This file is indexed.

/usr/share/axiom-20140801/input/pdecomp0.as is in axiom-test 20140801-11.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#pile
#include "axiom.as"

--% Polynomial composition and decomposition functions
--  If f = g o h then  g = leftFactor(f, h)  &  h = rightFactor(f, g)
--  SMW Dec 86

--% PolynomialComposition
--)abbrev package PCOMP PolynomialComposition
--)abbrev package PDECOMP PolynomialDecomposition

PolynomialComposition(UP: UnivariatePolynomialCategory(R), R: Ring): with
        compose: (UP, UP) -> UP

    == add
        compose(g:UP, h:UP):UP ==
            r: UP := 0
            while g ~= 0 repeat
                r := leadingCoefficient(g)*h**degree(g) + r
                g := reductum g
            r


--  Ref: Kozen and Landau, Cornell University  TR 86-773

--% PolynomialDecomposition


PolynomialDecomposition(UP:UPC F, F:Field): PDcat == PDdef where
    UPC ==> UnivariatePolynomialCategory
    NNI ==> NonNegativeInteger
    LR  ==> Record(left: UP, right: UP)

    PDcat ==> with
        decompose: UP -> List UP
        decompose: (UP, NNI, NNI) -> Union(value1:LR, failed:'failed')
        leftFactor: (UP, UP) -> Union(value1:UP, failed:'failed')
        rightFactorCandidate:  (UP, NNI) -> UP
    PDdef ==> add

        import from F
        import from LR
        import from Union(value1:UP, failed:'failed')
        import from Float
        import from NNI
        import from UniversalSegment NNI
        import from Record(quotient:UP, remainder:UP);

        leftFactor(f:UP, h:UP):Union(value1:UP, failed:'failed')  == 
             g: UP := 0
             for i in 0.. while f ~= 0 repeat
                 fr := divide(f, h)
                 f := fr.quotient
                 r := fr.remainder
                 degree r > 0 => return [failed]
                 g := g + r * monomial(1, i)
             [g]

        decompose(f:UP, dg:NNI, dh:NNI):Union(value1:LR, failed:'failed') ==
            df := degree f
            dg*dh ~= df => [failed]
            h := rightFactorCandidate(f, dh)
            g:Union(value1:UP, failed:'failed') := leftFactor(f, h)
            g case failed => [failed]
            [[g.value1, h]]

        decompose(f:UP):List UP ==
            df := degree f
            for dh in 2..df-1 | df rem dh = 0 repeat
                h := rightFactorCandidate(f, dh)
                g := leftFactor(f, h)
                g case value1 => return
                    append(decompose(g.value1), decompose h)
            [f]


        rightFactorCandidate(f:UP, dh:NNI):UP ==
            f  := f / leadingCoefficient f
            df := degree f
            dg := df quo dh
            h  := monomial(1, dh)
            for k in 1..dh repeat
                hdg:= h**dg
                c  := (coefficient(f,df-k)-coefficient(hdg,df-k))/
                                                       (dg::Integer::F)
                h  := h + monomial(c, dh-k)
            h - monomial(coefficient(h, 0), 0) -- drop constant term