/usr/share/axiom-20140801/input/hilbert.as is in axiom-test 20140801-11.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | )compile hilbert.as
mon1 := monom(4,0,0,0)
mon2:= monom(3,3,0,0)
mon3 := monom(3,2,1,0)
mon4 := monom(3,1,2,0)
mon5 := monom(0,2,0,1)
mon6 := monom(0,1,0,5)
l := [mon1, mon2, mon3, mon4, mon5, mon6]
Hilbert l
idA := varMonomsPower(6,5);
#idA
Hilbert idA
idB := varMonomsPower(6,6);
#idB
Hilbert idB
idC := varMonomsPower(12,3);
#idC
Hilbert idC
idD:=[monom(2,0,0,0),monom(1,1,0,0),monom(1,0,1,0),monom(1,0,0,1),_
monom(0,3,0,0),monom(0,2,1,0)]^4;
#idD
Hilbert idD
#include "axiom.as"
#pile
-- This file computes hilbert functions for monomial ideals
-- ref: "On the Computation of Hilbert-Poincare Series",
-- Bigatti, Caboara, Robbiano,
-- AAECC vol 2 #1 (1991) pp 21-33
macro
Monom == Monomial
L == List
SI == SingleInteger
B == Boolean
POLY == SparseUnivariatePolynomial Integer
Array == Vector
import from NonNegativeInteger
import from SingleInteger
import from Segment SI
import from Integer
Monomial : OrderedSet with
totalDegree: % -> SI
divides?: (%, %) -> B
homogLess: (%, %) -> B
quo: (%, %) -> %
quo: (%, SI) -> %
*: (%, %) -> %
varMonom: (i:SI,n:SI, deg:SI) -> %
variables: L % -> L SI
apply: (%, SI) -> SI
#: % -> SI
monom: Tuple SI -> %
== Array(SingleInteger) add
Rep ==> Array(SingleInteger)
import from Rep
monom(t:Tuple SI):% == per [ t ]
totalDegree(m:%):SI ==
sum:SI := 0
for e in rep m repeat sum := sum + e
sum
divides?(m1:%, m2:%):B ==
for e1 in rep m1 for e2 in rep m2 repeat
if e1 > e2 then return false
true
(m1:%) < (m2:%):B ==
for e1 in rep m1 for e2 in rep m2 repeat
if e1 < e2 then return true
if e1 > e2 then return false
false
-- (m1:%) > (m2:%):B == m2 < m1
homogLess(m1:%, m2:%):B ==
(d1:=totalDegree(m1)) < (d2:=totalDegree(m2)) => true
d1 > d2 => false
( m1 < m2)
(m:%) quo (v:SI):% == --remove vth variable
-- per [((if i=v then 0 else (rep m).i) for i in 1..#rep m)]
m2:= copy rep m
m2.v := 0
per m2
(m1:%) quo (m2:%):% ==
per [(max(a1-a2,0) for a1 in rep m1 for a2 in rep m2)]
(m1:%) * (m2:%):% == per [(a1+a2 for a1 in rep m1 for a2 in rep m2)]
varMonom(i:SI,n:SI, deg:SI):% ==
-- per [((if j=i then deg else 0$SI) for j in 1..n)]
m:Rep := new(n, 0)
m.i := deg
per m
variables(I:L %) :L SI ==
empty? I => nil
n:SI:=# rep first I
ans : L SI := nil
v:SI:=0
while (v:=v+1)<=n repeat
-- for v in 1..n repeat
for m in I repeat
(rep m).v ~= 0 =>
ans := cons(v, ans)
break
ans
HilbertFunctionPackage: with
Hilbert: L Monom -> POLY
adjoin: (Monom, L Monom) -> L Monom
== add
adjoin(m:Monom, lm:L Monom):L Monom ==
empty?(lm) => cons(m, nil)
ris1:L Monom:= empty()
ris2:L Monom:= empty()
while not empty? lm repeat
m1:Monom := first lm
lm := rest lm
if m <= m1 then
if not divides?(m,m1) then (ris1 := cons(m1, ris1))
iterate
ris2 := cons(m1, ris2)
if divides?(m1, m) then
return concat!(reverse!(ris1), concat!(reverse! ris2, lm))
concat!(reverse!(ris1), cons(m, reverse! ris2))
reduce(lm:L Monom):L Monom ==
lm := sortHomogRemDup(lm)
empty? lm => lm
