This file is indexed.

/usr/lib/python2.7/dist-packages/Epigrass/epimodels.py is in epigrass 2.4.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
#coding:utf-8
from __future__ import division

"""
Library of discrete time Epidemic models

copyright 2012 Flávio Codeco Coelho
License: GPL-v3
"""

__author__ = 'fccoelho'

from numpy.random import poisson
from numpy import inf, nan, nan_to_num
import sys
import redis

redisclient = redis.StrictRedis()

vnames = {
    'SIR': ['Exposed', 'Infectious', 'Susceptible'],
    'SIR_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SIS': ['Exposed', 'Infectious', 'Susceptible'],
    'SIS_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIS': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIS_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIR': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIR_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SIpRpS': ['Exposed', 'Infectious', 'Susceptible'],
    'SIpRpS_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIpRpS': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIpRpS_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIpR': ['Exposed', 'Infectious', 'Susceptible'],
    'SEIpR_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SIpR': ['Exposed', 'Infectious', 'Susceptible'],
    'SIpR_s': ['Exposed', 'Infectious', 'Susceptible'],
    'SIRS': ['Exposed', 'Infectious', 'Susceptible'],
    'SIRS_s': ['Exposed', 'Infectious', 'Susceptible'],
    'Custom': ['Exposed', 'Infectious', 'Susceptible'],
    'Influenza': ('Susc_age1', 'Incub_age1', 'Subc_age1', 'Sympt_age1', 'Comp_age1',
                  'Susc_age2', 'Incub_age2', 'Subc_age2', 'Sympt_age2', 'Comp_age2',
                  'Susc_age3', 'Incub_age3', 'Subc_age3', 'Sympt_age3', 'Comp_age3',
                  'Susc_age4', 'Incub_age4', 'Subc_age4', 'Sympt_age4', 'Comp_age4',),
}


class Epimodel(object):
    """
    Defines a library of discrete time population models
    """

    def __init__(self, geocode, modtype='', parallel=True):
        """
        defines which models a given site will use
        and set variable names accordingly.
        :param modtype:
        """
        self.step = selectModel(modtype)
        self.geocode = geocode
        self.parallel = parallel

    def __call__(self, *args, **kwargs):
        args = self.get_args_from_redis()
        res = self.step(*args)
        self.update_redis(res)
        #return res

    def get_args_from_redis(self):
        """
        get updated parameters from the redis database.
        :param geocode: geocode of the site running this model.
        """
        inits = [int(nan_to_num(i)) for i in eval(redisclient.lindex("{}:inits".format(self.geocode), -1))]
        simstep = int(redisclient.get("simstep"))
        totpop = int(float(redisclient.get("{}:totpop".format(self.geocode))))
        theta = int(nan_to_num(float(redisclient.get("{}:theta".format(self.geocode)))))
        npass = int(float(redisclient.get("{}:npass".format(self.geocode))))
        bi = redisclient.hgetall("{}:bi".format(self.geocode))
        bi = {k: float(v) for k, v in bi.items()}
        bp = redisclient.hgetall("{}:bp".format(self.geocode))
        bp = {k: float(v) for k, v in bp.items()}
        values = [float(i) for i in redisclient.lrange("{}:values".format(self.geocode), 0, -1)]
        return inits, simstep, totpop, theta, npass, bi, bp, values

    def update_redis(self, results):
        """
        Update redis database with the results of the model
        :param results: results tuple.
        """
        # Site state
        state, Lpos, migInf = results
        redisclient.rpush("{}:inits".format(self.geocode), state)  # updating inits
        redisclient.rpush('{}:ts'.format(self.geocode), state)
        redisclient.set('{}:Lpos'.format(self.geocode), Lpos)
        totc = int(nan_to_num(float(redisclient.get('{}:totalcases'.format(self.geocode)))))
        redisclient.set('{}:totalcases'.format(self.geocode), Lpos + totc)
        redisclient.rpush('{}:incidence'.format(self.geocode), Lpos)
        redisclient.set('{}:migInf'.format(self.geocode), migInf)

