This file is indexed.

/usr/share/doc/cminpack-doc/lmstr_.html is in cminpack-doc 1.3.4-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
<HTML><HEAD><TITLE>Manpage of LMSTR_</TITLE>
</HEAD><BODY>
<H1>LMSTR_</H1>
Section: C Library Functions (3)<BR>Updated: March 8, 2002<BR><A HREF="#index">Index</A>
<A HREF="index.html">Return to Main Contents</A><HR>


<A NAME="lbAB">&nbsp;</A>
<H2>NAME</H2>

lmstr_, lmstr1_ - minimize the sum of squares of m nonlinear functions, with user supplied Jacobian and minimal storage
<A NAME="lbAC">&nbsp;</A>
<H2>SYNOPSIS</H2>

<B>include &lt;<A HREF="file:/usr/include/minpack.h">minpack.h</A>&gt;</B>



<DL COMPACT>
<DT>
<B>void lmstr1_ ( </B>

<B>void (*</B><I>fcn</I><B>)</B>

<B>(int *</B><I>m</I><B>,</B>

<B>int *</B><I>n</I><B>,</B>

<B>double *</B><I>x</I><B>,</B>

<B>double *</B><I>fvec</I><B>,</B>

<B>double *</B><I>fjrow</I><B>,</B>

<B>int *</B><I>iflag</I><B>),</B>

<DL COMPACT><DT><DD>
<B>int *</B><I>m</I><B>,</B>

<B>int * </B><I>n</I><B>,</B>

<B>double *</B><I>x</I><B>,</B>

<B>double *</B><I>fvec</I><B>,</B>

<B>double *</B><I>fjac</I><B>,</B>

<B>int *</B><I>ldfjac</I><B>,</B>

<DD>
<B>double *</B><I>tol</I><B>,</B>

<B>int *</B><I>info</I><B>,</B>

<B>int *</B><I>iwa</I><B>,</B>

<DD>
<B>double *</B><I>wa</I><B>,</B>

<B>int *</B><I>kwa</I><B>);</B>

</DL>

<DT>
<B>void lmstr_</B>

<B>( void (*</B><I>fcn</I><B>)(</B>

<B>int *</B><I>m</I><B>,</B>

<B>int *</B><I>n</I><B>,</B>

<B>double *</B><I>x</I><B>,</B>

<B>double *</B><I>fvec</I><B>,</B>

<B>double *</B><I>fjrow</I><B>,</B>

<B>int *</B><I>iflag</I><B>),</B>

<DL COMPACT><DT><DD>
<B>int *</B><I>m</I><B>,</B>

<B>int *</B><I>n</I><B>,</B>

<B>double *</B><I>x</I><B>,</B>

<B>double *</B><I>fvec</I><B>,</B>

<B>double *</B><I>fjac</I><B>,</B>

<B>int *</B><I>ldfjac</I><B>,</B>

<DD>
<B>double *</B><I>ftol</I><B>,</B>

<B>double *</B><I>xtol</I><B>,</B>

<B>double *</B><I>gtol</I><B>,</B>

<DD>
<B>int *</B><I>maxfev</I><B>,</B>

<B>double *</B><I>diag</I><B>,</B>

<B>int *</B><I>mode</I><B>,</B>

<B>double *</B><I>factor</I><B>,</B>

<DD>
<B>int *</B><I>nprint</I><B>,</B>

<B>int *</B><I>info</I><B>,</B>

<B>int *</B><I>nfev</I><B>,</B>

<B>int *</B><I>njev</I><B>,</B>

<DD>
<B>int *</B><I>ipvt</I><B>,</B>

<B>double *</B><I>qtf</I><B>,</B>

<DD>
<B>double *</B><I>wa1</I><B>,</B>

<B>double *</B><I>wa2</I><B>,</B>

<B>double *</B><I>wa3</I><B>,</B>

<B>double *</B><I>wa4</I><B> );</B>

</DL>



<DD>
</DL>
<A NAME="lbAD">&nbsp;</A>
<H2>DESCRIPTION</H2>

<P>
<DD>The purpose of <B>lmstr_</B> is to minimize the sum of the squares of
<I>m</I> nonlinear functions in <I>n</I> variables by a modification of
the Levenberg-Marquardt algorithm. The user must provide a function 
which calculates the functions and the rows of the Jacobian.
<P>

<B>lmstr1_</B> performs the same function but has a simplified calling sequence.
<P>

<B><A HREF="lmder_.html">lmder</A></B>(3) and <B><A HREF="lmder_.html">lmder1</A></B>(3) perform the same function but do
not attempt to minimize storage.
<BR>

