This file is indexed.

/usr/share/code_saturne/user/uslag1.f90 is in code-saturne-data 4.2.0+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
!-------------------------------------------------------------------------------

!                      Code_Saturne version 4.2.0
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2015 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

subroutine uslag1
!================

!===============================================================================
! Purpose:
! -------

!    User subroutine of the Lagrangian particle-tracking module:

!    User subroutine for input of calculation parameters (Fortran commons).
!    This parameters concern physical, numerical and post-processing options.

!-------------------------------------------------------------------------------
! Arguments
!__________________.____._____.________________________________________________.
! name             !type!mode ! role                                           !
!__________________!____!_____!________________________________________________!
!__________________!____!_____!________________________________________________!

!     Type: i (integer), r (real), s (string), a (array), l (logical),
!           and composite types (ex: ra real array)
!     mode: <-- input, --> output, <-> modifies data, --- work array
!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use entsor
use lagdim
use lagpar
use lagran
use ihmpre

!===============================================================================

implicit none

! Local variables

integer          ii , ipv , icha
double precision sio2 , al2o3 , fe2o3 , cao

!===============================================================================


!===============================================================================
! 1. Particle-tracking mode
!===============================================================================

! iilagr = 0 : no particle tracking (default)
!        = 1 : particle-tracking one-way coupling
!        = 2 : particle-tracking two-way coupling
!        = 3 : particle tracking on frozen field
!              (this option requires a calculation restart isuite=1,
!              all Eulerian fields are frozen (pressure, velocities,
!              scalars). This option is stronger than iccvfg)

iilagr = 1

!===============================================================================
! 2. Particle-tracking calculation restart
!===============================================================================

! isuila = 0 : no restart (default)
!        = 1 : restart (this value requires a restart on the continuous
!              phase too, i.e. isuite = 1)

isuila = 0

! Restart on volume and boundary statistics, and two-way coupling terms;
! useful if isuila = 1 (defaul off: 0 ; on: 1)

if (isuila.eq.1) isuist = 0

!===============================================================================
! 3. Particle tracking: specific models
!===============================================================================

! iphyla = 0 : only transport modeling (default)
!        = 1 : equation on temperature (in Celsius degrees), diameter or mass
!        = 2 : pulverized coal combustion (only available if the continuous
!              phase is a flame of pulverized coal)

iphyla = 0

! 3.1  equation on temperature, diameter or mass

if (iphyla.eq.1) then

  ! equation on diameter
  ! (default off: 0 ; on: 1)

  idpvar = 0

  ! equation on temperature (in Celsius degrees)
  ! (default off: 0 ; on: 1)
  ! This option requires a thermal scalar for the continuous phase.

  itpvar = 0

  ! equation on mass
  ! (default off: 0 ; on: 1)

  impvar = 0

endif

! 3.2 coal fouling

! Reference internal reports EDF/R&D: HI-81/00/030/A and HI-81/01/033/A

! Evaluation of the probability for a particle to stick to a wall.
! This probability is the ratio of a critical viscosity on the
! viscosity of coal ashes

!          visref
! P(Tp) = --------   for viscen >= visref
!          viscen

!       = 1 otherwise

! The expression of J.D. Watt and T.Fereday (J.Inst.Fuel-Vol42-p99)
! is used to evaluate the viscosity of the ashes

!                     Enc1 * 1.0d+7
! Log  (10*viscen) = --------------- + Enc2
!    10                            2
!                    (Tp(C) - 150)

! In literature, the range of the critical viscosity visref is between
! 8 Pa.s and 1.D7 Pa.s  For general purpose 1.0D+4 Pa.s is chosen

if (iphyla.eq.2) then

  ! iencra = 0 no fouling (default)
  !        = 1 fouling

  ! * In uslag2.f90, the boundary on which the fouling can occur must be given
  ! * Post-processing:  iensi3 = 1 and
  ! *                   iencnbbd = 1 / iencmabd = 1 / iencdibd = 1 /iencckbd = 1 (10.2)

