This file is indexed.

/usr/src/dahdi-2.10.2~dfsg-1ubuntu1/include/dahdi/fasthdlc.h is in dahdi-dkms 1:2.10.2~dfsg-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * Mark's Mythical Table-based raw HDLC implementation
 *
 * This is designed to be a very fast, but memory efficient
 * implementation of standard HDLC protocol.
 *
 * This table based HDLC technology is PATENT PENDING, but will always be
 * remain freely distributable under the terms of the GPL version 2. 
 *
 * For non-GPL licensing, please contact Mark Spencer at 
 * the below e-mail address.
 *
 * Copyright (C) 2001-2008, Digium, Inc.
 *
 * Written by Mark Spencer <markster@digium.com>
 * 
 */

/*
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2 as published by the
 * Free Software Foundation. See the LICENSE file included with
 * this program for more details.
 */

#ifndef _FASTHDLC_H
#define _FASTHDLC_H

enum fasthdlc_mode {
	FASTHDLC_MODE_64 = 0,
	FASTHDLC_MODE_56,
	FASTHDLC_MODE_16,
};

struct fasthdlc_state {
	int state;		/* What state we are in */
	unsigned int data;	/* Our current data queue */
	int bits;		/* Number of bits in our data queue */
	int ones;		/* Number of ones */
	enum fasthdlc_mode mode;
	unsigned int minbits;
};

#ifdef FAST_HDLC_NEED_TABLES
#define RETURN_COMPLETE_FLAG	(0x1000)
#define RETURN_DISCARD_FLAG	(0x2000)
#define RETURN_EMPTY_FLAG	(0x4000)

/* Unlike most HDLC implementations, we define only two states,
   when we are in a valid frame, and when we are searching for
   a frame header */

#define FRAME_SEARCH	0
#define PROCESS_FRAME	1

/* 

   HDLC Search State table -- Look for a frame header.  The return value
   of this table is as follows:

  |---8---|---7---|---6---|---5---|---4---|---3---|---2---|---1---| 
  |      Z E R O E S      |  Next |         Bits Consumed         |
  |-------|-------|-------|-------|-------|-------|-------|-------|

   The indexes for this table are the state (0 or 1) and the next 8
   bits of the stream.

   Note that this table is only used for state 0 and 1.

   The user should discard the top "bits consumed" bits of data before
   the next call.  "Next state" represents the actual next state for
   decoding.

*/
static unsigned char hdlc_search[256];

/*
  HDLC Data Table

  The indexes to this table are the number of one's we've seen so far (0-5) and
  the next 10 bits of input (which is enough to guarantee us that we
  will retrieve at least one byte of data (or frame or whatever).

  The format for the return value is:

  Bits 15: Status (1=Valid Data, 0=Control Frame (see bits 7-0 for type))
  Bits 14-12: Number of ones in a row, so far
  Bits 11-8:  The number of bits consumed (0-10)
  Bits 7-0:   The return data (if appropriate)
  
  The next state is simply bit #15

*/

#define CONTROL_COMPLETE	1
#define CONTROL_ABORT		2

#define STATUS_MASK	(1 << 15)
#define STATUS_VALID	(1 << 15)
#define STATUS_CONTROL	(0 << 15)
#define STATE_MASK	(1 << 15)
#define ONES_MASK	(7 << 12)
#define	DATA_MASK	(0xff)

static unsigned short hdlc_frame[6][1024];

static unsigned int minbits[2] = { 8, 10 };

/*
   Last, but not least, we have the encoder table.  It takes
   as its indices the number of ones so far and a byte of data
   and returns an int composed of the following fields:

   Bots 31-22: Actual Data
   Bits 21-16: Unused
   Bits 15-8:  Number of ones
   Bits 3-0:   Number of bits of output (13-4) to use

   Of course we could optimize by reducing to two tables, but I don't
   really think it's worth the trouble at this point.
  */

static unsigned int hdlc_encode[6][256];

static inline char hdlc_search_precalc(unsigned char c)
{
	int x, p=0;
	/* Look for a flag.  If this isn't a flag,
	   line us up for the next possible shot at
	   a flag */