<A NAME="lbAE">&nbsp;</A>
<H3>Language notes</H3>

These functions are written in FORTRAN. If calling from
C, keep these points in mind:
<DL COMPACT>
<DT>Name mangling.<DD>
With <B>g77</B> version 2.95 or 3.0, all the function names end in an
underscore.  This may change with future versions of <B>g77</B>.
<DT>Compile with <B>g77</B>.<DD>
Even if your program is all C code, you should link with <B>g77</B>
so it will pull in the FORTRAN libraries automatically.  It's easiest
just to use <B>g77</B> to do all the compiling.  (It handles C just fine.)
<DT>Call by reference.<DD>
All function parameters must be pointers.
<DT>Column-major arrays.<DD>
Suppose a function returns an array with 5 rows and 3 columns in an
array <I>z</I> and in the call you have declared a leading dimension of
7.  The FORTRAN and equivalent C references are:
<P>
<PRE>
        z(1,1)          z[0]
        z(2,1)          z[1]
        z(5,1)          z[4]
        z(1,2)          z[7]
        z(1,3)          z[14]
        z(i,j)          z[(i-1) + (j-1)*7]
</PRE>

<BR>

</DL>
<A NAME="lbAF">&nbsp;</A>
<H3>User-supplied Function</H3>

<P>
<I>fcn</I> is the name of the user-supplied subroutine which calculates
the functions. In FORTRAN, <I>fcn</I> must be declared in an external
statement in the user calling program, and should be written as
follows:
<P>
<PRE>
  subroutine fcn(m,n,x,fvec,fjrow,iflag)
  integer m,n,iflag
  double precision x(n),fvec(m),fjrow(n)
  ----------
  if iflag = 1 calculate the functions at x and
  return this vector in fvec. Do not alter fjac.
  if iflag = i calculate row (i-1) of the
  Jacobian at x and return this vector in fjrow.
  ----------
  return
  end
</PRE>

<P>
In C, <I>fcn</I> should be written as follows:
<P>
<PRE>
  void fcn(int m, int n, double *x, double *fvec, double *fjrow,
           int *iflag)
  {
    /* If iflag = 1 calculate the functions at x and return the
       values in fvec[0] through fvec[m-1].  Do not alter fjac.
       If iflag = i calculate row (i-1) of the Jacobian
       at x and return the vector in fjrow. */
  }
</PRE>

<P>
<I>iflag</I> is an input integer which specifies whether a function
value or Jacobian row is to be calculated.
The value of <I>iflag</I> should not be changed by <I>fcn</I> unless the
user wants to terminate execution of <B>lmstr_</B> (or <B>lmstr1_</B>). In
this case set <I>iflag</I> to a negative integer.
<BR>

<A NAME="lbAG">&nbsp;</A>
<H3>Parameters for both <B>lmstr_</B> and <B>lmstr1_</B></H3>

<P>
<I>m</I> is a positive integer input variable set to the number
of functions.
<P>
<I>n</I> is a positive integer input variable set to the number
of variables. <I>n</I> must not exceed <I>m</I>.
<P>
<I>x</I> is an array of length <I>n</I>. On input <I>x</I> must contain
an initial estimate of the solution vector. On output <I>x</I>
contains the final estimate of the solution vector.
<P>
<I>fvec</I> is an output array of length <I>m</I> which contains
the functions evaluated at the output <I>x</I>.
<P>
<I>fjrow</I> is an output array of length <I>n</I> which is set to one
row of the Jacobian evaluated at <I>x</I>.
<P>
<I>fjac</I> is an output <I>m</I> by <I>n</I> array. The upper <I>n</I> by
<I>n</I> submatrix of <I>fjac</I> contains an upper triangular matrix
<B>r</B> with diagonal elements of nonincreasing magnitude such that
<P>
<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t
<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;p&nbsp;*(jac&nbsp;*jac)*p&nbsp;=&nbsp;r&nbsp;*r,
<P>
where <I>p</I> is a permutation matrix and <B>jac</B> is the final
calculated Jacobian. Column <B>j</B> of <I>p</I> is column
<I>ipvt</I>(<B>j</B>) (see below) of the identity matrix. The lower
trapezoidal part of <I>fjac</I> contains information generated during
the computation of <B>r</B>.
<P>
<I>ldfjac</I> is a positive integer input variable not less than
<I>m</I> which specifies the leading dimension of the array
<I>fjac</I>.
<BR>