  iencra = 0

  ! Example of definition of fouling criteria for each coal

  ! first (and single) coal icha = 1

  icha = 1

  ! tprenc : threshold temperature below which no fouling occurs
  !          (in degrees Celcius)

  tprenc(icha) = 600.d0

  ! visref : critical viscosity (Pa.s)

  visref(icha) = 10000.d0

  ! > coal composition in mineral matters:
  !   (with  SiO2 + Al2O3 + Fe2O3 + CaO + MgO = 100% in mass)

  sio2   =  36.0d0
  al2o3  =  20.8d0
  fe2o3  =   4.9d0
  cao    =  13.3d0

  ! Enc1 and Enc2 : coefficients in Watt and Fereday expression

  enc1(icha) = 0.00835d0 * sio2 + 0.00601d0 * al2o3 - 0.109d0

  enc2(icha) =   0.0415d0 * sio2  + 0.0192d0 * al2o3                &
               + 0.0276d0 * fe2o3 + 0.016 * cao - 3.92d0

endif

!===============================================================================
! 4. Calculation features for the dispersed phases
!===============================================================================

! 4.1 Additional variables
! ------------------------

! * these additional variables are stored in eptp and eptpa arrays
! * nvls is the number of additional variables
! * the upper limit is nusvar = 10 (fixed in block common lagpar.f90)
! * one access to additional variables in eptp eptpa using the pointer jvls:

! current step  -> eptp(jvls(nvus),nbpt)
! previous step -> eptpa(jvls(nvus),npbt)

! nbpt is the number of the considered particle
!      (integer between 1 and nbpart),
! nvus is the number of the additional variable
!      (integer between 1 and nvls),
! * the integration of the associated differential stochastic equation
!   requires a user intervention in uslaed.f90 subroutine

nvls = 0

! 4.2 Steady or unsteady continuous phase

! * if steady: isttio = 1
! * if unsteady: isttio = 0
! * if iilagr = 3 then isttio = 1

! Remark: if isttio = 0, then the statistical averages are reset
!         at each lagrangian iteration

if (iilagr.ne.3) isttio = 0

! 4.3 Two-way coupling: (iilagr = 2)

if (iilagr.eq.2) then

  ! * number of absolute lagrangian iteration (i.e. with restart)
  !   from which a time average for two-way coupling source terms is
  !   computed (steady source terms)
  ! * if the Lagrangian iteration is lower than NSTITS, source terms are
  !   unsteady: they are reset at each lagrangian iteration
  ! * useful only if ISTTIO = 1.
  ! * the min value for NSTITS is 1

  nstits = 1

  ! two-way coupling for dynamic (velocities and turbulent scalars)
  ! (default off: 0 ; on: 1)
  ! (useful if ICCVFG = 0)

  ltsdyn = 0

  ! two-way coupling for mass (if IPHYLA = 1 and IMPVAR = 1)
  ! (default off: 0 ; on: 1)

  if(iphyla.eq.1 .and. (impvar.eq.1 .or. idpvar.eq.1)) ltsmas = 0

  ! two-way coupling for thermal scalar
  ! (if iphyla = 1 and impvar = 1, or iphyla = 2)
  ! or for coal variables (if IPHYLA = 2)
  ! (default off: 0 ; on: 1)

  if((iphyla.eq.1 .and. itpvar.eq.1) .or. iphyla.eq.2) ltsthe = 0

endif

! 4.4 Volume statistics
! ---------------------

! 4.4.1 Generic parameters
! ~~~~~~~~~~~~~~~~~~~~~~~~~

! Calculation of the volume statistics
! (default off: 0 ; on: 1)

istala = 0

if (istala.eq.1) then

  ! Threshold for the management of volume statistics
  ! -------------------------------------------------
  ! * the value of the seuil variable is a statistical weight.
  ! * each cell of the mesh contains a statistical weight
  !   (sum of the statistical weights of all the particles
  !   located in the cell); seuil is the minimal value from
  !   which the contribution in statistical weight of a particle
  !   is not taken into account anymore in the full model
  !   of turbulent dispersion, in the resolution of the
  !   Poisson equation of correction of the mean velocities, and
  !   in the writing of the listing and post-processing.
  !

