/usr/share/gap/doc/ref/chap69.html is in gap-doc 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 69: The MeatAxe</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap69" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap68.html">[Previous Chapter]</a> <a href="chap70.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap69_mj.html">[MathJax on]</a></p>
<p><a id="X7BF9D3CB81A8F8F9" name="X7BF9D3CB81A8F8F9"></a></p>
<div class="ChapSects"><a href="chap69.html#X7BF9D3CB81A8F8F9">69 <span class="Heading">The MeatAxe</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X85B05BBA78ED7BE2">69.1 <span class="Heading">MeatAxe Modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X801022027B066497">69.1-1 <span class="Heading">GModuleByMats</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X87B82250801A1BD0">69.2 <span class="Heading">Module Constructions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8233134A81D58DA3">69.2-1 PermutationGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X80A50F717B206C98">69.2-2 TensorProductGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7ABC0E98832FEA69">69.2-3 WedgeGModule</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X7C77D22782C98D4E">69.3 <span class="Heading">Selecting a Different MeatAxe</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7C2352A17B505AF6">69.3-1 MTX</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X84AB808B7C543377">69.4 <span class="Heading">Accessing a Module</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X78E61F7287BF1D0C">69.4-1 MTX.Generators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7DF2D6C07D7B09CD">69.4-2 MTX.Dimension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X830C00887CE9323C">69.4-3 MTX.Field</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X84D04C7E8423EB5D">69.5 <span class="Heading">Irreducibility Tests</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X83BEDF86784A6491">69.5-1 MTX.IsIrreducible</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X876810D679926679">69.5-2 MTX.IsAbsolutelyIrreducible</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E84E1927EBFD483">69.5-3 MTX.DegreeSplittingField</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X791BA495829669C4">69.6 <span class="Heading">Decomposition of modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7D9B5B4E7F5A5FBD">69.6-1 MTX.IsIndecomposable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X781772FD865B9F9C">69.6-2 MTX.Indecomposition</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7F00E49484FBA7B8">69.6-3 MTX.HomogeneousComponents</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X85A258567D96B9BE">69.7 <span class="Heading">Finding Submodules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X80FFB229852B24E9">69.7-1 MTX.SubmoduleGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X81326D84845C206F">69.7-2 MTX.ProperSubmoduleBasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X84604D867983DD41">69.7-3 MTX.BasesSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X871D9AF87FABFB00">69.7-4 MTX.BasesMinimalSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X864527B77A359195">69.7-5 MTX.BasesMaximalSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X830500CE7ABF6039">69.7-6 MTX.BasisRadical</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X86A5197D8154A63C">69.7-7 MTX.BasisSocle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7F7FB6687ADE3FD8">69.7-8 MTX.BasesMinimalSupermodules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X79B704998400B9FC">69.7-9 MTX.BasesCompositionSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E77F9A97EA855E2">69.7-10 MTX.CompositionFactors</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E5038F384DBCAEC">69.7-11 MTX.CollectedFactors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X7AE730FB81ED86FE">69.8 <span class="Heading">Induced Actions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X79EA05D4822C2668">69.8-1 MTX.NormedBasisAndBaseChange</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7812D644850D7AED">69.8-2 MTX.InducedActionSubmodule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7EAC61B381385A99">69.8-3 MTX.InducedActionFactorModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X843E80AD853CB1EE">69.8-4 MTX.InducedActionMatrix</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7B137BE5877A7FA1">69.8-5 MTX.InducedAction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X8040270F791514C8">69.9 <span class="Heading">Module Homomorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8292535D8533671C">69.9-1 MTX.BasisModuleHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X78EE1274825D9E03">69.9-2 MTX.BasisModuleEndomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8519B3C486AC8C7E">69.9-3 MTX.IsomorphismModules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8442D91F7C4D724F">69.9-4 MTX.ModuleAutomorphisms</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X850324FF7912A541">69.10 <span class="Heading">Module Homomorphisms for irreducible modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X858D2B0D7AE032D5">69.10-1 MTX.IsEquivalent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E86F5B67CBD7C41">69.10-2 