This file is indexed.

/usr/share/axiom-20140801/input/ecfact.as is in axiom-test 20140801-11.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include "axiom.as"
#pile

--% Elliptic curve method for integer factorization
--  This file implements Lenstra's algorithm for integer factorization.
--  A divisor of N is found by computing a large multiple of a rational
--  point on a randomly generated elliptic curve in P2 Z/NZ.
--  The Hessian model is used for the curve (1) to simplify the selection
--  of the initial point on the random curve and (2) to minimize the
--  cost of adding points.
--  Ref:  IBM RC 11262, DV Chudnovsky & GV Chudnovsky
--  SMW Sept 86.

--% EllipticCurveRationalPoints
--)abbrev domain ECPTS EllipticCurveRationalPoints

EllipticCurveRationalPoints(x0:Integer, y0:Integer, z0:Integer, n:Integer): ECcat == ECdef where
    Point   ==> Record(x: Integer, y: Integer, z: Integer)

    ECcat ==> AbelianGroup with
        double: %  -> %
        p0:     %
        HessianCoordinates: % -> Point

    ECdef ==> add
        Rep == Point
        import from Rep
        import from List Integer

        Ex == OutputForm

        default u, v:  %

        apply(u:%,x:'x'):Integer == rep(u).x
        apply(u:%,y:'y'):Integer == rep(u).y
        apply(u:%,z:'z'):Integer == rep(u).z
        import from 'x'
        import from 'y'
        import from 'z'

        coerce(u:%): Ex        == [u.x, u.y, u.z]$List(Integer) :: Ex
        p0:%                   == per [x0 rem n, y0 rem n, z0 rem n]
        HessianCoordinates(u:%):Point  == rep u

        0:%   ==
            per [1, (-1) rem n, 0]
        -(u:%):%  ==
            per [u.y, u.x, u.z]
        (u:%) = (v:%):Boolean ==
            XuZv := u.x * v.z
            XvZu := v.x * u.z
            YuZv := u.y * v.z
            YvZu := v.y * u.z
            (XuZv-XvZu) rem n = 0 and (YuZv-YvZu) rem n = 0
        (u:%) + (v:%): % ==
            XuZv := u.x * v.z
            XvZu := v.x * u.z
            YuZv := u.y * v.z
            YvZu := v.y * u.z
            (XuZv-XvZu) rem n = 0 and (YuZv-YvZu) rem n = 0 => double u
            XuYv := u.x * v.y
            XvYu := v.x * u.y
            Xw := XuZv*XuYv - XvZu*XvYu
            Yw := YuZv*XvYu - YvZu*XuYv
            Zw := XvZu*YvZu - XuZv*YuZv
            per [Yw rem n, Xw rem n, Zw rem n]
        double(u:%): % ==
            import from PositiveInteger
            X3 := u.x**(3@PositiveInteger)
            Y3 := u.y**(3@PositiveInteger)
            Z3 := u.z**(3@PositiveInteger)
            Xw := u.x*(Y3 - Z3)
            Yw := u.y*(Z3 - X3)
            Zw := u.z*(X3 - Y3)
            per [Yw rem n, Xw rem n, Zw rem n]
        (n:Integer)*(u:%): % ==
            n < 0 => (-n)*(-u)
            v := 0
            import from UniversalSegment Integer
            for i in 0..length n - 1 repeat
                if bit?(n,i) then v := u + v
                u := double u
            v


--% EllipticCurveFactorization
--)abbrev package ECFACT EllipticCurveFactorization

EllipticCurveFactorization: with
        LenstraEllipticMethod: (Integer)                   -> Integer
        LenstraEllipticMethod: (Integer, Float)         -> Integer
        LenstraEllipticMethod: (Integer, Integer, Integer) -> Integer
        LenstraEllipticMethod: (Integer, Integer)          -> Integer

        lcmLimit: Integer -> Integer
        lcmLimit: Float-> Integer

        solveBound: Float -> Float
        bfloor:     Float -> Integer
        primesTo:   Integer -> List Integer
        lcmTo:      Integer -> Integer
    == add
        import from List Integer
        Ex == OutputForm
        import from Ex
        import from String
        import from Float