  seuil = 0.d0

  ! Calculation of the volume statistics from the absolute number
  ! of Lagrangian iterations
  ! * idstnt is a  absolute number of Lagrangian iterations
  !   (i.e. including calculation restarts)

  idstnt = 1

  ! Steady calculation from the absolute Lagrangian iteration nstist
  ! *  nstist is a  absolute number of Lagrangian iterations
  !   (i.e. including calculation restarts) from which the statistics
  !    are averaged in time.
  ! *  useful if the calculation is steady (isttio=1)
  ! *  if the number of Lagrangian iterations is lower than nstits,
  !    the transmitted source terms are unsteady (i.e. they are reset to
  !    zero ar each Lagrangian iteration)
  ! *  the minimal value acceptable for nstist is 1.

  nstist = idstnt

  ! 4.4.2 Volume statistical variables
  ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  ! Activation of the calculation of the particle volume fraction
  ! Name of the mean : Part_vol_frac

  iactfv = 1

  ! Activation of the calculation of the particle velocity x-component
  ! (mean and variance)
  ! Name of the mean: Part_velocity_X
  ! Name of the variance: var_Part_velocity_X

  iactvx = 1

  ! Activation of the calculation of the particle velocity y-component
  ! (average and variance)
  ! Name of the mean: Part_velocity_Y
  ! Name of the variance: var_Part_velocity_Y

  iactvy = 1

  ! Activation of the calculation of the particle velocity z-component
  ! (average and variance)
  ! Name of the mean: Part_velocity_Z
  ! Name of the variance: var_Part_velocity_Z

  iactvz = 1

  ! Activation of the calculation of the particle residence time
  ! (mean and variance)
  ! Name of the mean: Part_resid_time
  ! Name of the variance: var_Part_resid_time

  iactts = 1

  ! 2) Specific models (iphyla = 1) following the chosen options:
  !      Mean and variance of the temperature
  !      Mean and variance of the diameter
  !      Mean and variance of the mass

  if (iphyla.eq.1) then

    if (itpvar.eq.1) then
      ipv  = ipv  + 1
      nomlag(ipv) = 'MoTempPt'
      nomlav(ipv) = 'VaTempPt'
      ihslag(ipv)  = 2
    endif
    if (idpvar.eq.1) then
      ipv  = ipv  + 1
      nomlag(ipv) = 'MoDiamPt'
      nomlav(ipv) = 'VaDiamPt'
      ihslag(ipv)  = 2
    endif
    if (impvar.eq.1) then
      ipv  = ipv  + 1
      nomlag(ipv) = 'MoMassPt'
      nomlav(ipv) = 'VaMassPt'
      ihslag(ipv)  = 2
    endif

  else if (iphyla.eq.2) then

    ! 3) Pulverized coal (iphyla = 2) :
    !      Mean and variance of the mass
    !      Mean and variance of the temperature
    !      Mean and variance of the water mass
    !      Mean and variance of the mass of reactive coal
    !      Mean and variance of the mass of coke
    !      Mean and variance of the diameter of the shrinking core

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_mass'
    nomlav(ipv) = 'var_Part_mass'
    ihslag(ipv)  = 2

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_temperature'
    nomlav(ipv) = 'var_Part_temperature'
    ihslag(ipv)  = 2

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_wat_mass'
    nomlav(ipv) = 'var_Part_wat_mass'
    ihslag(ipv)  = 2

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_ch_mass'
    nomlav(ipv) = 'var_Part_ch_mass'
    ihslag(ipv)  = 2

