/usr/share/common-lisp/source/spatial-trees/r-trees.lisp is in cl-spatial-trees 0.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | ;;;; A more-or-less direct implementation of "R-TREES: A DYNAMIC INDEX
;;;; STRUCTURE FOR SPATIAL SEARCHING", Antonin Guttman, Proc. ACM
;;;; SIGMOD Int. Conf. on Management of Data, 1984.
;;;;
;;;; Differences with the algorithms described in that paper:
;;;;
;;;; * we keep the minimum bounding rectangle of a node's children in
;;;; the node itself and not in an index pointing to the node, except
;;;; for leaves where there is one extra level of indirection (to
;;;; assist in implementation of R+-trees).
;;;;
;;;; * we implement (in SPLIT-NODE) a guarantee of the stated
;;;; invariant that each node contains at least m elements. This is
;;;; referred to in Section "4. Performance Tests", "... decreased
;;;; cost of insertion with a stricter node balance reflects the fact
;;;; that when one group becomes too full, all split algorithms simply
;;;; put the remaining elements in the other group without further
;;;; comparisons."
(in-package "SPATIAL-TREES-IMPL")
(defgeneric mbr (thing tree))
(defmethod mbr ((n spatial-tree-node) (tree spatial-tree))
(declare (ignore tree))
#+nil
(check (not (eq n (root-node tree)))
"Root of ~S asked for its MBR" tree)
(slot-value n 'mbr))
(defun minimum-bound-of (objects tree)
(reduce #'minimum-bound objects :key (lambda (x) (mbr x tree))))
(defstruct leaf-node-entry rectangle datum)
(defmethod mbr ((o leaf-node-entry) (tree spatial-tree))
(declare (ignore tree))
(leaf-node-entry-rectangle o))
(defclass r-tree (spatial-tree)
())
(defmethod make-spatial-tree ((kind (eql :r)) &rest initargs)
(apply #'make-instance 'r-tree
:root-node (make-instance 'spatial-tree-leaf-node :records nil)
initargs))
;;; 3.1. Searching
(defmethod search ((o t) (tree r-tree))
(search (funcall (rectfun tree) o) tree))
(defmethod search ((r rectangle) (tree r-tree))
(labels ((%search (r node)
(cond
((typep node 'spatial-tree-leaf-node)
(let (result)
(dolist (entry (records node) (nreverse result))
(when (intersectp r (leaf-node-entry-rectangle entry))
(push (leaf-node-entry-datum entry) result)))))
(t
(let (result)
(dolist (child (children node) result)
(when (intersectp r (mbr child tree))
(setq result (append (%search r child) result)))))))))
(let ((root (root-node tree)))
(%search r root))))
;;; 3.2. Insertion
(defmethod choose-leaf (r (tree r-tree))
(labels ((%choose-leaf (r node)
(cond
((typep node 'spatial-tree-leaf-node) node)
(t (do* ((children (children node) (cdr children))
(child (car children) (car children))
(candidate child)
(min-extension (- (area (minimum-bound (mbr child tree) (mbr r tree)))
(area (mbr child tree)))))
((null children) (%choose-leaf r candidate))
(let* ((new-area (area (minimum-bound (mbr child tree)
(mbr r tree))))
(old-area (area (mbr child tree)))
(extension (- new-area old-area)))
(when (or (< extension min-extension)
(and (= extension min-extension)
(< old-area (area (mbr candidate tree)))))
(setf min-extension extension
candidate child))))))))
(let ((n (root-node tree)))
(%choose-leaf r n))))
(defmethod insert ((r t) (tree r-tree))
(let* ((r (make-leaf-node-entry :datum r
:rectangle (funcall (rectfun tree) r)))
(leaf-node (choose-leaf r tree)))
(cond
((< (length (records leaf-node)) (max-per-node tree))
(push r (records leaf-node))
(adjust-tree tree leaf-node))
(t
(let ((new-node (split-node tree r leaf-node)))
(check (<= (min-per-node tree)
(length (records new-node))
(max-per-node tree))
"invariant (1) violated for the new node ~S in ~S"
new-node tree)
(check (<= (min-per-node tree)
(length (records leaf-node))
(max-per-node tree))
"invariant (1) violated for the old node ~S in ~S"
leaf-node tree)
(let ((new (adjust-tree tree leaf-node new-node)))
(when new
(let ((new-root
(make-instance 'spatial-tree-node
:children (list (root-node tree) new))))
(setf (parent (root-node tree)) new-root
(root-node tree) new-root
(parent new) new-root))))))))
tree)
(defgeneric adjust-tree (tree node &optional new))
(defmethod adjust-tree ((tree r-tree) node &optional new)
(cond
((eq node (root-node tree)) new)
(t
(setf (slot-value node 'mbr) (minimum-bound-of (children node) tree))
(let ((parent (parent node)))
(if new
(cond
((< (length (children parent)) (max-per-node tree))
(push new (children parent))
(setf (parent new) parent)
(adjust-tree tree parent))
(t
(let ((new-parent (split-node tree new parent)))
(check (<= (min-per-node tree)
(length (children new-parent))
(max-per-node tree))
"invariant (3) violated for the new parent node ~S in ~S"
new-parent tree)
(check (<= (min-per-node tree)
