/usr/share/doc/libchemps2/html/dmrgscf.html is in chemps2-doc 1.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>8. DMRG-SCF — CheMPS2 1.6 documentation</title>
<link rel="stylesheet" href="_static/classic.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '1.6',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="/usr/share/javascript/jquery/jquery.js"></script>
<script type="text/javascript" src="/usr/share/javascript/underscore/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="/usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="top" title="CheMPS2 1.6 documentation" href="index.html" />
<link rel="next" title="9. DMRG-SCF calculations" href="dmrgscfcalcs.html" />
<link rel="prev" title="7. Typical resource requirements" href="resources.html" />
</head>
<body role="document">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="resources.html" title="7. Typical resource requirements"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.6 documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<span class="target" id="index-0"></span><span class="target" id="index-1"></span><span class="target" id="index-2"></span><div class="section" id="dmrg-scf">
<span id="index-3"></span><h1>8. DMRG-SCF<a class="headerlink" href="#dmrg-scf" title="Permalink to this headline">¶</a></h1>
<p>In methods which use a FCI solver, this solver can be replaced by DMRG. DMRG allows for an efficient extraction of the 2-RDM. The 2-RDM of the active space is required in the complete active space self-consistent field (CASSCF) method to compute the gradient and the Hessian with respect to orbital rotations <a class="reference internal" href="#dmrgscf1" id="id1">[DMRGSCF1]</a>. It is therefore natural to introduce a CASSCF variant with DMRG as active space solver, called DMRG-SCF <a class="reference internal" href="#dmrgscf2" id="id2">[DMRGSCF2]</a> <a class="reference internal" href="#dmrgscf3" id="id3">[DMRGSCF3]</a> <a class="reference internal" href="#dmrgscf4" id="id4">[DMRGSCF4]</a>, which allows to treat static correlation in large active spaces. In CheMPS2, the augmented Hessian Newton-Raphson DMRG-SCF method is implemented, with exact Hessian <a class="reference internal" href="#dmrgscf5" id="id5">[DMRGSCF5]</a> <a class="reference internal" href="#dmrgscf6" id="id6">[DMRGSCF6]</a>.</p>
<div class="section" id="augmented-hessian-newton-raphson">
<h2>8.1. Augmented Hessian Newton-Raphson<a class="headerlink" href="#augmented-hessian-newton-raphson" title="Permalink to this headline">¶</a></h2>
<p>The basic idea is to express the energy with the unitary group generators up to second order:</p>
<div class="math">
\[\begin{split}\hat{E}_{pq} & = & \sum\limits_{\sigma} \hat{a}^{\dagger}_{p \sigma} \hat{a}_{q \sigma} \\
\left[ \hat{E}_{pq} , \hat{E}_{rs} \right] & = & \delta_{qr} \hat{E}_{ps} - \delta_{ps} \hat{E}_{rq} \\
\hat{E}^{-}_{pq} & = & \hat{E}_{pq} - \hat{E}_{qp} \\
\hat{T}(\vec{x}) & = & \sum\limits_{p<q} x_{pq} \hat{E}^{-}_{pq} \\
E(\vec{x}) & = & \left\langle 0 \mid e^{\hat{T}(\vec{x})} \hat{H} e^{-\hat{T}(\vec{x})} \mid 0 \right\rangle \approx E(0) + \vec{x}^T \vec{g} + \frac{1}{2} \vec{x}^T \mathbf{H} \vec{x}\end{split}\]</div>
<p>The vector <span class="math">\(\vec{g}\)</span> is the gradient and the matrix <span class="math">\(\mathbf{H}\)</span> the Hessian for orbital rotations. The minimum of <span class="math">\(E(\vec{x})\)</span> is found at <span class="math">\(\vec{x} = - \mathbf{H}^{-1} \vec{g}\)</span>. The variables <span class="math">\(\vec{x}\)</span> parametrize an additional orbital rotation <span class="math">\(\mathbf{U}_{add} = \exp(\mathbf{T}(\vec{x}))\)</span>, with <span class="math">\(\mathbf{T}(\vec{x}) = -\mathbf{T}^T(\vec{x})\)</span> a real-valued skew-symmetric matrix. The additional orbital rotation <span class="math">\(\mathbf{U}_{add}\)</span> transforms the current orbitals <span class="math">\(\mathbf{U}(n)\)</span> to the new orbitals</p>
