/usr/share/pyshared/Extensions/param2.py is in eficas 6.4.0-1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | # -*- coding: utf-8 -*-
from __future__ import division
import math
import types
try:
import Numeric
except:
import numpy
Numeric = numpy
def mkf(value):
if type(value) in (type(1), type(1L), type(1.5), type(1j),type("hh")) :
return Constant(value)
elif isinstance(value, Formula):
return value
elif type(value) == type([]):
return Constant(value)
else:
# return Constant(value)
raise TypeError, ("Can't make formula from", value)
#class Formula(object):
class Formula:
def __len__(self):
val=self.eval()
if val is None:return 0
try:
return len(val)
except:
return 1
def __complex__(self): return complex(self.eval())
def __int__(self): return int(self.eval())
def __long__(self): return long(self.eval())
def __float__(self): return float(self.eval())
def __pos__(self): return self # positive
def __neg__(self): return Unop('-', self)
def __abs__(self): return Unop('abs', self)
def __add__(self, other): return Binop('+', self, other)
def __radd__(self, other): return Binop('+', other, self)
def __sub__(self, other): return Binop('-', self, other)
def __rsub__(self, other): return Binop('-', other, self)
def __mul__(self, other): return Binop('*', self, other)
def __rmul__(self, other): return Binop('*', other, self)
def __div__(self, other): return Binop('/', self, other)
def __rdiv__(self, other): return Binop('/', other, self)
def __truediv__(self, other): return Binop('/', self, other)
def __rtruediv__(self, other): return Binop('/', other, self)
def __floordiv__(self, other): return Binop('//', self, other)
def __rfloordiv__(self, other): return Binop('//', other, self)
def __pow__(self, other): return Binop('**', self, other)
def __rpow__(self, other): return Binop('**', other, self)
def __getitem__(self,i):return Binop('[]',self,i)
def __cmp__( self, other ): return self.eval().__cmp__(other)
def __eq__( self, other ): return self.eval() == other
def __ne__( self, other ): return self.eval() != other
def __lt__( self, other ): return self.eval() < other
def __le__( self, other ): return self.eval() <= other
def __gt__( self, other ): return self.eval() > other
def __ge__( self, other ): return self.eval() >= other
def __hash__(self):return id(self)
def _div(a,b):
if isinstance(a,(int,long)) and isinstance(b,(int,long)):
if a%b:
return a/b
else:
return a//b
else:
return a/b
class Binop(Formula):
opmap = { '+': lambda a, b: a + b,
'*': lambda a, b: a * b,
'-': lambda a, b: a - b,
'/': _div,
'//': lambda a, b: a // b,
'**': lambda a, b: a ** b,
'[]': lambda a, b: a[b] ,
}
def __init__(self, op, value1, value2):
self.op = op
self.values = mkf(value1), mkf(value2)
def __str__(self):
if self.op == '[]':
return "%s[%s]" % (self.values[0], self.values[1])
else:
return "(%s %s %s)" % (self.values[0], self.op, self.values[1])
def __repr__(self):
if self.op == '[]':
return "%s[%s]" % (self.values[0], self.values[1])
else:
return "(%s %s %s)" % (self.values[0], self.op, self.values[1])
def eval(self):
result= self.opmap[self.op](self.values[0].eval(),
self.values[1].eval())
while isinstance(result,Formula):
result=result.eval()
return result
def __adapt__(self,validator):
return validator.adapt(self.eval())
class Unop(Formula):
opmap = { '-': lambda x: -x,
'abs': lambda x: abs(x),
}
def __init__(self, op, arg):
self._op = op
self._arg = mkf(arg)
def __str__(self):
return "%s(%s)" % (self._op, self._arg)
def __repr__(self):
return "%s(%s)" % (self._op, self._arg)
def eval(self):
return self.opmap[self._op](self._arg.eval())
def __adapt__(self,validator):
return validator.adapt(self.eval())
class Unop2(Unop):
def __init__(self, nom, op, arg):
self._nom = nom
self._op = op
self._arg=[]
for a in arg:
self._arg.append(mkf(a))
def __str__(self):
s="%s(" % self._nom
for a in self._arg:
s=s+str(a)+','
s=s+")"
return s
def __repr__(self):
s="%s(" % self._nom
for a in self._arg:
s=s+str(a)+','
s=s+")"
return s
def eval(self):
l=[]
for a in self._arg:
l.append(a.eval())
return self._op(*l)
class Constant(Formula):
def __init__(self, value): self._value = value
def eval(self): return self._value
def __str__(self): return str(self._value)
def __adapt__(self,validator):
return validator.adapt(self._value)
class Variable(Formula):
def __init__(self,name,value):
self._name=name
self._value=value
def eval(self): return self._value
def __repr__(self): return "Variable('%s',%s)" % (self._name, self._value)
def __str__(self): return self._name
def __adapt__(self,validator):
return validator.adapt(self._value)
def Eval(f):
if isinstance(f,Formula):
f=f.eval()
elif type(f) in (types.ListType, ):
f=[Eval(i) for i in f]
elif type(f) in (types.TupleType,):
f=tuple([Eval(i) for i in f])
return f
#surcharge de la fonction cos de Numeric pour les parametres
original_ncos=Numeric.cos
def cos(f): return Unop('ncos', f)
Unop.opmap['ncos']=lambda x: original_ncos(x)
Numeric.cos=cos
#surcharge de la fonction sin de Numeric pour les parametres
original_nsin=Numeric.sin
def sin(f): return Unop('nsin', f)
Unop.opmap['nsin']=lambda x: original_nsin(x)
Numeric.sin=sin
#surcharge de la fonction array de Numeric pour les parametres
original_narray=Numeric.array
def array(f,*tup,**args):
"""array de Numeric met en défaut la mécanique des parametres
on la supprime dans ce cas. Il faut que la valeur du parametre soit bien définie
"""
return original_narray(Eval(f),*tup,**args)
Numeric.array=array
#surcharge de la fonction sin de math pour les parametres
original_sin=math.sin
def sin(f): return Unop('sin', f)
Unop.opmap['sin']=lambda x: original_sin(x)
math.sin=sin
#surcharge de la fonction cos de math pour les parametres
original_cos=math.cos
Unop.opmap['cos']=lambda x: original_cos(x)
def cos(f): return Unop('cos', f)
math.cos=cos
#surcharge de la fonction sqrt de math pour les parametres
original_sqrt=math.sqrt
def sqrt(f): return Unop('sqrt', f)
Unop.opmap['sqrt']=lambda x: original_sqrt(x)
math.sqrt=sqrt
#surcharge de la fonction ceil de math pour les parametres
original_ceil=math.ceil
Unop.opmap['ceil']=lambda x: original_ceil(x)
def ceil(f): return Unop('ceil', f)
math.ceil=ceil
|