(length (children parent))
(max-per-node tree))
"invariant (3) violated for the old parent node ~S in ~S"
parent tree)
(dolist (child (children parent))
(setf (parent child) parent))
(dolist (child (children new-parent))
(setf (parent child) new-parent))
(adjust-tree tree parent new-parent))))
(adjust-tree tree parent))))))
;;; 3.3. Deletion
(defmethod delete ((r t) (tree r-tree))
(let ((leaf-node (find-leaf r (root-node tree) tree)))
(when leaf-node
(setf (records leaf-node) (remove r (records leaf-node) :key #'leaf-node-entry-datum))
(condense-tree leaf-node tree)
(unless (typep (root-node tree) 'spatial-tree-leaf-node)
(when (null (cdr (children (root-node tree))))
(check (car (children (root-node tree)))
"non-leaf root node with no children")
(setf (root-node tree) (car (children (root-node tree))))
(slot-makunbound (root-node tree) 'parent)
(slot-makunbound (root-node tree) 'mbr)))
tree)))
(defun find-leaf (obj node tree)
(labels ((%find-leaf (leaf-entry node tree)
(if (typep node 'spatial-tree-leaf-node)
(when (member (leaf-node-entry-datum leaf-entry)
(records node)
:key #'leaf-node-entry-datum)
(return-from find-leaf node))
(dolist (entry (children node))
(when (intersectp (mbr leaf-entry tree) (mbr entry tree))
(%find-leaf leaf-entry entry tree))))))
(%find-leaf (make-leaf-node-entry :datum obj
:rectangle (funcall (rectfun tree) obj))
node
tree)))
(defun condense-tree (node tree)
(labels ((all-leaves-below (node)
(if (typep node 'spatial-tree-leaf-node)
(records node)
(apply #'append
(mapcar #'all-leaves-below (children node))))))
(do ((node node (parent node))
(q nil))
((eq node (root-node tree))
(dolist (orphan q)
;; NOTE: this interpretation (reinsert every leaf)
;; disagrees with BKSS (R*-trees), section 4.3, "... is
;; based on the ability of the insert routine to insert
;; entries on every level of the tree as already required
;; by the deletion algorithm [Gut 84]."
(dolist (oleaf (all-leaves-below orphan))
(insert (leaf-node-entry-datum oleaf) tree))))
(cond
((< (length (children node)) (min-per-node tree))
(setf (children (parent node)) (remove node (children (parent node))))
(push node q))
(t
(setf (slot-value node 'mbr) (minimum-bound-of (children node) tree)))))))
;;; 3.5. Node Splitting
(defun d (r1 r2 tree)
(- (area (minimum-bound (mbr r1 tree) (mbr r2 tree)))
(area (mbr r1 tree))
(area (mbr r2 tree))))
(defun pick-seeds (entries tree)
(do* ((entry1 (car entries) (car entries))
(entries (cdr entries) (cdr entries))
(maxentry1 entry1)
(maxentry2 (car entries))
(maxd (d maxentry1 maxentry2 tree)))
((null entries) (values maxentry1 maxentry2))
(dolist (entry2 entries)
(when (> (d entry1 entry2 tree) maxd)
(setf maxd (d entry1 entry2 tree)
maxentry1 entry1
maxentry2 entry2)))))
(defun pick-next (entries node new-node tree)
(let* ((maxentry (car entries))
(maxdelta (- (d maxentry new-node tree) (d maxentry node tree))))
(dolist (entry (cdr entries) (values maxentry maxdelta))
(let ((delta (- (d entry new-node tree) (d entry node tree))))
(when (> (abs delta) (abs maxdelta))
(setf maxentry entry
maxdelta delta))))))
(defun make-node-like (node)
(make-instance (class-of node)))
(defmethod split-node ((tree r-tree) new node)
(let ((new-node (make-node-like node))
(entries (cons new (children node))))
(multiple-value-bind (s1 s2)
(pick-seeds entries tree)
(setf (children node) (list s1)
(slot-value node 'mbr) (mbr s1 tree))
(setf (children new-node) (list s2)
(slot-value new-node 'mbr) (mbr s2 tree))
(do ((entries (remove s1 (remove s2 entries))))
((null entries) new-node)
(multiple-value-bind (maxentry maxdelta)
(pick-next entries node new-node tree)
(cond
((or (plusp maxdelta)
(and (zerop maxdelta)
(or (< (area (mbr node tree)) (area (mbr new-node tree)))
(and (= (area (mbr node tree)) (area (mbr new-node tree)))
(> (length (children new-node))
(length (children node)))))))
(push maxentry (children node))
(setf (slot-value node 'mbr) (minimum-bound-of (children node) tree)))
(t
(push maxentry (children new-node))
(setf (slot-value new-node 'mbr)
(minimum-bound-of (children new-node) tree))))
(setf entries (remove maxentry entries))
;; the extra bit (see notes at head of file)
(when (= (length entries)
(- (min-per-node tree) (length (children node))))
(setf (children node) (append entries (children node))
(slot-value node 'mbr) (minimum-bound-of (children node) tree))
(return new-node))
(when (= (length entries)
(- (min-per-node tree) (length (children new-node))))
(setf (children new-node) (append entries (children new-node))
(slot-value new-node 'mbr) (minimum-bound-of (children new-node) tree))
(return new-node)))))))
|