This file is indexed.

/usr/share/code_saturne/user_examples/cs_user_boundary_conditions-auto_inlet_profile.f90 is in code-saturne-data 4.2.0+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
!-------------------------------------------------------------------------------

!                      Code_Saturne version 4.2.0
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2015 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

!===============================================================================
! Function:
! ---------

! Example of cs_user_boundary_conditions subroutine.f90 for inlet
! with automatic inlet profile.

! This example assumes the mesh is orthogonal at the inlet.
!
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! Arguments
!______________________________________________________________________________.
!  mode           name          role                                           !
!______________________________________________________________________________!
!> \param[in]     nvar          total number of variables
!> \param[in]     nscal         total number of scalars
!> \param[out]    icodcl        boundary condition code:
!>                               - 1 Dirichlet
!>                               - 2 Radiative outlet
!>                               - 3 Neumann
!>                               - 4 sliding and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 5 smooth wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 6 rough wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 9 free inlet/outlet
!>                                 (input mass flux blocked to 0)
!>                               - 13 Dirichlet for the advection operator and
!>                                    Neumann for the diffusion operator
!> \param[in]     itrifb        indirection for boundary faces ordering
!> \param[in,out] itypfb        boundary face types
!> \param[out]    izfppp        boundary face zone number
!> \param[in]     dt            time step (per cell)
!> \param[in,out] rcodcl        boundary condition values:
!>                               - rcodcl(1) value of the dirichlet
!>                               - rcodcl(2) value of the exterior exchange
!>                                 coefficient (infinite if no exchange)
!>                               - rcodcl(3) value flux density
!>                                 (negative if gain) in w/m2 or roughness
!>                                 in m if icodcl=6
!>                                 -# for the velocity \f$ (\mu+\mu_T)
!>                                    \gradt \, \vect{u} \cdot \vect{n}  \f$
!>                                 -# for the pressure \f$ \Delta t
!>                                    \grad P \cdot \vect{n}  \f$
!>                                 -# for a scalar \f$ cp \left( K +
!>                                     \dfrac{K_T}{\sigma_T} \right)
!>                                     \grad T \cdot \vect{n} \f$
!_______________________________________________________________________________

subroutine cs_user_boundary_conditions &
 ( nvar   , nscal  ,                                              &
   icodcl , itrifb , itypfb , izfppp ,                            &
   dt     ,                                                       &
   rcodcl )

!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstphy
use cstnum
use entsor
use parall
use period
use ihmpre
use ppppar
use ppthch
use coincl
use cpincl
use ppincl
use ppcpfu
use atincl
use atsoil
use ctincl
use elincl
use cs_fuel_incl
use mesh
use field
use turbomachinery
use cs_c_bindings

!===============================================================================

implicit none

! Arguments

integer          nvar   , nscal

integer          icodcl(nfabor,nvarcl)
integer          itrifb(nfabor), itypfb(nfabor)
integer          izfppp(nfabor)

double precision dt(ncelet)
double precision rcodcl(nfabor,nvarcl,3)

! Local variables

!< [loc_var_dec]
integer          ifac, iel, ii, ilelt, nlelt

double precision xustar2, xdh, d2s3, rhomoy
double precision acc(2), fmprsc, fmul, uref2, vnrm

integer, allocatable, dimension(:) :: lstelt, mrkcel

double precision, dimension(:), pointer :: bfpro_rom
double precision, dimension(:), pointer :: cvar_r11, cvar_r22, cvar_r33
double precision, dimension(:), pointer :: cvar_r12, cvar_r23, cvar_r13
double precision, dimension(:), pointer :: cvar_k, cvar_ep, cvar_phi
double precision, dimension(:), pointer :: cvar_omg
double precision, dimension(:), pointer :: cvar_al, cvar_fb
double precision, dimension(:), pointer :: cvar_nusa
double precision, dimension(:), pointer :: cvar_scal
double precision, dimension(:,:), pointer :: cvar_vel
!< [loc_var_dec]

!===============================================================================
! Initialization
!===============================================================================

!< [init]
allocate(lstelt(nfabor))  ! temporary array for boundary faces selection