	/* If it's a flag, we go to state 1, and have
	   consumed 8 bits */
	if (c == 0x7e) 
		return 0x10 | 8;

	/* If it's an abort, we stay in the same state
	   and have consumed 8 bits */
	if (c == 0x7f)
		return 0x00 | 8;

	/* If it's all 1's, we state in the same state and
	   have consumed 8 bits */
	if (c == 0xff)
		return 0x00 | 8;

	/* If we get here, we must have at least one zero in us
	   but we're not the flag.  So, start at the end (LSB) and
	   work our way to the top (MSB) looking for a zero.  The 
	   position of that 0 is most optimistic start of a real
	   frame header */
	x=1;
	p=7;
	while(p && (c & x)) {
		x <<= 1;
		p--;
	}
	return p;
}

#ifdef DEBUG_PRECALC
static inline void hdlc_search_print(char c, char r)
{
	int x=0x80;
	while(x) {
		printf("%s", c & x ? "1" : "0");
		x >>= 1;
	}
	printf(" => State %d, Consume %d\n", (r & 0x10) >> 4, r & 0xf);
}
#endif

#define HFP(status, ones, bits, data) \
	((status) | ((ones) << 12) | ((bits) << 8) | (data))

static inline unsigned int hdlc_frame_precalc(unsigned char x, unsigned short c)
{
	/* Assume we have seen 'x' one's so far, and have read the
	   bottom 10 bytes of c (MSB first).  Now, we HAVE to have
	   a byte of data or a frame or something.  We are assumed
	   to be at the beginning of a byte of data or something */
	unsigned char ones = x;
	unsigned char data=0;
	int bits=0;
	int consumed=0;
	while(bits < 8) {
		data >>=1;
		consumed++;
		if (ones == 5) {
			/* We've seen five ones */
			if (c & 0x0200) {
				/* Another one -- Some sort of signal frame */
				if ((!(c & 0x0100)) && (bits == 6)) {
					/* This is a frame terminator (10) */
					return HFP(0, 
						   0, 8, CONTROL_COMPLETE);
				} else {
					/* Yuck!  It's something else...
					   Abort this entire frame, and
					   start looking for a good frame */
					return HFP(0, 
						   0, consumed+1, CONTROL_ABORT);
				}
			} else {
				/* It's an inserted zero, just skip it */
				ones = 0;
				data <<= 1;
			}
		} else {
			/* Add it to our bit list, LSB to
			   MSB */
			if (c & 0x0200) {
				data |= 0x80;
				ones++;
			} else 
				ones=0;
			bits++;	
		}
		c <<= 1;
	}
	/* Consume the extra 0 now rather than later. */
	if (ones == 5) {
		ones = 0;
		consumed++;
	}
	return HFP(STATUS_VALID, ones, consumed, data);
}

#ifdef DEBUG_PRECALC

static inline void hdlc_frame_print(unsigned char x, unsigned short c, unsigned int res)
{
	int z=0x0200;
	char *status[] = {
		"Control",
		"Valid",
	};
	printf("%d one's then ", x);
	while(z) {
		printf("%s", c & z ? "1" : "0");
		z >>= 1;
	}
	printf(" => Status %s, ", res & STATUS_MASK ? "1" : "0");
	printf("Consumed: %d, ", (res & 0x0f00) >> 8);
	printf("Status: %s, ", status[(res & STATUS_MASK) >> 15]);
	printf("Ones: %d, ", (res & ONES_MASK) >> 12);
	printf("Data: %02x\n", res & 0xff);
	