MTX.IsomorphismIrred</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X807AE3AC7E9B7CFF">69.10-3 MTX.Homomorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7BC612D2860C582B">69.10-4 MTX.Homomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X81A6ECB078D4441C">69.10-5 MTX.Distinguish</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X7B426E4679C1AF25">69.11 <span class="Heading">MeatAxe Functionality for Invariant Forms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X78B114E78227EA37">69.11-1 MTX.InvariantBilinearForm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E1F430278A334E1">69.11-2 MTX.InvariantSesquilinearForm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7ADE65997F16EE63">69.11-3 MTX.InvariantQuadraticForm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X78E60EFE802AEBC1">69.11-4 MTX.BasisInOrbit</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8168EB348474046B">69.11-5 MTX.OrthogonalSign</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X87B0E3237BA056FC">69.12 <span class="Heading">The Smash MeatAxe</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E78525883E715E1">69.12-1 SMTX.RandomIrreducibleSubGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7EA698517A19D35B">69.12-2 SMTX.GoodElementGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X811339547D341BBE">69.12-3 SMTX.SortHomGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X86B6092681221D7A">69.12-4 SMTX.MinimalSubGModules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X87E49FCD867983B5">69.12-5 SMTX.Setter</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E60EBC57FFDF7BD">69.12-6 SMTX.Getter</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X808345D784E0AC85">69.12-7 SMTX.IrreducibilityTest</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7E692DC97AFB661E">69.12-8 SMTX.AbsoluteIrreducibilityTest</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X80BC392285994DA8">69.12-9 SMTX.MinimalSubGModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X79EF16677C2EE095">69.12-10 SMTX.MatrixSum</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7D1471077A774C81">69.12-11 SMTX.CompleteBasis</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap69.html#X7FDF8F3F83B83336">69.13 <span class="Heading">Smash MeatAxe Flags</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X84A93AC482A1946D">69.13-1 SMTX.Subbasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7ABCD69880772B2D">69.13-2 SMTX.AlgEl</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7D6C947A7C8C14B2">69.13-3 SMTX.AlgElMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8417F86A7A20F128">69.13-4 SMTX.AlgElCharPol</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X79A82FED785BFB6D">69.13-5 SMTX.AlgElCharPolFac</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X8367B4A17EC39ABD">69.13-6 SMTX.AlgElNullspaceVec</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X877F1AB77DC1E12C">69.13-7 SMTX.AlgElNullspaceDimension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X78A6B95686671067">69.13-8 SMTX.CentMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap69.html#X7D199DB6804F5D8F">69.13-9 SMTX.CentMatMinPoly</a></span>
</div></div>
</div>
<h3>69 <span class="Heading">The MeatAxe</span></h3>
<p>The MeatAxe <a href="chapBib.html#biBPar84">[Par84]</a> is a tool for the examination of submodules of a group algebra. It is a basic tool for the examination of group actions on finite-dimensional modules.</p>
<p><strong class="pkg">GAP</strong> uses the improved MeatAxe of Derek Holt and Sarah Rees, and also incorporates further improvements of Ivanyos and Lux.</p>
<p>Please note that, consistently with the convention for group actions, the action of the <strong class="pkg">GAP</strong> MeatAxe is always that of matrices on row vectors by multiplication on the right. If you want to investigate left modules you will have to transpose the matrices.</p>
<p><a id="X85B05BBA78ED7BE2" name="X85B05BBA78ED7BE2"></a></p>
<h4>69.1 <span class="Heading">MeatAxe Modules</span></h4>
<p><a id="X801022027B066497" name="X801022027B066497"></a></p>
<h5>69.1-1 <span class="Heading">GModuleByMats</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GModuleByMats</code>( <var class="Arg">gens</var>, <var class="Arg">field</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GModuleByMats</code>( <var class="Arg">emptygens</var>, <var class="Arg">dim</var>, <var class="Arg">field</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a MeatAxe module over <var class="Arg">field</var> from a list of invertible matrices <var class="Arg">gens</var> which reflect a group's action. If the list of generators is empty, the dimension must be given as second argument.</p>
<p>MeatAxe routines are on a level with Gaussian elimination. Therefore they do not deal with <strong class="pkg">GAP</strong> modules but essentially with lists of matrices. For the MeatAxe, a module is a record with components</p>
<dl>
<dt><strong class="Mark"><code class="code">generators</code></strong></dt>
<dd><p>A list of matrices which represent a group operation on a finite dimensional row vector space.</p>
</dd>
<dt><strong class="Mark"><code class="code">dimension</code></strong></dt>