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_ck_mass'
    nomlav(ipv) = 'var_Part_ck_mass'
    ihslag(ipv)  = 2

    ipv  = ipv  + 1
    nomlag(ipv) = 'Part_shrink_core_diam'
    nomlav(ipv) = 'var_Part_shrink_core_diam'
    ihslag(ipv)  = 2

  endif

  ! 4) Additional volume statistical variables
  !    ---------------------------------------
  ! * If the user wishes other statistic calculations
  !   than the standard ones, he must 1) prescribe
  !   their number nvlsts, 2) prescribe their names,
  !   3) prescribe ihslag and 4) intervene in the
  !   user subroutines uslast and uslaen to implement
  !   his new statistics (see the given examples)
  ! * Default maximal number of additional statistics: 20.
  !   (Otherwise, modify the nussta parameter is the
  !   include file lagpar.f90)

  nvlsts = 0

  if (nvlsts.gt.0) then
    do ii = 1,nvlsts
      ilvu(ii) = ipv + ii
      WRITE(NOMLAG(ILVU(II)),'(A6,I4.4)') 'MoyLag',II
      WRITE(NOMLAV(ILVU(II)),'(A6,I4.4)') 'VarLag',II
      ihslag(ilvu(ii))  = 1
    enddo
    ipv = ipv + nvlsts
  endif

  ! 6) Statistics per group:
  !    ----------------------
  ! * if the user wishes to calculate statistics per group of particles
  !   (by default there is no statistics of this kind), he must:
  !   1) prescribe nbclst the number of groups (limited to 100)
  !   2) assign in uslag2 the group to which belongs each particle
  !      through the iuslag array.
  !
  ! * Be careful, nbclst cannot be modified during a calculation restart
  !   (isuila=1); even if the calculation of the statistics is not triggered yet
  !   (istala=0).

  nbclst = 0

endif

!===============================================================================
! 6. Option concerning particle inlet
!===============================================================================

! Continous particle injection during the time step
! (and not only at the beginning the time step; this option
! makes it possible to avoid bunches of particles in the vicinity
! of the inlet zones)
! (default off: 0 ; on: 1)

injcon = 0

!===============================================================================
! 7. Techniue of variance reduction: cloning/merge of the particles
!===============================================================================

! Use of the Russian roulette
!                default off : 0
!                        on  : 1 without Y+ calculation
!                              2 with Y+ calculation

iroule = 0

!===============================================================================
! 8. Options concerning the numerical treatment of the dispersed phase
!===============================================================================

! Integration order of the stochastic differential equations
! (default 2; acceptable values 1 or 2)
!

nordre = 2

! Resolution of the Poisson equation for the particle mean velocity
! and correction of the particle instantaneous velocity
!      = 0: not correction of the velocities (default values)
!      = 1: correction of the instantaneous velocities

! Caution: OPTION STRICTLY FOR DEVELOPERS; PLEASE LEAVE THE DEFAULT VALUE FOR A
! ======== STANDARD USE OF THE CODE.           !

ilapoi = 0

!===============================================================================
! 9. Options concerning the treatment of the dispersed phase
!===============================================================================

! Caution: In this version, the turbulent dispersion works only if
! -------  the continuous phase is calculated with a k-eps or a Rij-eps model

! Activation of the turbulent dispersion
! (default on: 1 ; off: 0)

idistu = 1

! Turbulent dispersion imposed to the fluid one.

! If activated, then particle turbulent dispersion is
! equal to the fluid-particle one. The crossing-trajectory effects
! are suppressed ; it is then a case of turbulent diffusion. If the
! simulated particle density is equal to the fluid density, then
! we are simulating the displacement of fluid particles.
! (default off: 0 ; on: 1)

idiffl = 0

! modcpl :
!   = 0 for the incomplete model (default value)
!   > 0 for the full model, is equal the absolute number
!       of Lagrangian iterations from which the full model is activated
!       modcpl must not be lower than idstnt

modcpl = 0

! idirla (=1 or 2 or 3) : 1st, 2nd or 3rd direction
!   of the full model. Corresponds to the main direction
!   of the flow. Allow to calculate a non-isotropic Lagrangian timescale
!   (default idirla=1)

if (modcpl.gt.0) idirla = 1

!===============================================================================
! 10. Options concerning the treatment of specific forces
!===============================================================================
! idlvo = 0
!       = 1   dlvo deposition conditions are activated for the
!             wall with appropriate conditions idepfa (see uslag2.f90)

idlvo = 0

if (idlvo.eq.1) then

  ! Constants for the van der Waals forces
  ! --------------------------------------
  ! Hamaker constant for the particle/fluid/substrate system:

  cstham = 6.d-20

  ! Constants for the elecstrostatic forces
  !----------------------------------------