        # Graph state
        if Lpos > 0:
            infected = int(redisclient.get("simstep"))
            redisclient.rpush("epipath", (infected, self.geocode, {}))  #TODO: replace empty dict with infectors
            # self.parentGraph.epipath.append((self.parentGraph.simstep, self.geocode, self.infector))
            #TODO: have infector be stated in terms of geocodes


def selectModel(Type):
    """
    Sets the model engine
    """

    if Type == 'SIR':
        return stepSIR
    elif Type == 'SIR_s':
        return stepSIR_s
    elif Type == 'SIS':
        return stepSIS
    elif Type == 'SIS_s':
        return stepSIS_s
    elif Type == 'SEIS':
        return stepSEIS
    elif Type == 'SEIS_s':
        return stepSEIS_s
    elif Type == 'SEIR':
        return stepSEIR
    elif Type == 'SEIR_s':
        return stepSEIR_s
    elif Type == 'SIpRpS':
        return stepSIpRpS
    elif Type == 'SIpRpS_s':
        return stepSIpRpS_s
    elif Type == 'SEIpRpS':
        return stepSEIpRpS
    elif Type == 'SEIpRpS_s':
        return stepSEIpRpS_s
    elif Type == 'SIpR':
        return stepSIpR
    elif Type == 'SIpR_s':
        return stepSIpR_s
    elif Type == 'SEIpR':
        return stepSEIpR
    elif Type == 'SEIpR_s':
        return stepSEIpR_s
    elif Type == 'SIRS':
        return stepSIRS
    elif Type == 'SIRS_s':
        return stepSIRS_s
    elif Type == 'Influenza':
        return stepFlu
    elif Type == 'Custom':
        #adds the user model as a method of instance self
        try:
            #TODO: move this import to the graph level
            import CustomModel

            vnames['Custom'] = CustomModel.vnames
            return CustomModel.Model
        except ImportError:
            print "You have to Create a CustomModel.py file before you can select\nthe Custom model type"
    else:
        sys.exit('Model type specified in .epg file is invalid')


def stepFlu(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    Flu model with classes S,E,I subclinical, I mild, I medium, I serious, deaths
    """
    #Variable long names to be used in the database output.
    vnames = ('Susc_age1', 'Incub_age1', 'Subc_age1', 'Sympt_age1', 'Comp_age1',
              'Susc_age2', 'Incub_age2', 'Subc_age2', 'Sympt_age2', 'Comp_age2',
              'Susc_age3', 'Incub_age3', 'Subc_age3', 'Sympt_age3', 'Comp_age3',
              'Susc_age4', 'Incub_age4', 'Subc_age4', 'Sympt_age4', 'Comp_age4',)
    if simstep == 1:  #get initial values
        S1, E1, Is1, Ic1, Ig1 = (bi['susc_age1'], bi['incub_age1'], bi['subc_age1'], bi['sympt_age1'], bi['comp_age1'])
        S2, E2, Is2, Ic2, Ig2 = (bi['susc_age2'], bi['incub_age2'], bi['subc_age2'], bi['sympt_age2'], bi['comp_age2'])
        S3, E3, Is3, Ic3, Ig3 = (bi['susc_age3'], bi['incub_age3'], bi['subc_age3'], bi['sympt_age3'], bi['comp_age3'])
        S4, E4, Is4, Ic4, Ig4 = (bi['susc_age4'], bi['incub_age4'], bi['subc_age4'], bi['sympt_age4'], bi['comp_age4'])
    else:  #get values from last time step
        S1, E1, Is1, Ic1, Ig1, S2, E2, Is2, Ic2, Ig2, S3, E3, Is3, Ic3, Ig3, S4, E4, Is4, Ic4, Ig4 = inits
    N = totpop

    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameters: alpha,beta,r,e,c,g,d,pc1,pc2,pc3,pc4,pp1,pp2,pp3,pp4,b

    #Vacination event
    if vaccineNow:  #TODO: add to bp when creating model
        S1 -= vaccov * S1
        S2 -= vaccov * S2
        S3 -= vaccov * S3
        S4 -= vaccov * S4

    #New cases by age class
    #beta=eval(values[2])

    Infectantes = Ig1 + Ig2 + Ig3 + Ig4 + Ic1 + Ic2 + Ic3 + Ic4 + 0.5 * (Is1 + Is2 + Is3 + Is4) + theta
    L1pos = float(beta) * S1 * (Infectantes / (N + npass)) ** alpha
    L2pos = float(beta) * S2 * (Infectantes / (N + npass)) ** alpha
    L3pos = float(beta) * S3 * (Infectantes / (N + npass)) ** alpha
    L4pos = float(beta) * S4 * (Infectantes / (N + npass)) ** alpha