<dd><p>The dimension of the vector space (this is the common length of the row vectors (see <code class="func">DimensionOfVectors</code> (<a href="chap61.html#X8534A750878478D0"><span class="RefLink">61.9-6</span></a>))).</p>
</dd>
<dt><strong class="Mark"><code class="code">field</code></strong></dt>
<dd><p>The field over which the vector space is defined.</p>
</dd>
</dl>
<p>Once a module has been created its entries may not be changed. A MeatAxe may create a new component <var class="Arg">NameOfMeatAxe</var> in which it can store private information. By a MeatAxe "submodule" or "factor module" we denote actually the <em>induced action</em> on the submodule, respectively factor module. Therefore the submodules or factor modules are again MeatAxe modules. The arrangement of <code class="code">generators</code> is guaranteed to be the same for the induced modules, but to obtain the complete relation to the original module, the bases used are needed as well.</p>
<p><a id="X87B82250801A1BD0" name="X87B82250801A1BD0"></a></p>
<h4>69.2 <span class="Heading">Module Constructions</span></h4>
<p><a id="X8233134A81D58DA3" name="X8233134A81D58DA3"></a></p>
<h5>69.2-1 PermutationGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PermutationGModule</code>( <var class="Arg">G</var>, <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a permutation group <var class="Arg">G</var> and a finite field <var class="Arg">F</var>, <code class="func">PermutationGModule</code> returns the natural permutation module <span class="SimpleMath">M</span> over <var class="Arg">F</var> for the group of permutation matrices that acts on the canonical basis of <span class="SimpleMath">M</span> in the same way as <var class="Arg">G</var> acts on the points up to its largest moved point (see <code class="func">LargestMovedPoint</code> (<a href="chap42.html#X84AA603987C94AC0"><span class="RefLink">42.3-2</span></a>)).</p>
<p><a id="X80A50F717B206C98" name="X80A50F717B206C98"></a></p>
<h5>69.2-2 TensorProductGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorProductGModule</code>( <var class="Arg">m1</var>, <var class="Arg">m2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">TensorProductGModule</code> calculates the tensor product of the modules <var class="Arg">m1</var> and <var class="Arg">m2</var>. They are assumed to be modules over the same algebra so, in particular, they should have the same number of generators.</p>
<p><a id="X7ABC0E98832FEA69" name="X7ABC0E98832FEA69"></a></p>
<h5>69.2-3 WedgeGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ WedgeGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">WedgeGModule</code> calculates the wedge product of a <var class="Arg">G</var>-module. That is the action on antisymmetric tensors.</p>
<p><a id="X7C77D22782C98D4E" name="X7C77D22782C98D4E"></a></p>
<h4>69.3 <span class="Heading">Selecting a Different MeatAxe</span></h4>
<p><a id="X7C2352A17B505AF6" name="X7C2352A17B505AF6"></a></p>
<h5>69.3-1 MTX</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>All MeatAxe routines are accessed via the global variable <code class="func">MTX</code>, which is a record whose components hold the various functions. It is possible to have several implementations of a MeatAxe available. Each MeatAxe represents its routines in an own global variable and assigning <code class="func">MTX</code> to this variable selects the corresponding MeatAxe.</p>
<p><a id="X84AB808B7C543377" name="X84AB808B7C543377"></a></p>
<h4>69.4 <span class="Heading">Accessing a Module</span></h4>
<p>Even though a MeatAxe module is a record, its components should never be accessed outside of MeatAxe functions. Instead the following operations should be used:</p>
<p><a id="X78E61F7287BF1D0C" name="X78E61F7287BF1D0C"></a></p>
<h5>69.4-1 MTX.Generators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Generators</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of matrix generators of <var class="Arg">module</var>.</p>
<p><a id="X7DF2D6C07D7B09CD" name="X7DF2D6C07D7B09CD"></a></p>
<h5>69.4-2 MTX.Dimension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Dimension</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the dimension in which the matrices act.</p>
<p><a id="X830C00887CE9323C" name="X830C00887CE9323C"></a></p>
<h5>69.4-3 MTX.Field</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Field</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the field over which <var class="Arg">module</var> is defined.</p>
<p><a id="X84D04C7E8423EB5D" name="X84D04C7E8423EB5D"></a></p>
<h4>69.5 <span class="Heading">Irreducibility Tests</span></h4>
<p><a id="X83BEDF86784A6491" name="X83BEDF86784A6491"></a></p>
<h5>69.5-1 MTX.IsIrreducible</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsIrreducible</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests whether the module <var class="Arg">module</var> is irreducible (i.e. contains no proper submodules.)</p>
<p><a id="X876810D679926679" name="X876810D679926679"></a></p>