ris :L Monom := nil
risd:L Monom := list first lm
d := totalDegree first lm
for m in rest lm repeat
if totalDegree(m)=d then risd := cons(m, risd)
else
ris := mergeDiv(ris, risd)
d := totalDegree m
risd := [m]
mergeDiv(ris, risd)
mergeDiv( small:L Monom, big:L Monom): L Monom ==
ans : L Monom := small
for m in big repeat
if not contained?(m,small) then ans := cons(m, ans)
ans
contained?(m:Monom, id: L Monom) : B ==
for mm in id repeat
divides?(mm, m) => return true
false
(I:L Monom) quo (m:Monom):L Monom ==
reduce [mm quo m for mm in I]
sort(I:L Monom, v:SI):L Monom ==
sort((a:Monom,b:Monom):B+->(a.v < b.v), I)
sortHomogRemDup(l:L Monom):L Monom ==
l:=sort(homogLess, l)
empty? l => l
ans:L Monom := list first l
for m in rest l repeat
if m ~= first(ans) then ans:=cons(m, ans)
reverse! ans
decompose(I:L Monom, v:SI):Record(size:SI, ideals:L L Monom, degs:L SI) ==
I := sort(I, v)
idlist: L L Monom := nil
deglist : L SI := nil
size : SI := 0
J: L Monom := nil
while not empty? I repeat
d := first(I).v
tj : L Monom := nil
local m:Monom
while not empty? I and d=(m:=first I).v repeat
tj := cons(m quo v, tj)
I := rest I
J := mergeDiv(tj, J)
idlist := cons(J, idlist)
deglist := cons(d, deglist)
size := size + ((#J)::Integer::SI)
[size, idlist, deglist]
var(n:SI) : SparseUnivariatePolynomial Integer ==
monomial(1$Integer, n::Integer::NonNegativeInteger)
Hilbert(I:L Monom):POLY ==
empty? I => 1 -- no non-zero generators = 0 ideal
empty? rest I => var(0) - var(totalDegree first I)
lvar :L SI := variables I
import from Record(size:SI, ideals:L L Monom, degs:L SI)
Jbest := decompose(I, first lvar)
for v in rest lvar while (#I)::Integer::SI < Jbest.size repeat
JJ := decompose(I, v)
JJ.size < Jbest.size => Jbest := JJ
import from L L Monom
import from L SI
Jold:List Monom := first(Jbest.ideals)
dold:SI := first(Jbest.degs)
f:SparseUnivariatePolynomial Integer:=var(dold)*Hilbert(Jold)
for J:List Monom in rest Jbest.ideals for d:SI in rest Jbest.degs repeat
f := f + (var(d) - var(dold)) * Hilbert(J)
dold := d
var(0) - var(dold) + f
MonomialIdealPackage: with
varMonomsPower: (SI, SI) -> L Monom
*: (L Monom, L Monom) -> L Monom
^: (L Monom, SI) -> L Monom
== add
varMonoms(n:SI):L Monom ==
-- [varMonom(i,n,1) for i in 1..n]
i:SI:=0
[varMonom(i,n,1) while {free i; (i:=i+1)<=n}]
varMonomsPower(n:SI, deg:SI):L Monom ==
n = 1 => [ monom(deg)]
ans : L Monom := nil
-- for j in 0..deg repeat
j:SI:=-1
while (j:=j+1)<=deg repeat
ans := concat(varMonomMult(j,varMonomsPower(n-1,deg-j)), ans)
ans
varMonomMult(i:SI, mlist : L Monom) : L Monom ==
[varMonomMult(i, m) for m in mlist]
varMonomMult(i:SI, m:Monom) : Monom ==
nm:Array SI := new(#m + 1, i)
-- for k in 1..#m repeat nm.k :=m.k
k:SI:=0
while (k:=k+1)<=#m repeat nm.k :=m.k
nm pretend Monom
(i1:L Monom) * (i2:L Monom):L Monom ==
import from HilbertFunctionPackage
ans : L Monom := nil
for m1 in i1 repeat for m2 in i2 repeat
ans := adjoin(m1*m2, ans)
ans
(i:L Monom) ^ (n:SI) : L Monom ==
n = 1 => i
odd? n => i * (i*i)^shift(n, -1)
(i*i)^shift(n,-1)
|