! Map field arrays
call field_get_val_v(ivarfl(iu), cvar_vel)
call field_get_val_s(ibrom, bfpro_rom)

if (itytur.eq.2) then

  call field_get_val_s(ivarfl(ik), cvar_k)
  call field_get_val_s(ivarfl(iep), cvar_ep)

elseif (itytur.eq.3) then

  call field_get_val_s(ivarfl(ir11), cvar_r11)
  call field_get_val_s(ivarfl(ir22), cvar_r22)
  call field_get_val_s(ivarfl(ir33), cvar_r33)
  call field_get_val_s(ivarfl(ir12), cvar_r12)
  call field_get_val_s(ivarfl(ir13), cvar_r13)
  call field_get_val_s(ivarfl(ir23), cvar_r23)
  call field_get_val_s(ivarfl(iep), cvar_ep)

  if (iturb.eq.32) then
    call field_get_val_s(ivarfl(ial), cvar_al)
  endif

elseif (itytur.eq.5) then

  call field_get_val_s(ivarfl(ik), cvar_k)
  call field_get_val_s(ivarfl(iep), cvar_ep)
  call field_get_val_s(ivarfl(iphi), cvar_phi)

  if (iturb.eq.50) then
    call field_get_val_s(ivarfl(ifb), cvar_fb)
  elseif (iturb.eq.51) then
    call field_get_val_s(ivarfl(ial), cvar_al)
  endif

elseif (iturb.eq.60) then

  call field_get_val_s(ivarfl(ik), cvar_k)
  call field_get_val_s(ivarfl(iomg), cvar_omg)

elseif (iturb.eq.70) then

  call field_get_val_s(ivarfl(inusa), cvar_nusa)

endif

d2s3 = 2.d0/3.d0
!< [init]

!===============================================================================
! Assign a pseudo-periodic channel type inlet to a set of boundary faces.

! For each subset:
! - use selection criteria to filter boundary faces of a given subset
! - loop on faces from a subset
!   - set the boundary condition for each face

! A feedback loop is used so as to progressively reach a state similar
! to that of a periodic channel at the inlet.
!===============================================================================

!< [example_1]
call getfbr('INLET', nlelt, lstelt)
!==========

fmprsc = 1.d0 ! mean prescribed velocity

if (ntcabs.eq.1) then

  ! For the Rij-EBRSM model (and possibly V2f), we need a non-flat profile,
  ! so as to ensure turbulent production, and avoid laminarization;
  ! here, we simply divide the initial velocity by 10 for inlet
  ! faces adjacent to the wall.

  ! The loop below assumes wall conditions have been defined first
  ! (in the GUI, or in this file, before the current test).

  if (iturb.eq.32 .or. itytur.eq.5) then

    allocate(mrkcel(ncelet))
    do iel = 1, ncelet
      mrkcel(iel) = 0
    enddo

    do ifac = 1, nfabor
      if (itypfb(ifac) .eq. iparoi) then
        iel = ifabor(ifac)
        mrkcel(iel) = 1
      endif
    enddo

  endif

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)
    iel = ifabor(ifac)

    itypfb(ifac) = ientre

    rcodcl(ifac,iu,1) = - fmprsc * surfbo(1,ifac) / surfbn(ifac)
    rcodcl(ifac,iv,1) = - fmprsc * surfbo(2,ifac) / surfbn(ifac)
    rcodcl(ifac,iw,1) = - fmprsc * surfbo(3,ifac) / surfbn(ifac)

    if (iturb.eq.32 .or. itytur.eq.5) then
      if (mrkcel(iel) .eq. 1) then
        rcodcl(ifac,iu,1) = fmprsc/10.d0
      endif
    endif

    uref2 = rcodcl(ifac,iu,1)**2  &
          + rcodcl(ifac,iv,1)**2  &
          + rcodcl(ifac,iw,1)**2
    uref2 = max(uref2,1.d-12)

    !   Turbulence example computed using equations valid for a pipe.

    !   We will be careful to specify a hydraulic diameter adapted
    !     to the current inlet.