    ######################
    Lpos = L1pos + L2pos + L3pos + L4pos
    # Model
    # 0-2 years old
    E1pos = L1pos + (1 - e) * E1
    Is1pos = (1 - (pc1 * c + (1 - pc1) * r)) * Is1 + e * E1
    Ic1pos = (1 - (pp1 * g + (1 - pp1) * r)) * Ic1 + pc1 * c * Is1
    Ig1pos = (1 - d) * Ig1 + pp1 * g * Ic1
    S1pos = b + S1 - L1pos
    # 3-14 years old
    E2pos = L2pos + (1 - e) * E2
    Is2pos = (1 - (pc2 * c + (1 - pc2) * r)) * Is2 + e * E2
    Ic2pos = (1 - (pp2 * g + (1 - pp2) * r)) * Ic2 + pc2 * c * Is2
    Ig2pos = (1 - d) * Ig2 + pp2 * g * Ic2
    S2pos = b + S2 - L2pos
    # 15-59 years old
    E3pos = L3pos + (1 - e) * E3
    Is3pos = (1 - (pc3 * c + (1 - pc3) * r)) * Is3 + e * E3
    Ic3pos = (1 - (pp3 * g + (1 - pp3) * r)) * Ic3 + pc3 * c * Is3
    Ig3pos = (1 - d) * Ig3 + pp3 * g * Ic3
    S3pos = b + S3 - L3pos
    # >60 years old
    E4pos = L4pos + (1 - e) * E4
    Is4pos = (1 - (pc4 * c + (1 - pc4) * r)) * Is4 + e * E4
    Ic4pos = (1 - (pp4 * g + (1 - pp4) * r)) * Ic4 + pc4 * c * Is4
    Ig4pos = (1 - d) * Ig4 + pp4 * g * Ic4
    S4pos = b + S4 - L4pos

    #Migrating infecctious
    migInf = (
        Ig1pos + Ig2pos + Ig3pos + Ig4pos + Ic1pos + Ic2pos + Ic3pos + Ic4pos + 0.5 * (
        Is1pos + Is2pos + Is3pos + Is4pos))
    # Return variable values

    return [S1pos, E1pos, Is1pos, Ic1pos, Ig1pos, S2pos, E2pos, Is2pos,
            Ic2pos, Ig2pos, S3pos, E3pos, Is3pos, Ic3pos, Ig3pos, S4pos,
            E4pos, Is4pos, Ic4pos, Ig4pos], Lpos, migInf


def stepSIS(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SIS, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameter: beta,alpha,e,r,delta,b,w,p
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases
    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + r * I

    #Migrating infecctious
    migInf = (Ipos)
    return [0, Ipos, Spos], Lpos, migInf


def stepSIS_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SIS:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,b,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + r * I

    #Migrating infecctious
    migInf = (Ipos)

    return [0, Ipos, Spos], Lpos, migInf


def stepSIR(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SIR, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameters: b ,r
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos)

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf


def stepSIR_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SIR:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameter: beta,alpha,e,r,delta,b,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos)

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf


def stepSEIS(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    Defines the model SEIS:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameters: b,e,r
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    #Model
    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos + r * I

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSEIS_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SEIS:
    - inits = (E,I,S)
    - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameters: beta,alpha,e,r,delta,b,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #converting between parameterizations
        Lpos = negative_binomial(I, prob)

    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos + r * I

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSEIR(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    Defines the model SEIR:
    - inits = (E,I,S)
    - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameters: beta,alpha,e,r,delta,B,w,p
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    #Model
    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos
    Rpos = N - (Spos + Epos + Ipos)

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSEIR_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SEIR:
    - inits = (E,I,S)
    - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameters: beta,alpha,e,r,delta,B,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)  #poisson(Lpos_esp)
    ##            if theta == 0 and Lpos_esp == 0 and Lpos > 0:
    ##                print Lpos,Lpos_esp,S,I,theta,N,parentSite.sitename
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos
    Rpos = N - (Spos + Epos + Ipos)

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSIpRpS(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SIpRpS, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,b,w,p
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + (1 - delta) * r * I
    Rpos = N - (Spos + Ipos) + delta * r * I

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf


def stepSIpRpS_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SIpRpS:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,B,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + (1 - delta) * r * I
    Rpos = N - (Spos + Ipos) + delta * r * I