<A NAME="lbAH">&nbsp;</A>
<H3>Parameters for <B>lmstr1_</B></H3>

<P>
<I>tol</I> is a nonnegative input variable.  Termination occurs when
the algorithm estimates either that the relative error in the sum of
squares is at most <I>tol</I> or that the relative error between
<I>x</I> and the solution is at most <I>tol</I>.
<P>
<I>info</I> is an integer output variable. if the user has
terminated execution, <I>info</I> is set to the (negative)
value of iflag. see description of <I>fcn</I>. otherwise,
<I>info</I> is set as follows.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;0&nbsp;&nbsp;improper&nbsp;input&nbsp;parameters.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;1&nbsp;&nbsp;algorithm&nbsp;estimates&nbsp;that&nbsp;the&nbsp;relative&nbsp;error
in the sum of squares is at most <I>tol</I>.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;2&nbsp;&nbsp;algorithm&nbsp;estimates&nbsp;that&nbsp;the&nbsp;relative&nbsp;error
between x and the solution is at most <I>tol</I>.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;3&nbsp;&nbsp;conditions&nbsp;for&nbsp;<I>info</I>&nbsp;=&nbsp;1&nbsp;and&nbsp;<I>info</I>&nbsp;=&nbsp;2&nbsp;both&nbsp;hold.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;4&nbsp;&nbsp;<I>fvec</I>&nbsp;is&nbsp;orthogonal&nbsp;to&nbsp;the&nbsp;columns&nbsp;of&nbsp;the
Jacobian to machine precision.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;5&nbsp;&nbsp;number&nbsp;of&nbsp;calls&nbsp;to&nbsp;<I>fcn</I>&nbsp;has&nbsp;reached&nbsp;or
exceeded 100*(<I>n</I>+1).
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;6&nbsp;&nbsp;<I>tol</I>&nbsp;is&nbsp;too&nbsp;small.&nbsp;no&nbsp;further&nbsp;reduction&nbsp;in
the sum of squares is possible.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;7&nbsp;&nbsp;<I>tol</I>&nbsp;is&nbsp;too&nbsp;small.&nbsp;no&nbsp;further&nbsp;improvement&nbsp;in
the approximate solution x is possible.
<P>
<I>wa</I> is a work array of length <I>lwa</I>.
<P>
<I>lwa</I> is an integer input variable not less than <I>m</I>*<I>n</I> +
5*<I>n</I> + <I>m</I> for <B>lmder1</B>, or 5*<I>n</I>+<I>m</I> for <B>lmstr1_</B>.
<BR>

