assumptions on variables, such a 
declaration is not necessary but is available to the user for clarity
when appropriate.

free`{\em (syntax)} A keyword used in user-defined functions to declare
that a variable is a \spadgloss{free variable} of that function.
For example, the statement \spad{free x} declares
the variable x within the body of a function f
to be a free variable in f.
Without such a declaration, any variable x which appears on the 
left hand side of an assignment is regarded as
a \spadgloss{local variable} of that function.
If the intention of the assignment 
is to give an value to a \spadgloss{global variable} x,
the body of that function must contain the statement \spad{free x}.

free variable`(of a function) a variable which appears in a 
body of a function but is not \spadglossSee{bound}{binding} by that function.
See \spadgloss{local variable} by default.

binding`the association of a variable with properties such as \spadgloss{value} and
\spadgloss{type}.
The top-level \spadgloss{environment} in the interpreter
consists of bindings for all user variables and functions.
Every \spadgloss{function} has an associated set of bindings,
one for each formal \spadgloss{argument} and \spadgloss{local variable}.

global variable`A variable which can be 
referenced freely by functions.
In \Language{}, all top-level user-defined variables 
defined during an interactive user session are global variables.
\Language{} does not allow {\em fluid variables},
that is, variables \spadglossSee{bound}{binding} by functions which can be
referenced by functions those functions call.

precedence`{\em (syntax)}
refers to the so-called {\em binding power} of an operator.
For example, \spad{*} has higher binding power than \spad{+}
so that the expression \spad{a + b * c} is equivalent
to \spad{a + (b * c)}.

suffix`{\em (syntax)} an \spadgloss{operator} which placed after
its operand. 
Suffix operators are not allowed in the \Language{} language.

invocation`(of a function) the run-time process involved
in \spadglossSee{evaluating}{evaluation} a
a \spadgloss{function} \spadgloss{application}.
This process has two steps.
First, a local \spadgloss{environment} is created where 
\spadgloss{formal arguments} are locally \spadglossSee{bound}{binding}
by \spadgloss{assignment} to their respective 
actual \spadgloss{argument}.
Second, the \spadgloss{function body} is evaluated in that local
environment.
The evaluation of a function is terminated either by completely
evaluating the function body or by the evaluation of a
\spadSyntax{return} expression.

LISP`
acronymn for List Processing Language, 
a language designed for the
manipulation of nonnumerical data.
The \Language{} library is translated into LISP then
compiled into machine code by an underlying LISP.

Common LISP`
A version of \spadgloss{LISP} adopted as an informal standard by
major users and suppliers of LISP

AKCL`
Austin Kyoto Common LISP, a version of \spadgloss{KCL} produced by William 
Schelter, Austin, Texas.

KCL`Kyoto Common LISP, a version of \spadgloss{Common LISP}
which features compilation of the compilation of LISP into the 
C Programming Language

dynamic lookup`In \Language{}, a \spadgloss{domain} may or may
not explicitly provide \spadgloss{function} definitions for all of its exported
\spadgloss{operations}. These definitions may instead come from
domains in the \spadgloss{add-chain} or from \spadgloss{default packages}.
When a \spadglossSee{function call}{application} 
is made for an operation in the domain,
up to five steps are carried out.\begin{items}
\item (1) If the domain itself implements a function for the operation,
that function is returned.
\item (2) Each of the domains in the \spadgloss{add-chain} are 
searched for one which
implements the function; if found, the function is returned.
\item (3) Each of the \spadgloss{default packages} for the domain are 
searched in order of the \spadgloss{lineage}. 
If any of the default packages implements the function, the first
one found is returned.
\item (4) Each of the \spadgloss{default packages} for
each of the domains in the \spadgloss{add-chain} are searched in the order
of their \spadgloss{lineage}.
If any of the default packages implements the function, the first
one found is returned.
\item (5) If all of the above steps fail, an error message is reported.
\end{items}

lineage`the sequence of \spadgloss{default packages}
for a given domain to be searched during \spadgloss{dynamic lookup}.
This sequence is computed first by ordering the category
\spadgloss{ancestors} of the domain according to their
{\em level number}, an integer equal to
to the minimum distance of the domain from the category.
Parents have level 1, parents of parents have level 2, and so on.
Among categories with equal level numbers, ones which appear in the
left-most branches of {\em Join}s in the source code come first.
See also \spadgloss{dynamic lookup}.

infix`
{\em (syntax)} an \spadgloss{operator} placed between two \spadgloss{operands};
also called a {\em binary operator}, e.g. \spad{a + b}.
An infix operator may also be
used as a \spadgloss{prefix}, e.g.
\spad{+(a,b)} is also permissable in the \Language{} language.
Infix operators have a relative \spadgloss{precedence}.

prefix`
{\em (syntax)} an \spadgloss{operator} such as \spad{-} and \spad{not} that is written
{\em before} its single \spadgloss{operand}.
Every function of one argument can be used as a prefix operator.
For example, all of the following have equivalent meaning in \Language{}:
\spad{f(x)}, \spad{f x}, and \spad{f.x}.
See also \spadgloss{dot notation}.

unary`operation or function with \spadgloss{arity} 1

binary`operation or function with \spadgloss{arity} 2

nullary`operation or function with \spadgloss{arity} 0

arity`1. (function) the number of arguments.
2. (operator or operation) corresponds to the arity
of a function implementing the operator or operation.

declaration`
{\em (syntax)}
an expression of the form \spad{x : T} where T is some \spad{type}.
A declaration forces all values \spadglossSee{assigned}{assignment} to T 
to be of that type. 
If a value is of a different type, 
the interpreter will try to \spadglossSee{coerce}{coercion} the value to type T.
Declarations are necessary 
in case of ambiguity or when a user wants to introduce an
an \spadglossSee{unexposed}{expose} domain.