<h5>69.5-2 MTX.IsAbsolutelyIrreducible</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsAbsolutelyIrreducible</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A module is absolutely irreducible if it remains irreducible over the algebraic closure of the field. (Formally: If the tensor product <span class="SimpleMath">L ⊗_K M</span> is irreducible where <span class="SimpleMath">M</span> is the module defined over <span class="SimpleMath">K</span> and <span class="SimpleMath">L</span> is the algebraic closure of <span class="SimpleMath">K</span>.)</p>
<p><a id="X7E84E1927EBFD483" name="X7E84E1927EBFD483"></a></p>
<h5>69.5-3 MTX.DegreeSplittingField</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.DegreeSplittingField</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the degree of the splitting field as extension of the prime field.</p>
<p><a id="X791BA495829669C4" name="X791BA495829669C4"></a></p>
<h4>69.6 <span class="Heading">Decomposition of modules</span></h4>
<p>A module is <em>decomposable</em> if it can be written as the direct sum of two proper submodules (and <em>indecomposable</em> if not). Obviously every finite dimensional module is a direct sum of its indecomposable parts. The <em>homogeneous components</em> of a module are the direct sums of isomorphic indecomposable components. They are uniquely determined.</p>
<p><a id="X7D9B5B4E7F5A5FBD" name="X7D9B5B4E7F5A5FBD"></a></p>
<h5>69.6-1 MTX.IsIndecomposable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsIndecomposable</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns whether <var class="Arg">module</var> is indecomposable.</p>
<p><a id="X781772FD865B9F9C" name="X781772FD865B9F9C"></a></p>
<h5>69.6-2 MTX.Indecomposition</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Indecomposition</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a decomposition of <var class="Arg">module</var> as a direct sum of indecomposable modules. It returns a list, each entry is a list of form [<var class="Arg">B</var>,<var class="Arg">ind</var>] where <var class="Arg">B</var> is a list of basis vectors for the indecomposable component and <var class="Arg">ind</var> the induced module action on this component. (Such a decomposition is not unique.)</p>
<p><a id="X7F00E49484FBA7B8" name="X7F00E49484FBA7B8"></a></p>
<h5>69.6-3 MTX.HomogeneousComponents</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.HomogeneousComponents</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes the homogeneous components of <var class="Arg">module</var> given as sums of indecomposable components. The function returns a list, each entry of which is a record corresponding to one isomorphism type of indecomposable components. The record has the following components.</p>
<dl>
<dt><strong class="Mark"><code class="code">indices</code></strong></dt>
<dd><p>the index numbers of the indecomposable components, as given by <code class="func">MTX.Indecomposition</code> (<a href="chap69.html#X781772FD865B9F9C"><span class="RefLink">69.6-2</span></a>), that are in the homogeneous component,</p>
</dd>
<dt><strong class="Mark"><code class="code">component</code></strong></dt>
<dd><p>one of the indecomposable components,</p>
</dd>
<dt><strong class="Mark"><code class="code">images</code></strong></dt>
<dd><p>a list of the remaining indecomposable components, each given as a record with the components <code class="code">component</code> (the component itself) and <code class="code">isomorphism</code> (an isomorphism from the defining component to this one).</p>
</dd>
</dl>
<p><a id="X85A258567D96B9BE" name="X85A258567D96B9BE"></a></p>
<h4>69.7 <span class="Heading">Finding Submodules</span></h4>
<p><a id="X80FFB229852B24E9" name="X80FFB229852B24E9"></a></p>
<h5>69.7-1 MTX.SubmoduleGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.SubmoduleGModule</code>( <var class="Arg">module</var>, <var class="Arg">subspace</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.SubGModule</code>( <var class="Arg">module</var>, <var class="Arg">subspace</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">subspace</var> should be a subspace of (or a vector in) the underlying vector space of <var class="Arg">module</var> i.e. the full row space of the same dimension and over the same field as <var class="Arg">module</var>. A normalized basis of the submodule of <var class="Arg">module</var> generated by <var class="Arg">subspace</var> is returned.</p>
<p><a id="X81326D84845C206F" name="X81326D84845C206F"></a></p>
<h5>69.7-2 MTX.ProperSubmoduleBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.ProperSubmoduleBasis</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the basis of a proper submodule of <var class="Arg">module</var> and <code class="keyw">fail</code> if no proper submodule exists.</p>
<p><a id="X84604D867983DD41" name="X84604D867983DD41"></a></p>
<h5>69.7-3 MTX.BasesSubmodules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasesSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list containing a basis for every submodule.</p>
<p><a id="X871D9AF87FABFB00" name="X871D9AF87FABFB00"></a></p>
<h5>69.7-4 MTX.BasesMinimalSubmodules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasesMinimalSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of bases of all minimal submodules.</p>
<p><a id="X864527B77A359195" name="X864527B77A359195"></a></p>
<h5>69.7-5 MTX.BasesMaximalSubmodules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasesMaximalSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of bases of all maximal submodules.</p>