}

#endif

static inline unsigned int hdlc_encode_precalc(int x, unsigned char y)
{
	int bits=0;
	int ones=x;
	unsigned short data=0;
	int z;
	for (z=0;z<8;z++) {
		/* Zero-stuff if needed */
		if (ones == 5) {
			/* Stuff a zero */
			data <<= 1;
			ones=0;
			bits++;
		}
		if (y & 0x01) {
			/* There's a one */
			data <<= 1;
			data |= 0x1;
			ones++;
			bits++;
		} else {
			data <<= 1;
			ones = 0;
			bits++;
		}
		y >>= 1;
	}
	/* Special case -- Stuff the zero at the end if appropriate */
	if (ones == 5) {
		/* Stuff a zero */
		data <<= 1;
		ones=0;
		bits++;
	}
	data <<= (10-bits);
	return (data << 22) | (ones << 8) | (bits);
}

#ifdef DEBUG_PRECALC
static inline void hdlc_encode_print(int x, unsigned char y, unsigned int val)
{
	unsigned int z;
	unsigned short c;
	printf("%d ones, %02x (", x, y);
	z = 0x80;
	while(z) {
		printf("%s", y & z ? "1" : "0");
		z >>= 1;
	}
	printf(") encoded as ");
	z = 1 << 31;
	for (x=0;x<(val & 0xf);x++) {
		printf("%s", val & z ? "1" : "0");
		z >>= 1;
	}
	printf(" with %d ones now, %d bits in len\n", (val & 0xf00) >> 8, val & 0xf);

		
}
#endif

static inline void fasthdlc_precalc(void)
{
	int x;
	int y;
	/* First the easy part -- the searching */
	for (x=0;x<256;x++) {
		hdlc_search[x] = hdlc_search_precalc(x);
#ifdef DEBUG_PRECALC
		hdlc_search_print(x, hdlc_search[x]);
#endif
	}
	/* Now the hard part -- the frame tables */
	for (x=0;x<6;x++) {
		/* Given the # of preceeding ones, process the next
		   byte of input (up to 10 actual bits) */
		for (y=0;y<1024;y++) {
			hdlc_frame[x][y] = hdlc_frame_precalc(x, y);
#ifdef DEBUG_PRECALC
			hdlc_frame_print(x, y, hdlc_frame[x][y]);
#endif
		}
	}
	/* Now another not-so-hard part, the encoding table */
	for (x=0;x<6;x++) {
		for (y=0;y<256;y++) {
			hdlc_encode[x][y] = hdlc_encode_precalc(x,y);
#ifdef DEBUG_PRECALC
			hdlc_encode_print(x,y,hdlc_encode[x][y]);
#endif
		}
	}
}


static inline void fasthdlc_init(struct fasthdlc_state *h, enum fasthdlc_mode mode)
{
	/* Initializes all states appropriately */
	h->mode = mode;
	h->state = 0;
	h->bits = 0;
	h->data = 0;
	h->ones = 0;

	switch (mode) {
	case FASTHDLC_MODE_64:
		h->minbits = 8;
		break;
	case FASTHDLC_MODE_56:
		h->minbits = 7;
		break;
	case FASTHDLC_MODE_16:
		h->minbits = 2;
		break;
	}

}

static inline int fasthdlc_tx_load_nocheck(struct fasthdlc_state *h, unsigned char c)
{
	unsigned int res;
	res = hdlc_encode[h->ones][c];
	h->ones = (res & 0xf00) >> 8;
	h->data |= (res & 0xffc00000) >> h->bits;
	h->bits += (res & 0xf);
	return 0;
}

static inline int fasthdlc_tx_load(struct fasthdlc_state *h, unsigned char c)
{
	/* Gotta have at least 10 bits left */
	if (h->bits > 22) 
		return -1;
	return fasthdlc_tx_load_nocheck(h, c);
}

static inline int fasthdlc_tx_frame_nocheck(struct fasthdlc_state *h)
{
	h->ones = 0;
	h->data |= ( 0x7e000000 >> h->bits);
	h->bits += 8;
	return 0;
}

static inline int fasthdlc_tx_frame(struct fasthdlc_state *h)
{
	if (h->bits > 24)
		return -1;
	return fasthdlc_tx_frame_nocheck(h);
}