    !   We will also be careful if necessary to use a more precise
    !     formula for the dynamic viscosity use in the calculation of
    !     the Reynolds number (especially if it is variable, it may be
    !     useful to take the law from 'usphyv'. Here, we use by default
    !     the 'viscl0" value.
    !   Regarding the density, we have access to its value at boundary
    !     faces (romb) so this value is the one used here (specifically,
    !     it is consistent with the processing in 'usphyv', in case of
    !     variable density)

    !     Hydraulic diameter
    xdh     = 1.d0

    ! Calculation of turbulent inlet conditions using
    !   the turbulence intensity and standard laws for a circular pipe
    !   (their initialization is not needed here but is good practice)

    rhomoy  = bfpro_rom(ifac)

    call turbulence_bc_inlet_hyd_diam(ifac, uref2, xdh, rhomoy, viscl0,  &
                                      rcodcl)

    ! Handle scalars
    if (nscal.gt.0) then
      do ii = 1, nscal
        rcodcl(ifac,isca(ii),1) = 1.d0
      enddo
    endif

  enddo

  if (iturb.eq.32 .or. itytur.eq.5) then
    deallocate(mrkcel)
  endif

else

! Subsequent time steps
!----------------------

  acc(1) = 0.d0
  acc(2) = 0.d0

  ! Estimate multiplier

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)
    iel = ifabor(ifac)

    vnrm = sqrt(cvar_vel(1,iel)**2 + cvar_vel(2,iel)**2 + cvar_vel(3,iel)**2)
    acc(1) = acc(1) + vnrm*surfbn(ifac)
    acc(2) = acc(2) + surfbn(ifac)

  enddo

  if (irangp.ge.0) then
    call parrsm(2, acc)
  endif

  fmul = fmprsc/(acc(1)/acc(2)) ! 1 / estimate flow multiplier

  ! Apply BC

  do ilelt = 1, nlelt

    ifac = lstelt(ilelt)
    iel = ifabor(ifac)

    itypfb(ifac) = ientre

    vnrm = sqrt(cvar_vel(1,iel)**2 + cvar_vel(2,iel)**2 + cvar_vel(3,iel)**2)

    rcodcl(ifac,iu,1) = - fmul * vnrm * surfbo(1,ifac) / surfbn(ifac)
    rcodcl(ifac,iv,1) = - fmul * vnrm * surfbo(2,ifac) / surfbn(ifac)
    rcodcl(ifac,iw,1) = - fmul * vnrm * surfbo(3,ifac) / surfbn(ifac)

    if (itytur.eq.2) then

      rcodcl(ifac,ik,1)  = cvar_k(iel)
      rcodcl(ifac,iep,1) = cvar_ep(iel)

    elseif (itytur.eq.3) then

      rcodcl(ifac,ir11,1) = cvar_r11(iel)
      rcodcl(ifac,ir22,1) = cvar_r22(iel)
      rcodcl(ifac,ir33,1) = cvar_r33(iel)
      rcodcl(ifac,ir12,1) = cvar_r12(iel)
      rcodcl(ifac,ir13,1) = cvar_r13(iel)
      rcodcl(ifac,ir23,1) = cvar_r23(iel)
      rcodcl(ifac,iep,1)  = cvar_ep(iel)

      if (iturb.eq.32) then
        rcodcl(ifac,ial,1)  = cvar_al(iel)
      endif

    elseif (itytur.eq.5) then

      rcodcl(ifac,ik,1)  = cvar_k(iel)
      rcodcl(ifac,iep,1) = cvar_ep(iel)
      rcodcl(ifac,iphi,1) = cvar_phi(iel)

      if (iturb.eq.50) then
        rcodcl(ifac,ifb,1)  = cvar_fb(iel)
      elseif (iturb.eq.51) then
        rcodcl(ifac,ial,1)  = cvar_al(iel)
      endif

    elseif (iturb.eq.60) then

      rcodcl(ifac,ik,1)  = cvar_k(iel)
      rcodcl(ifac,iomg,1) = cvar_omg(iel)

    elseif (iturb.eq.70) then

      rcodcl(ifac,inusa,1) = cvar_nusa(iel)

    endif

    ! Handle scalars (a correction similar to that of velocity is suggested
    !                 rather than the simpler code below)
    if (nscal.gt.0) then
      do ii = 1, nscal
        call field_get_val_s(ivarfl(isca(ii)), cvar_scal)
        rcodcl(ifac,isca(ii),1) = cvar_scal(ii)
      enddo
    endif

  enddo

endif
!< [example_1]

!--------
! Formats
!--------

!----
! End
!----

deallocate(lstelt)  ! temporary array for boundary faces selection

return
end subroutine cs_user_boundary_conditions