type`
The type of any \spadgloss{subdomain} is the
unique symbol {\em Category}.
The type of a \spadgloss{domain} is any \spadgloss{category} that
domain belongs to.
The type of any other object is either the (unique) domain that object 
belongs to or any \spadgloss{subdomain} of that domain.
The type of objects is in general not unique.

subdomain`{\em (basic concept)} a \spadgloss{domain} together with a \spadgloss{predicate}
characterizing which
members of the domain belong to the subdomain.
The exports of a subdomain are usually distinct from the domain itself.
A fundamental assumption however is that values in the subdomain
are automatically \spadglossSee{coerceable}{coercion} to values in the domain.
For example, if n and m are declared to be members of a subdomain
of the integers, then {\em any} \spadgloss{binary} operation from \spadtype{Integer}
is available on n and m.
On the other hand, if the result of that operation is
to be assigned to, say, k, also declared to be of that subdomain,
a \spadgloss{run-time} check is generally necessary to ensure that
the result belongs to the subdomain.

export`\spadgloss{explicit export} or \spadgloss{implicit export} of 
a domain or category

explicit export`
1. (of a domain D) any 
\spadgloss{attribute}, \spadgloss{operation}, or \spadgloss{category}
explicitly mentioned in the \spadgloss{type}
specification part T for the domain constructor definition
\spad{D: T == I}
2. (of a category C) any
\spadgloss{attribute}, \spadgloss{operation}, or \spadgloss{category}
explicitly mentioned in the \spadgloss{type}
specification part T for the domain constructor definition
\spad{C: \spadgloss{Category} == T}

implicit export`(of a domain or category)
any \spadgloss{attribute} or \spadgloss{operation}
which is either an explicit export or else
an explicit export of some category which an explicit category export 
\spadglossSee{extends}{category extension}.

parse`the transformation of a user input string
representing a valid \Language{} expression
into an internal representation as a tree-structure.

Record`(basic domain constructor)
a domain constructor used to create a
inhomogeneous aggregate composed of pairs of 
"selectors" and \spadgloss{values}.
A Record domain is written in the form
\spad{Record(a1:D1,...,an:Dn)} (n > 0) where
\spad{a1},...,\spad{an} are identifiers called the {\em selectors} of
the record, and \spad{D1},...,\spad{Dn} are domains
indicating the type of the component stored under selector \spad{an}.

selector`an identifier used to address a component value of a gloss{Record}
datatype.

Union`(basic domain constructor)
a domain constructor used to 
combine any set of domains into a single domain.
A Union domain is written in the form
\spad{Union(a1:D1,...,an:Dn)} (n > 0) where
\spad{a1},...,\spad{an} are identifiers called the {\em tags} of
the union, and \spad{D1},...,\spad{Dn} are domains 
called the {\em branches} of the union. 
The tags \spad{ai} are optional, but required when
two of the \spad{Di} are equal, e.g.
\spad{Union(inches:Integer,centimeters:Integer)}.
In the interpreter, values of union domains are automatically coerced
to values in the branches and vice-versa as appropriate.
See also \spadgloss{case}.

tag`an identifier used to discriminate a branch of a \spadgloss{Union} type.

macro`{\em (syntax)}
1. An expression of the form \spad{macro a == b} where \spad{a}
is a \spadgloss{symbol} causes \spad{a} to be textually replaced
by the expression b at \spadgloss{parse} time.
2. An expression of the form \spad{macro f(a) == b} defines a parameterized
macro expansion for a parameterized form f
This macro causes a form f(x) to be textually replaced by
the expression c at parse time, where
c is the expression obtained by replacing \spad{a} by x everywhere in b. 
See also \spadgloss{definition} where a similar substitution
is done during \spadgloss{evaluation}.

definition`{\em (syntax)}
1. An expression of the form \spad{f(a) == b} defining function f 
with \spadgloss{formal arguments} \spad{a} and \spadgloss{body} b;
equivalent to the statement \spad{f == (a) +-> b}.
2. An expression of the form \spad{a == b} where \spad{a}
is a \spadgloss{symbol}, equivalent to 
\spad{a() == b}.
See also \spadgloss{macro} where a similar substitution
is done at \spadgloss{parse} time.

pattern match`
1. (on expressions) Given a expression called a "subject" u,
the attempt to rewrite u using a set of "rewrite rules".
Each rule has the
form \spad{A == B} where \spad{A} indicates a expression called
a "pattern" and \spad{B} denotes a "replacement".
The meaning of this rule is "replace \spad{A} by B".
If a given pattern \spad{A} matches a subexpression of u,
that subexpression is replaced by \spad{B}.
Once rewritten, 
pattern matching continues until no further changes occur.
2. (on strings) the attempt to match a string indicating a "pattern"
to another string called a "subject", for example, for the purpose
of identifying a list of names.
In \Browse{}, users may enter \spadgloss{search strings} for the
purpose of identifying constructors, operations, and attributes.

rule`{\em (syntax)}
1. An expression of the form \spad{rule A == B}
indicating a "rewrite rule".
2. An expression of the form \spad{rule (R1;...;Rn)}
indicating a set of "rewrite rules" R1,...,Rn.
See \spadgloss{pattern matching} for details.

garbage collector`
a mechanism for reclaiming storage in the \spadgloss{heap}.

heap`an area of storage used by data in programs.
For example, AXIOM will use the heap to hold the partial results
of symbolic computations. When cancellations occur, these results
remain in the heap until \spadglossSee{garbage collected}{garbage collector}.