<p><a id="X830500CE7ABF6039" name="X830500CE7ABF6039"></a></p>
<h5>69.7-6 MTX.BasisRadical</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasisRadical</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of the radical of <var class="Arg">module</var>.</p>
<p><a id="X86A5197D8154A63C" name="X86A5197D8154A63C"></a></p>
<h5>69.7-7 MTX.BasisSocle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasisSocle</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of the socle of <var class="Arg">module</var>.</p>
<p><a id="X7F7FB6687ADE3FD8" name="X7F7FB6687ADE3FD8"></a></p>
<h5>69.7-8 MTX.BasesMinimalSupermodules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasesMinimalSupermodules</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of bases of all minimal supermodules of the submodule given by the basis <var class="Arg">sub</var>.</p>
<p><a id="X79B704998400B9FC" name="X79B704998400B9FC"></a></p>
<h5>69.7-9 MTX.BasesCompositionSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasesCompositionSeries</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of bases of submodules in a composition series in ascending order.</p>
<p><a id="X7E77F9A97EA855E2" name="X7E77F9A97EA855E2"></a></p>
<h5>69.7-10 MTX.CompositionFactors</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.CompositionFactors</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of composition factors of <var class="Arg">module</var> in ascending order.</p>
<p><a id="X7E5038F384DBCAEC" name="X7E5038F384DBCAEC"></a></p>
<h5>69.7-11 MTX.CollectedFactors</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.CollectedFactors</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list giving all irreducible composition factors with their frequencies.</p>
<p><a id="X7AE730FB81ED86FE" name="X7AE730FB81ED86FE"></a></p>
<h4>69.8 <span class="Heading">Induced Actions</span></h4>
<p><a id="X79EA05D4822C2668" name="X79EA05D4822C2668"></a></p>
<h5>69.8-1 MTX.NormedBasisAndBaseChange</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.NormedBasisAndBaseChange</code>( <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list <code class="code">[<var class="Arg">bas</var>, <var class="Arg">change</var> ]</code> where <var class="Arg">bas</var> is a normed basis (i.e. in echelon form with pivots normed to 1) for <var class="Arg">sub</var> and <var class="Arg">change</var> is the base change from <var class="Arg">bas</var> to <var class="Arg">sub</var> (the basis vectors of <var class="Arg">bas</var> expressed in coefficients for <var class="Arg">sub</var>).</p>
<p><a id="X7812D644850D7AED" name="X7812D644850D7AED"></a></p>
<h5>69.8-2 MTX.InducedActionSubmodule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionSubmodule</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionSubmoduleNB</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a new module corresponding to the action of <var class="Arg">module</var> on <var class="Arg">sub</var>. In the <code class="code">NB</code> version the basis <var class="Arg">sub</var> must be normed. (That is it must be in echelon form with pivots normed to 1, see <code class="func">MTX.NormedBasisAndBaseChange</code> (<a href="chap69.html#X79EA05D4822C2668"><span class="RefLink">69.8-1</span></a>).)</p>
<p><a id="X7EAC61B381385A99" name="X7EAC61B381385A99"></a></p>
<h5>69.8-3 MTX.InducedActionFactorModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionFactorModule</code>( <var class="Arg">module</var>, <var class="Arg">sub</var>[, <var class="Arg">compl</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a new module corresponding to the action of <var class="Arg">module</var> on the factor of <var class="Arg">sub</var>. If <var class="Arg">compl</var> is given, it has to be a basis of a (vector space-)complement of <var class="Arg">sub</var>. The action then will correspond to <var class="Arg">compl</var>.</p>
<p>The basis <var class="Arg">sub</var> has to be given in normed form. (That is it must be in echelon form with pivots normed to 1, see <code class="func">MTX.NormedBasisAndBaseChange</code> (<a href="chap69.html#X79EA05D4822C2668"><span class="RefLink">69.8-1</span></a>))</p>
<p><a id="X843E80AD853CB1EE" name="X843E80AD853CB1EE"></a></p>
<h5>69.8-4 MTX.InducedActionMatrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionMatrix</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionMatrixNB</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedActionFactorMatrix</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var>[, <var class="Arg">compl</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>work the same way as the above functions for modules, but take as input only a single matrix.</p>
<p><a id="X7B137BE5877A7FA1" name="X7B137BE5877A7FA1"></a></p>