<A NAME="lbAI">&nbsp;</A>
<H3>Parameters for <B>lmstr_</B></H3>

<P>
<I>ftol</I> is a nonnegative input variable. Termination
occurs when both the actual and predicted relative
reductions in the sum of squares are at most <I>ftol</I>.
Therefore, <I>ftol</I> measures the relative error desired
in the sum of squares.
<P>
<I>xtol</I> is a nonnegative input variable. Termination
occurs when the relative error between two consecutive
iterates is at most <I>xtol</I>. Therefore, <I>xtol</I> measures the
relative error desired in the approximate solution.
<P>
<I>gtol</I> is a nonnegative input variable. Termination
occurs when the cosine of the angle between <I>fvec</I> and
any column of the Jacobian is at most <I>gtol</I> in absolute
value. Therefore, <I>gtol</I> measures the orthogonality
desired between the function vector and the columns
of the Jacobian.
<P>
<I>maxfev</I> is a positive integer input variable. Termination
occurs when the number of calls to <I>fcn</I> is at least
<I>maxfev</I> by the end of an iteration.
<P>
<I>diag</I> is an array of length <I>n</I>. If <I>mode</I> = 1 (see
below), <I>diag</I> is internally set. If <I>mode</I> = 2, <I>diag</I>
must contain positive entries that serve as
multiplicative scale factors for the variables.
<P>
<I>mode</I> is an integer input variable. If <I>mode</I> = 1, the
variables will be scaled internally. If <I>mode</I> = 2,
the scaling is specified by the input <I>diag</I>. Other
values of mode are equivalent to <I>mode</I> = 1.
<P>
<I>factor</I> is a positive input variable used in determining the
initial step bound. This bound is set to the product of <I>factor</I>
and the euclidean norm of <I>diag</I>*<I>x</I> if the latter is
nonzero, or else to <I>factor</I> itself. In most cases factor should
lie in the interval (.1,100.). 100. is a generally recommended
value.
<P>
<I>nprint</I> is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, fcn is called
with <I>iflag</I> = 0 at the beginning of the first iteration and
every <I>nprint</I> iterations thereafter and immediately prior to
return, with <I>x</I> and <I>fvec</I> available for printing. If
<I>nprint</I> is not positive, no special calls of fcn with
<I>iflag</I> = 0 are made.
<P>
<I>info</I> is an integer output variable. If the user has
terminated execution, info is set to the (negative)
value of iflag. See description of fcn. Otherwise,
info is set as follows.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;0&nbsp;&nbsp;improper&nbsp;input&nbsp;parameters.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;1&nbsp;&nbsp;both&nbsp;actual&nbsp;and&nbsp;predicted&nbsp;relative&nbsp;reductions
in the sum of squares are at most <I>ftol</I>.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;2&nbsp;&nbsp;relative&nbsp;error&nbsp;between&nbsp;two&nbsp;consecutive&nbsp;iterates
is at most <I>xtol</I>.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;3&nbsp;&nbsp;conditions&nbsp;for&nbsp;<I>info</I>&nbsp;=&nbsp;1&nbsp;and&nbsp;<I>info</I>&nbsp;=&nbsp;2&nbsp;both&nbsp;hold.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;4&nbsp;&nbsp;the&nbsp;cosine&nbsp;of&nbsp;the&nbsp;angle&nbsp;between&nbsp;fvec&nbsp;and&nbsp;any
column of the Jacobian is at most gtol in absolute value.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;5&nbsp;&nbsp;number&nbsp;of&nbsp;calls&nbsp;to&nbsp;<I>fcn</I>&nbsp;has&nbsp;reached&nbsp;or
exceeded maxfev.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;6&nbsp;&nbsp;<I>ftol</I>&nbsp;is&nbsp;too&nbsp;small.&nbsp;No&nbsp;further&nbsp;reduction&nbsp;in
the sum of squares is possible.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;7&nbsp;&nbsp;<I>xtol</I>&nbsp;is&nbsp;too&nbsp;small.&nbsp;No&nbsp;further&nbsp;improvement&nbsp;in
the approximate solution x is possible.
<P>
<BR>&nbsp;&nbsp;<I>info</I>&nbsp;=&nbsp;8&nbsp;<I>gtol</I>&nbsp;is&nbsp;too&nbsp;small.&nbsp;<I>fvec</I>&nbsp;is&nbsp;orthogonal&nbsp;to
the columns of the Jacobian to machine precision.
<P>
<I>nfev</I> is an integer output variable set to the number of
calls to <I>fcn</I> with <I>iflag</I> = 1.
<P>
<I>njev</I> is an integer output variable set to the number of
calls to fcn with <I>iflag</I> = 2.
<P>
<I>ipvt</I> is an integer output array of length <I>n</I>. <I>ipvt</I>
defines a permutation matrix <I>p</I> such that <I>jac</I>*<I>p</I> =
<I>q</I>*<I>r</I>, where <I>jac</I> is the final calculated Jacobian,
<I>q</I> is orthogonal (not stored), and <I>r</I> is upper triangular
with diagonal elements of nonincreasing magnitude.  Column <B>j</B>
of <I>p</I> is column <I>ipvt</I>(<B>j</B>) of the identity matrix.
<P>
<I>qtf</I> is an output array of length <I>n</I> which contains
the first <I>n</I> elements of the vector (<I>q</I> transpose)*<I>fvec</I>.
<P>
<I>wa1</I>, <I>wa2</I>, and <I>wa3</I> are work arrays of length <I>n</I>.
<P>
<I>wa4</I> is a work array of length <I>m</I>.
<BR>

<A NAME="lbAJ">&nbsp;</A>
<H2>SEE ALSO</H2>

<B><A HREF="lmdif_.html">lmdif</A></B>(3),

<B><A HREF="lmdif_.html">lmdif1</A></B>(3),

<B><A HREF="lmder_.html">lmder</A></B>(3),

<B><A HREF="lmder_.html">lmder1</A></B>(3).

<BR>

<A NAME="lbAK">&nbsp;</A>
<H2>AUTHORS</H2>

Jorge More', Burt Garbow, and Ken Hillstrom at Argonne National Laboratory.
This manual page was written by Jim Van Zandt &lt;<A HREF="mailto:jrv@debian.org">jrv@debian.org</A>&gt;,
for the Debian GNU/Linux system (but may be used by others).
<P>

<HR>
<A NAME="index">&nbsp;</A><H2>Index</H2>
<DL>
<DT><A HREF="#lbAB">NAME</A><DD>
<DT><A HREF="#lbAC">SYNOPSIS</A><DD>
<DT><A HREF="#lbAD">DESCRIPTION</A><DD>
<DL>
<DT><A HREF="#lbAE">Language notes</A><DD>
<DT><A HREF="#lbAF">User-supplied Function</A><DD>
<DT><A HREF="#lbAG">Parameters for both <B>lmstr_</B> and <B>lmstr1_</B></A><DD>
<DT><A HREF="#lbAH">Parameters for <B>lmstr1_</B></A><DD>
<DT><A HREF="#lbAI">Parameters for <B>lmstr_</B></A><DD>
</DL>
<DT><A HREF="#lbAJ">SEE ALSO</A><DD>
<DT><A HREF="#lbAK">AUTHORS</A><DD>
</DL>
<HR>
This document was created by
<A HREF="index.html">man2html</A>,
using the manual pages.<BR>
Time: 10:19:50 GMT, April 20, 2007
</BODY>
</HTML>