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf


def stepSEIpRpS(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    Defines the model SEIpRpS:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,b,w,p

    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos + (1 - delta) * r * I
    Rpos = N - (Spos + Epos + Ipos) + delta * r * I

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSEIpRpS_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SEIpRpS:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,b,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    Epos = (1 - e) * E + Lpos
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos + (1 - delta) * r * I
    Rpos = N - (Spos + Epos + Ipos) + delta * r * I

    #Migrating infecctious
    migInf = Ipos

    return [Epos, Ipos, Spos], Lpos, migInf


def stepSIpR(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SIpR, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    R = N - E - I - S
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameter: beta,alpha,e,r,delta,b,w,p
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases
    Lpos2 = p * float(beta) * R * ((I + theta) / (N + npass)) ** alpha  #number of secondary Infections

    # Model
    Ipos = (1 - r) * I + Lpos + Lpos2
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos) - Lpos2

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos + Lpos2, migInf


def stepSIpR_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SIpRs:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameter: beta,alpha,e,r,delta,b,w,p
    R = N - E - I - S

    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases
    Lpos2_esp = p * float(beta) * R * ((I + theta) / (N + npass)) ** alpha  #number of secondary Infections

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
        Lpos2 = poisson(Lpos2_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)
        prob = I / (I + Lpos2_esp)  #convertin between parameterizations
        Lpos2 = negative_binomial(I, prob)

    # Model
    Ipos = (1 - r) * I + Lpos + Lpos2
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos) - Lpos2

    #Migrating infecctious
    migInf = Ipos
    return [0, Ipos, Spos], Lpos + Lpos2, migInf


def stepSEIpR(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SEIpR, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    R = N - E - I - S
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameters: beta,alpha,e,r,delta,b,w,p

    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases
    Lpos2 = p * float(beta) * R * ((I + theta) / (N + npass)) ** alpha  # secondary infections

    # Model
    Epos = (1 - e) * E + Lpos + Lpos2
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos) - Lpos2

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos + Lpos2, migInf


def stepSEIpR_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SEIpRs:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,B,w,p
    R = N - E - I - S

    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases
    Lpos2_esp = p * float(beta) * R * ((I + theta) / (N + npass)) ** alpha  # secondary infections

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
        Lpos2 = poisson(Lpos2_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #converting between parameterizations
        Lpos = negative_binomial(I, prob)
        prob = I / (I + Lpos2_esp)  #converting between parameterizations
        Lpos2 = negative_binomial(I, prob)

    # Model
    Epos = (1 - e) * E + Lpos + Lpos2
    Ipos = e * E + (1 - r) * I
    Spos = S + b - Lpos
    Rpos = N - (Spos + Ipos) - Lpos2

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos + Lpos2, migInf


def stepSIRS(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=()):
    """
    calculates the model SIRS, and return its values (no demographics)
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    R = N - (E + I + S)
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        #parameter: beta,alpha,e,r,delta,b,w,p
    Lpos = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + w * R
    Rpos = N - (Spos + Ipos) - w * R

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf


def stepSIRS_s(inits, simstep, totpop, theta=0, npass=0, bi={}, bp={}, values=(), dist='poisson'):
    """
    Defines an stochastic model SIR:
    - inits = (E,I,S)
    - theta = infectious individuals from neighbor sites
    """
    if simstep == 1:  #get initial values
        E, I, S = (bi['e'], bi['i'], bi['s'])
    else:
        E, I, S = inits
    N = totpop
    R = N - (E + I + S)
    for k, v in bp.items():
        exec ('%s = %s' % (k, v))
        # parameter: beta,alpha,e,r,delta,b,w,p
    Lpos_esp = float(beta) * S * ((I + theta) / (N + npass)) ** alpha  #Number of new cases

    if dist == 'poisson':
        Lpos = poisson(Lpos_esp)
    elif dist == 'negbin':
        prob = I / (I + Lpos_esp)  #convertin between parameterizations
        Lpos = negative_binomial(I, prob)

    # Model
    Ipos = (1 - r) * I + Lpos
    Spos = S + b - Lpos + w * R
    Rpos = N - (Spos + Ipos) - w * R

    #Migrating infecctious
    migInf = Ipos

    return [0, Ipos, Spos], Lpos, migInf