  ! Dielectric constant of the fluid (example: water at 293 K)

  epseau = 80.10d0

  ! Electrokinetic potential of the first solid - particle (Volt)

  phi_p = 50.d-3

  ! Electrokinetic potential of the second solid - surface (Volt)

  phi_s = -50.d-3

  ! Valency of ions in the solution (used for EDL forces)

  valen = 1.0d0

  ! Ionic force (mol/l)

  fion = 1.d-2

endif

!===============================================================================
! 11. Activation of Brownian motion
!===============================================================================

! Activation of Brownian motion:
! (default off: 0 ; on: 1)

! Caution: OPTION FOR DEVELOPERS ONLY
! ========

lamvbr = 0

!===============================================================================
! 12. Activation of deposition model
!===============================================================================

! Activation of the deposition model
! (default off: 0 ; on: 1)

idepst = 0

!===============================================================================
! 13. Activation of roughness and resuspension model
!===============================================================================

! Activation of the resuspension model
! (default off: 0 ; on: 1)

ireent = 0

! Caution: OPTION FOR DEVELOPERS ONLY
! ========

irough = 0  ! dlvo deposition conditions for roughness surface

! Parameters of the particle resuspension model for the roughness

!average distance between two large-scale asperities
espasg = 20.d-6

!density of the small-scale asperities
denasp = 6.36d13

!radius of small asperities
rayasp = 5.d-9

!radius of large asperities
rayasg = 2.d-6

!Young's modulus (GPa)
modyeq = 266.d9

!===============================================================================
! 14. Activation of the clogging model
!===============================================================================

! Activation of the clogging model
! (default off: 0 ; on: 1)

! Caution: OPTION FOR DEVELOPERS ONLY
! ========

iclogst = 0

! Parameters for the particle clogging model

jamlim = 0.74d0       ! Jamming limit

mporos = 0.366d0      ! Minimal porosity

csthpp = 5.0d-20      ! Hamaker constant for the particle/fluid/particle system

!===============================================================================
! 14bis. Influence of the deposit on the flow
!===============================================================================
! Activation of the influence of the deposit on the flow
! by the head losses calculation (with clogging model only)
! (default off: 0 ; on: 1)

iflow = 0

if (iflow .eq.1 ) then
iilagr = 1 !one-way coupling
isttio = 1 !the statistical averages are not reset
           !at each lagrangian iteration
endif

!===============================================================================
! 15. Activation of the precipitation/disolution model
!===============================================================================

! Activation of the precipitation/dissolution model
! (default off: 0 ; on: 1)

! Caution: OPTION FOR DEVELOPERS ONLY
ipreci = 0

!diameter of particles formed by precipitation
dprec =  2.d-6

!diameter of particles formed by precipitation
rho_preci =  5200.d0

!number of particle classes
nbrclas = 2

!===============================================================================
! 16. Variables to visualize on the trajectories or the particles
!
!     See also cs_user_postprocess_mesh in cs_user_postprocess.c to define
!     the associated visualization particle or trajectory segment meshes.
!===============================================================================

! For all the following variables, a value of 0 means "off", and 1 means "on"

! velocity of the flow seen
ivisv1  = 0

! particle velocity
ivisv2  = 0

! residence time
ivistp  = 0

! diameter
ivisdm  = 0

! temperature
if (iphyla.eq.1 .and. itpvar.eq.1) iviste  = 0

! mass
ivismp  = 0

if (iphyla.eq.2) then

  ! coal: diameter of the shrinking core
  ivisdk  = 0

  ! coal: mass of water
  iviswat  = 0

  ! coal: mass of reactive coal
  ivisch  = 0

  ! coal: mass of coke
  ivisck  = 0

endif

! 16.1 Boundary statistics: visualization of the particle/boundaries interactions
! ------------------------------------------------