        NNI==> NonNegativeInteger
        import from OutputPackage
        import from Integer, NonNegativeInteger
        import from UniversalSegment Integer

        blather:Boolean := true

        --% Finding the multiplier
        flabs (f: Float): Float == abs f
        flsqrt(f: Float): Float == sqrt f
        nthroot(f:Float,n:Integer):Float == exp(log f/n::Float)

        bfloor(f: Float): Integer == wholePart floor f

        lcmLimit(n: Integer):Integer ==
            lcmLimit nthroot(n::Float, 3)
        lcmLimit(divisorBound: Float):Integer ==
            y := solveBound divisorBound
            lcmLim := bfloor exp(log divisorBound/y)
            if blather then
                output("The divisor bound is", divisorBound::Ex)
                output("The lcm Limit is", lcmLim::Ex)
            lcmLim

        -- Solve the bound equation using a Newton iteration.
        --
        -- f = y**2 - log(B)/log(y+1)
        --
        -- f/f' = fdf =
        --    2                 2
        --   y (y + 1)log(y + 1)  - (y + 1)log(y + 1) logB
        --   ---------------------------------------------
        --                                 2
        --              2y(y + 1)log(y + 1)  + logB
        --
        fdf(y: Float, logB: Float): Float ==
            logy  := log(y + 1)
            ylogy := (y + 1)*logy
            ylogy2:= y*logy*ylogy
            (y*ylogy2 - logB*ylogy)/((2@Integer)*ylogy2 + logB)
        solveBound(divisorBound:Float):Float ==
            -- solve               y**2 = log(B)/log(y + 1)
            -- although it may be  y**2 = log(B)/(log(y)+1)
            relerr := (10::Float)**(-5)
            logB := log divisorBound
            y0   := flsqrt log10 divisorBound
            y1   := y0 - fdf(y0, logB)
            while flabs((y1 - y0)/y0) > relerr repeat
                y0 := y1
                y1 := y0 - fdf(y0, logB)
            y1

        -- maxpin(p, n, logn) is max d s.t. p**d <= n
        maxpin(p:Integer,n:Integer,logn:Float): NonNegativeInteger ==
            d: Integer := bfloor(logn/log(p::Float))
            if d < 0 then d := 0
            d::NonNegativeInteger

        multiple?(i: Integer, plist: List Integer): Boolean ==
            for p in plist repeat if i rem p = 0 then return true
            false

        primesTo(n:Integer):List Integer ==
            n < 2 => []
            n = 2 => [2]
            plist := [3, 2]
            i:Integer := 5
            while i <= n repeat
                if not multiple?(i, plist) then plist := cons(i, plist)
                i := i + 2
                if not multiple?(i, plist) then plist := cons(i, plist)
                i := i + 4
            plist
        lcmTo(n:Integer):Integer ==
            plist := primesTo n
            m: Integer := 1
            logn := log(n::Float)
            for p in plist repeat m := m * p**maxpin(p,n,logn)
            if blather then
                output("The lcm of 1..", n::Ex)
                output("            is", m::Ex)
            m
        LenstraEllipticMethod(n: Integer):Integer ==
            LenstraEllipticMethod(n, flsqrt(n::Float))
        LenstraEllipticMethod(n: Integer, divisorBound: Float):Integer ==
            lcmLim0 := lcmLimit divisorBound
            multer0 := lcmTo lcmLim0
            LenstraEllipticMethod(n, lcmLim0, multer0)
        InnerLenstraEllipticMethod(n:Integer, multer:Integer, 
                             X0:Integer, Y0:Integer, Z0:Integer):Integer ==
            import from EllipticCurveRationalPoints(X0,Y0,Z0,n)
            import from Record(x: Integer, y: Integer, z: Integer)
            p  := p0
            pn := multer * p
            Zn := HessianCoordinates.pn.z
            gcd(n, Zn)

        LenstraEllipticMethod(n: Integer, multer: Integer):Integer ==
            X0:Integer := random()
            Y0:Integer := random()
            Z0:Integer := random()
            InnerLenstraEllipticMethod(n, multer, X0, Y0, Z0)

        LenstraEllipticMethod(n:Integer, lcmLim0:Integer, multer0:Integer):Integer ==
            nfact: Integer := 1
            for i:Integer in 1.. while nfact = 1 repeat
                output("Trying elliptic curve number", i::Ex)
                X0:Integer := random()
                Y0:Integer := random()
                Z0:Integer := random()
                nfact := InnerLenstraEllipticMethod(n, multer0, X0, Y0, Z0)
                if nfact = n then
                    lcmLim := lcmLim0
                    while nfact = n repeat
                        output("Too many iterations... backing off")
                        lcmLim := bfloor(lcmLim * 0.6)
                        multer := lcmTo lcmLim
                        nfact := InnerLenstraEllipticMethod(n, multer0, X0, Y0, Z0)
            nfact