<h5>69.8-5 MTX.InducedAction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InducedAction</code>( <var class="Arg">module</var>, <var class="Arg">sub</var>[, <var class="Arg">type</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Computes induced actions on submodules or factor modules and also returns the corresponding bases. The action taken is binary encoded in <var class="Arg">type</var>: <code class="code">1</code> stands for subspace action, <code class="code">2</code> for factor action, and <code class="code">4</code> for action of the full module on a subspace adapted basis. The routine returns the computed results in a list in sequence (<var class="Arg">sub</var>,<var class="Arg">quot</var>,<var class="Arg">both</var>,<var class="Arg">basis</var>) where <var class="Arg">basis</var> is a basis for the whole space, extending <var class="Arg">sub</var>. (Actions which are not computed are omitted, so the returned list may be shorter.) If no <var class="Arg">type</var> is given, it is assumed to be <code class="code">7</code>. The basis given in <var class="Arg">sub</var> must be normed!</p>
<p>All these routines return <code class="keyw">fail</code> if <var class="Arg">sub</var> is not a proper subspace.</p>
<p><a id="X8040270F791514C8" name="X8040270F791514C8"></a></p>
<h4>69.9 <span class="Heading">Module Homomorphisms</span></h4>
<p><a id="X8292535D8533671C" name="X8292535D8533671C"></a></p>
<h5>69.9-1 MTX.BasisModuleHomomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasisModuleHomomorphisms</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of all module homomorphisms from <var class="Arg">module1</var> to <var class="Arg">module2</var>. Homomorphisms are by matrices, whose rows give the images of the standard basis vectors of <var class="Arg">module1</var> in the standard basis of <var class="Arg">module2</var>.</p>
<p><a id="X78EE1274825D9E03" name="X78EE1274825D9E03"></a></p>
<h5>69.9-2 MTX.BasisModuleEndomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasisModuleEndomorphisms</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of all module homomorphisms from <var class="Arg">module</var> to <var class="Arg">module</var>.</p>
<p><a id="X8519B3C486AC8C7E" name="X8519B3C486AC8C7E"></a></p>
<h5>69.9-3 MTX.IsomorphismModules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsomorphismModules</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If <var class="Arg">module1</var> and <var class="Arg">module2</var> are isomorphic modules, this function returns an isomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var> in form of a matrix. It returns <code class="keyw">fail</code> if the modules are not isomorphic.</p>
<p><a id="X8442D91F7C4D724F" name="X8442D91F7C4D724F"></a></p>
<h5>69.9-4 MTX.ModuleAutomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.ModuleAutomorphisms</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the module automorphisms of <var class="Arg">module</var> (the set of all isomorphisms from <var class="Arg">module</var> to itself) as a matrix group.</p>
<p><a id="X850324FF7912A541" name="X850324FF7912A541"></a></p>
<h4>69.10 <span class="Heading">Module Homomorphisms for irreducible modules</span></h4>
<p>The following are lower-level functions that provide homomorphism functionality for irreducible modules. Generic code should use the functions in Section <a href="chap69.html#X8040270F791514C8"><span class="RefLink">69.9</span></a> instead.</p>
<p><a id="X858D2B0D7AE032D5" name="X858D2B0D7AE032D5"></a></p>
<h5>69.10-1 MTX.IsEquivalent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsEquivalent</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests two irreducible modules for equivalence.</p>
<p><a id="X7E86F5B67CBD7C41" name="X7E86F5B67CBD7C41"></a></p>
<h5>69.10-2 MTX.IsomorphismIrred</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.IsomorphismIrred</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var> (if one exists), and <code class="keyw">fail</code> otherwise. It requires that one of the modules is known to be irreducible. It implicitly assumes that the same group is acting, otherwise the results are unpredictable. The isomorphism is given by a matrix <span class="SimpleMath">M</span>, whose rows give the images of the standard basis vectors of <var class="Arg">module1</var> in the standard basis of <var class="Arg">module2</var>. That is, conjugation of the generators of <var class="Arg">module2</var> with <span class="SimpleMath">M</span> yields the generators of <var class="Arg">module1</var>.</p>
<p><a id="X807AE3AC7E9B7CFF" name="X807AE3AC7E9B7CFF"></a></p>
<h5>69.10-3 MTX.Homomorphism</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Homomorphism</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>, <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">mat</var> should be a <var class="Arg">dim1</var> <span class="SimpleMath">×</span> <var class="Arg">dim2</var> matrix defining a homomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var>. This function verifies that <var class="Arg">mat</var> really does define a module homomorphism, and then returns the corresponding homomorphism between the underlying row spaces of the modules. This can be used for computing kernels, images and pre-images.</p>
<p><a id="X7BC612D2860C582B" name="X7BC612D2860C582B"></a></p>
<h5>69.10-4 MTX.Homomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Homomorphisms</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of the space of all homomorphisms from the irreducible module <var class="Arg">module1</var> to <var class="Arg">module2</var>.</p>
<p><a id="X81A6ECB078D4441C" name="X81A6ECB078D4441C"></a></p>