! 16.1.1 Generic parameters
! ~~~~~~~~~~~~~~~~~~~~~~~~~~

! Particle/boundary interaction mode
! (default off: 0 ; on: 1)

iensi3 = 0

! Steady calculation of the boundary statistics from
! the absolute Lagrangian iteration nstbor.
! * nstbor is the absolute number of Lagrangian iterations
!   (i.e. including restarts) from which the statistics are averaged
!   (in time or by number of interactions)
! * useful if the calculation is steady (isttio=1)
! * if the absolute number of Lagrangian iterations is inferior to
!   nstbor, the statistics are unsteady (i.e. they are reset to zero at each
!   Lagrangian iteration)

nstbor = 1

! Seuilf for the management of the boundary statistics
! * the value of seuilf is a statistical weight
! * Each boundary face has undergone a number of particle interactions
!   in term of statistical weight (sum of the statistical weights of all
!   the particles that interacted with the boundary face); seuilf is the
!   minimal value from which the contribution of a face (in statistical terms)
!   is not taken into account anymore in the writing of the listing and
!   post-processing.

seuilf = 0.d0

! 16.1.2 Information to be recorded
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!
! * To activate them, the user has to set below
!   the corresponding keyword to 1.
! * The default selection must be validated or modified by the user.
! * By default the asked information for all the particle/wall interactions
!   are written in the same recording.
! * The boundary statistic 'number of particle/boundary interactions' must be
!   selected to activate the particle average imoybr(...) = 2

! Number of particle/boundary interactions
! (default off: 0 ; on: 1)
inbrbd = 1

! Particle mass flux associated to particle/boundary interactions
! (default off: 0 ; on: 1)
iflmbd = 1

! Angle between particle velocity and the plan of the boundary face
! (default off: 0 ; on: 1)
iangbd = 0

! Norm of particle velocity during the interation with the boundary face
! (default off: 0 ; on: 1)
ivitbd = 0

! (default off: 0 ; on: 1)
 if (iphyla.eq.2 .and. iencra.eq.1) then
   ! Number of particle/boundary interactions with fouling
   iencnbbd = 0
   ! Mass of fouled coal particles
   iencmabd = 0
   ! Diameter of fouled coal particles
   iencdibd = 0
   ! Coke fraction of fouled coal particles
   iencckbd = 0
 endif
! Additional user information to be recorded
! ------------------------------------------
! (for instance, erosion rate, temperature..)
! * these additional recordings are stored in the parbor array
! * here we prescribe the nusbor number of additional recordings
! * the max value of this number is nusbrd=10 (in lagpar.f90)

nusbor = 0

! 16.1.3 Name of the recordings for display,
!        Average in time of particle average
!        of the boundary statistics
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

! * A priori the user intervenes only in the additional user information
!   to be recorded: he must prescribe the name of the recording as well as
!   the type of average that he wishes to apply to it for the writing
!   of the listing and the post-processing.

! * The applied average is prescribed through the imoybr array:
!   - if imoybr(iusb(ii)) = 0 -> no average applied
!   - if imoybr(iusb(ii)) = 1 -> a time average is applied, i.e. the
!     statistic is divided by the last time step in the case of an unsteady
!     calculation with a number of iterations lower than nstbor; or that
!     the statistic is divided by the recording time in the case of a
!     steady calculation.
!    -if imoybr(iusb(ii)) = 2 -> a particle average is applied, i.e. the
!     statistic is divided by the number of recorded particle/boundary
!     interactions (in terms of statistical weight) in parbor(nfabor,inbr)
!     To use this average, inbrbd must be set to 1.
!   - if imoybr(iusb(ii)) = 3 -> (coal fouling only) a particle average
!     is applied, i.e. the statistic is divided by the number of recorded
!     particle/boundary interactions with fouling (in terms of statistical
!     weight) in parbor(nfabor,inbr), To use this average, iencnbbd must be
!     set to 1.
! * The back-ups in the restart file are performed without applying
!   this average.
! * The average is applied if the number of interactions (in statistical
!   weight) of the boundary face considered is greater than seuilf;
!   otherwise this average is set to zero.

!===============================================================================
! 17. Lagrangian listing
!===============================================================================

! Lagrangian period for the writing of the Lagrangian listing

ntlal = 1

!===============================================================================

return

end subroutine uslag1