static inline int fasthdlc_tx_need_data(struct fasthdlc_state *h)
{
	if (h->mode == FASTHDLC_MODE_56) {
		if (h->bits < 7)
			return 1;
	} else if (h->mode == FASTHDLC_MODE_16) {
		if (h->bits < 2)
			return 1;
	} else {
		if (h->bits < 8)
			return 1;
	}

	return 0;
}

static inline int fasthdlc_tx_run_nocheck(struct fasthdlc_state *h)
{
	unsigned char b;
	if (h->mode == FASTHDLC_MODE_16) {
		b = h->data >> 30;
		h->bits -= 2;
		h->data <<= 2;

		return (b & 3) << 6;
	} else if (h->mode == FASTHDLC_MODE_56) {
		b = h->data >> 25;
		h->bits -= 7;
		h->data <<= 7;

		return ((b & 0x7f) << 1) | 1;
	} else {
		b = h->data >> 24;
		h->bits -= 8;
		h->data <<= 8;

		return b;
	}

}

static inline int fasthdlc_tx_run(struct fasthdlc_state *h)
{
	if (h->bits < h->minbits)
		return -1;
	return fasthdlc_tx_run_nocheck(h);
}

static inline int fasthdlc_rx_load_nocheck(struct fasthdlc_state *h, unsigned char b)
{
	if (h->mode == FASTHDLC_MODE_16) {
		h->data |= (b >> 6) << (30-h->bits);
		h->bits += 2;
	} else if (h->mode == FASTHDLC_MODE_56) {
		h->data |= (b >> 1) << (25-h->bits);
		h->bits += 7;
	} else {
		/* Put the new byte in the data stream */
		h->data |= b << (24-h->bits);
		h->bits += 8;
	}
	return 0;
}

static inline int fasthdlc_rx_load(struct fasthdlc_state *h, unsigned char b)
{
	/* Make sure we have enough space */
	if (h->bits > 24)
		return -1;
	return fasthdlc_rx_load_nocheck(h, b);
}

/*
   Returns a data character if available, logical OR'd with 
   zero or more of RETURN_COMPLETE_FLAG, RETURN_DISCARD_FLAG,
   and RETURN_EMPTY_FLAG, signifying a complete frame, a
   discarded frame, or there is nothing to return.
   */

static inline int fasthdlc_rx_run(struct fasthdlc_state *h)
{
	unsigned short next;
	int retval=RETURN_EMPTY_FLAG;
	while ((h->bits >= minbits[h->state]) && (retval == RETURN_EMPTY_FLAG)) {
		/* Run until we can no longer be assured that we will
		   have enough bits to continue */
		switch(h->state) {
		case FRAME_SEARCH:
			/* Look for an HDLC frame, keying from
			   the top byte.  */
			next = hdlc_search[h->data >> 24];
			h->bits -= next & 0x0f;
			h->data <<= next & 0x0f;
			h->state = next >> 4;
			h->ones = 0;
			break;
		case PROCESS_FRAME:
			/* Process as much as the next ten bits */
			next = hdlc_frame[h->ones][h->data >> 22];
			h->bits  -= ((next & 0x0f00) >> 8);
			h->data <<= ((next & 0x0f00) >> 8);
			h->state = (next & STATE_MASK) >> 15;
			h->ones = (next & ONES_MASK) >> 12;
			switch(next & STATUS_MASK) {
			case STATUS_CONTROL:
				if (next & CONTROL_COMPLETE) {
					/* A complete, valid frame received */
					retval = (RETURN_COMPLETE_FLAG);
					/* Stay in this state */
					h->state = 1;
				} else {
				/* An abort (either out of sync of explicit) */
					retval = (RETURN_DISCARD_FLAG);
				}
				break;
			case STATUS_VALID:
				retval = (next & DATA_MASK);
			}
		}
	}
	return retval;
}
#endif /* FAST_HDLC_NEED_TABLES */
#endif