<h5>69.10-5 MTX.Distinguish</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.Distinguish</code>( <var class="Arg">cf</var>, <var class="Arg">nr</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">cf</var> be the output of <code class="func">MTX.CollectedFactors</code> (<a href="chap69.html#X7E5038F384DBCAEC"><span class="RefLink">69.7-11</span></a>). This routine tries to find a group algebra element that has nullity zero on all composition factors except number <var class="Arg">nr</var>.</p>
<p><a id="X7B426E4679C1AF25" name="X7B426E4679C1AF25"></a></p>
<h4>69.11 <span class="Heading">MeatAxe Functionality for Invariant Forms</span></h4>
<p>The functions in this section can only be applied to an absolutely irreducible MeatAxe module.</p>
<p><a id="X78B114E78227EA37" name="X78B114E78227EA37"></a></p>
<h5>69.11-1 MTX.InvariantBilinearForm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InvariantBilinearForm</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an invariant bilinear form, which may be symmetric or anti-symmetric, of <var class="Arg">module</var>, or <code class="keyw">fail</code> if no such form exists.</p>
<p><a id="X7E1F430278A334E1" name="X7E1F430278A334E1"></a></p>
<h5>69.11-2 MTX.InvariantSesquilinearForm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InvariantSesquilinearForm</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an invariant hermitian (= self-adjoint) sesquilinear form of <var class="Arg">module</var>, which must be defined over a finite field whose order is a square, or <code class="keyw">fail</code> if no such form exists.</p>
<p><a id="X7ADE65997F16EE63" name="X7ADE65997F16EE63"></a></p>
<h5>69.11-3 MTX.InvariantQuadraticForm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.InvariantQuadraticForm</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns an invariant quadratic form of <var class="Arg">module</var>, or <code class="keyw">fail</code> if no such form exists. If the characteristic of the field over which <var class="Arg">module</var> is defined is not 2, then the invariant bilinear form (if any) divided by two will be returned. In characteristic 2, the form returned will be lower triangular.</p>
<p><a id="X78E60EFE802AEBC1" name="X78E60EFE802AEBC1"></a></p>
<h5>69.11-4 MTX.BasisInOrbit</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.BasisInOrbit</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a basis of the underlying vector space of <var class="Arg">module</var> which is contained in an orbit of the action of the generators of module on that space. This is used by <code class="func">MTX.InvariantQuadraticForm</code> (<a href="chap69.html#X7ADE65997F16EE63"><span class="RefLink">69.11-3</span></a>) in characteristic 2.</p>
<p><a id="X8168EB348474046B" name="X8168EB348474046B"></a></p>
<h5>69.11-5 MTX.OrthogonalSign</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MTX.OrthogonalSign</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>for an even dimensional module, returns 1 or -1, according as <code class="code">MTX.InvariantQuadraticForm(<var class="Arg">module</var>)</code> is of + or - type. For an odd dimensional module, returns 0. For a module with no invariant quadratic form, returns <code class="keyw">fail</code>. This calculation uses an algorithm due to Jon Thackray.</p>
<p><a id="X87B0E3237BA056FC" name="X87B0E3237BA056FC"></a></p>
<h4>69.12 <span class="Heading">The Smash MeatAxe</span></h4>
<p>The standard MeatAxe provided in the <strong class="pkg">GAP</strong> library is based on the MeatAxe in the <strong class="pkg">GAP</strong> 3 package <strong class="pkg">Smash</strong>, originally written by Derek Holt and Sarah Rees <a href="chapBib.html#biBHR94">[HR94]</a>. It is accessible via the variable <code class="code">SMTX</code> to which <code class="func">MTX</code> (<a href="chap69.html#X7C2352A17B505AF6"><span class="RefLink">69.3-1</span></a>) is assigned by default. For the sake of completeness the remaining sections document more technical functions of this MeatAxe.</p>
<p><a id="X7E78525883E715E1" name="X7E78525883E715E1"></a></p>
<h5>69.12-1 SMTX.RandomIrreducibleSubGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.RandomIrreducibleSubGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the module action on a random irreducible submodule.</p>
<p><a id="X7EA698517A19D35B" name="X7EA698517A19D35B"></a></p>
<h5>69.12-2 SMTX.GoodElementGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.GoodElementGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>finds an element with minimal possible nullspace dimension if <var class="Arg">module</var> is known to be irreducible.</p>
<p><a id="X811339547D341BBE" name="X811339547D341BBE"></a></p>
<h5>69.12-3 SMTX.SortHomGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.SortHomGModule</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>, <var class="Arg">homs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Function to sort the output of <code class="code">Homomorphisms</code>.</p>
<p><a id="X86B6092681221D7A" name="X86B6092681221D7A"></a></p>