<div class="math">
\[\mathbf{U}(n+1) = \mathbf{U}_{add} \mathbf{U}(n) = \exp(\mathbf{T}(\vec{x}(n))) \mathbf{U}(n).\]</div>
<p>This updating scheme is called the Newton-Raphson method. If the Hessian is positive definite, these updates are stable. For saddle points in the energy landscape, the Hessian has negative eigenvalues, and these updates can be unstable. It is therefore better to use the augmented Hessian Newton-Raphson method:</p>
<div class="math">
\[\begin{split}\left[ \begin{array}{cc} \mathbf{H} & \vec{g} \\ \vec{g}^T & 0 \end{array} \right] \left[ \begin{array}{c} \vec{x} \\ 1 \end{array} \right] = \alpha \left[ \begin{array}{c} \vec{x} \\ 1 \end{array} \right].\end{split}\]</div>
<p>The eigenvector with smallest algebraic eigenvalue determines a stable update <span class="math">\(\vec{x}\)</span>, as is well explained in Ref. <a class="reference internal" href="#dmrgscf7" id="id7">[DMRGSCF7]</a>.</p>
</div>
<div class="section" id="diis">
<h2>8.2. DIIS<a class="headerlink" href="#diis" title="Permalink to this headline">¶</a></h2>
<p>When the update norm <span class="math">\(\|\vec{x}\|_2\)</span> is small enough, the convergence can be accelerated by the direct inversion of the iterative subspace (DIIS) <a class="reference internal" href="#dmrgscf8" id="id8">[DMRGSCF8]</a> <a class="reference internal" href="#dmrgscf9" id="id9">[DMRGSCF9]</a>. For a given set of orbitals <span class="math">\(\mathbf{U}(n)\)</span>, the update <span class="math">\(\vec{x}(n)\)</span> is calculated with the augmented Hessian Newton-Raphson method. This update defines the next set of orbitals:</p>
<div class="math">
\[\mathbf{U}(n+1) = \mathbf{U}_{add} \mathbf{U}(n) = \exp(\mathbf{T}(\vec{x}(n))) \mathbf{U}(n).\]</div>
<p>In DIIS, the error vector <span class="math">\(\vec{x}(n)\)</span> and the state vector <span class="math">\(\mathbf{Y}(n+1) = \log(\mathbf{U}(n+1))\)</span> are added to a list. The error</p>
<div class="math">
\[e = \left\| \sum\limits_{i = 1}^{\kappa} c_i \vec{x}(n - \kappa + i) \right\|_2\]</div>
<p>is minimized under the constraint <span class="math">\(\sum_{i} c_i = 1\)</span>. <span class="math">\(\kappa\)</span> is the size of the list memory, i.e. the number of retained vectors. The minimization of the error <span class="math">\(e\)</span> can be performed with Lagrangian calculus:</p>
<div class="math">
\[\begin{split}\left[ \begin{array}{cc} \mathbf{B} & \vec{1} \\ \vec{1}^T & 0 \end{array} \right] \left[ \begin{array}{c} \vec{c} \\ \lambda \end{array} \right] = \left[ \begin{array}{c} \vec{0} \\ 1 \end{array} \right],\end{split}\]</div>
<p>where <span class="math">\(2\lambda\)</span> is the Lagrangian multiplier and</p>
<div class="math">
\[\left[\mathbf{B}\right]_{ij} = \vec{x}^T(n - \kappa + i) \vec{x}(n - \kappa + j) = \left[\mathbf{B}\right]_{ji}.\]</div>
<p>The new state vector is then defined as</p>
<div class="math">
\[\mathbf{Y}_{new} = \sum\limits_{i = 1}^{\kappa} c_i \mathbf{Y}(n+1 - \kappa + i).\]</div>
<p>The current orbitals are then set to <span class="math">\(\mathbf{U}(n+1) = \exp(\mathbf{Y}_{new})\)</span>.</p>
<table class="docutils citation" frame="void" id="dmrgscf1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[DMRGSCF1]</a></td><td>P.E.M. Siegbahn, J. Almlof, A. Heiberg and B.O. Roos, <em>Journal of Chemical Physics</em> <strong>74</strong>, 2384-2396 (1981), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.441359">10.1063/1.441359</a></td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[DMRGSCF2]</a></td><td><ol class="first last upperalpha simple" start="4">
<li>Ghosh, J. Hachmann, T. Yanai and G.K.-L. Chan, <em>Journal of Chemical Physics</em> <strong>128</strong>, 144117 (2008), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2883976">10.1063/1.2883976</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[DMRGSCF3]</a></td><td><ol class="first last upperalpha simple" start="4">
<li>Zgid and M. Nooijen, <em>Journal of Chemical Physics</em> <strong>128</strong>, 144116 (2008), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2883981">10.1063/1.2883981</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[DMRGSCF4]</a></td><td><ol class="first last upperalpha simple" start="20">
<li>Yanai, Y. Kurashige, D. Ghosh and G.K.-L. Chan, <em>International Journal of Quantum Chemistry</em> <strong>109</strong>, 2178-2190 (2009), doi: <a class="reference external" href="http://dx.doi.org/10.1002/qua.22099">10.1002/qua.22099</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf5" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[DMRGSCF5]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, W. Poelmans, P.W. Ayers and D. Van Neck, <em>Computer Physics Communications</em> <strong>185</strong>, 1501-1514 (2014), doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cpc.2014.01.019">10.1016/j.cpc.2014.01.019</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf6" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6">[DMRGSCF6]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck and D. Van Neck, <em>Journal of Chemical Physics</em> <strong>140</strong>, 241103 (2014), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4885815">10.1063/1.4885815</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf7" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[DMRGSCF7]</a></td><td><ol class="first last upperalpha simple">
<li>Banerjee, N. Adams, J. Simons and R. Shepard, <em>Journal of Physical Chemistry</em> <strong>89</strong>, 52-57 (1985), doi: <a class="reference external" href="http://dx.doi.org/10.1021/j100247a015">10.1021/j100247a015</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf8" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id8">[DMRGSCF8]</a></td><td><ol class="first last upperalpha simple" start="16">
<li>Pulay, <em>Chemical Physics Letters</em> <strong>73</strong>, 393-398 (1980), doi: <a class="reference external" href="http://dx.doi.org/10.1016/0009-2614(80)80396-4">10.1016/0009-2614(80)80396-4</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf9" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id9">[DMRGSCF9]</a></td><td>C.D. Sherrill, Programming DIIS, <a class="reference external" href="http://vergil.chemistry.gatech.edu/notes/diis/node3.html">http://vergil.chemistry.gatech.edu/notes/diis/node3.html</a> (2000).</td></tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/CheMPS2logo.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">8. DMRG-SCF</a><ul>
<li><a class="reference internal" href="#augmented-hessian-newton-raphson">8.1. Augmented Hessian Newton-Raphson</a></li>
<li><a class="reference internal" href="#diis">8.2. DIIS</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="resources.html"
title="previous chapter">7. Typical resource requirements</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="dmrgscfcalcs.html"
title="next chapter">9. DMRG-SCF calculations</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/dmrgscf.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
>next</a> |</li>
<li class="right" >
<a href="resources.html" title="7. Typical resource requirements"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.6 documentation</a> »</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 2013-2015, Sebastian Wouters.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
</div>
</body>
</html>
|