<h5>69.12-4 SMTX.MinimalSubGModules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.MinimalSubGModules</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>[, <var class="Arg">max</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns (at most <var class="Arg">max</var>) bases of submodules of <var class="Arg">module2</var> which are isomorphic to the irreducible module <var class="Arg">module1</var>.</p>
<p><a id="X87E49FCD867983B5" name="X87E49FCD867983B5"></a></p>
<h5>69.12-5 SMTX.Setter</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.Setter</code>( <var class="Arg">string</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a setter function for the component <code class="code">smashMeataxe.(string)</code>.</p>
<p><a id="X7E60EBC57FFDF7BD" name="X7E60EBC57FFDF7BD"></a></p>
<h5>69.12-6 SMTX.Getter</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.Getter</code>( <var class="Arg">string</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a getter function for the component <code class="code">smashMeataxe.(string)</code>.</p>
<p><a id="X808345D784E0AC85" name="X808345D784E0AC85"></a></p>
<h5>69.12-7 SMTX.IrreducibilityTest</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.IrreducibilityTest</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Tests for irreducibility and sets a subbasis if reducible. It neither sets an irreducibility flag, nor tests it. Thus the routine also can simply be called to obtain a random submodule.</p>
<p><a id="X7E692DC97AFB661E" name="X7E692DC97AFB661E"></a></p>
<h5>69.12-8 SMTX.AbsoluteIrreducibilityTest</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AbsoluteIrreducibilityTest</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Tests for absolute irreducibility and sets splitting field degree. It neither sets an absolute irreducibility flag, nor tests it.</p>
<p><a id="X80BC392285994DA8" name="X80BC392285994DA8"></a></p>
<h5>69.12-9 SMTX.MinimalSubGModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.MinimalSubGModule</code>( <var class="Arg">module</var>, <var class="Arg">cf</var>, <var class="Arg">nr</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the basis of a minimal submodule of <var class="Arg">module</var> containing the indicated composition factor. It assumes <code class="code">Distinguish</code> has been called already.</p>
<p><a id="X79EF16677C2EE095" name="X79EF16677C2EE095"></a></p>
<h5>69.12-10 SMTX.MatrixSum</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.MatrixSum</code>( <var class="Arg">matrices1</var>, <var class="Arg">matrices2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates the direct sum of two matrix lists.</p>
<p><a id="X7D1471077A774C81" name="X7D1471077A774C81"></a></p>
<h5>69.12-11 SMTX.CompleteBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.CompleteBasis</code>( <var class="Arg">module</var>, <var class="Arg">pbasis</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>extends the partial basis <var class="Arg">pbasis</var> to a basis of the full space by action of <var class="Arg">module</var>. It returns whether it succeeded.</p>
<p><a id="X7FDF8F3F83B83336" name="X7FDF8F3F83B83336"></a></p>
<h4>69.13 <span class="Heading">Smash MeatAxe Flags</span></h4>
<p>The following getter routines access internal flags. For each routine, the appropriate setter's name is prefixed with <code class="code">Set</code>.</p>
<p><a id="X84A93AC482A1946D" name="X84A93AC482A1946D"></a></p>
<h5>69.13-1 SMTX.Subbasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.Subbasis</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Basis of a submodule.</p>
<p><a id="X7ABCD69880772B2D" name="X7ABCD69880772B2D"></a></p>
<h5>69.13-2 SMTX.AlgEl</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgEl</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>list <code class="code">[newgens,coefflist]</code> giving an algebra element used for chopping.</p>
<p><a id="X7D6C947A7C8C14B2" name="X7D6C947A7C8C14B2"></a></p>
<h5>69.13-3 SMTX.AlgElMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgElMat</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>matrix of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>
<p><a id="X8417F86A7A20F128" name="X8417F86A7A20F128"></a></p>
<h5>69.13-4 SMTX.AlgElCharPol</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgElCharPol</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>minimal polynomial of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>
<p><a id="X79A82FED785BFB6D" name="X79A82FED785BFB6D"></a></p>
<h5>69.13-5 SMTX.AlgElCharPolFac</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgElCharPolFac</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>uses factor of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>
<p><a id="X8367B4A17EC39ABD" name="X8367B4A17EC39ABD"></a></p>
<h5>69.13-6 SMTX.AlgElNullspaceVec</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgElNullspaceVec</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>nullspace of the matrix evaluated under this factor.</p>
<p><a id="X877F1AB77DC1E12C" name="X877F1AB77DC1E12C"></a></p>
<h5>69.13-7 SMTX.AlgElNullspaceDimension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.AlgElNullspaceDimension</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>dimension of the nullspace.</p>
<p><a id="X78A6B95686671067" name="X78A6B95686671067"></a></p>
<h5>69.13-8 SMTX.CentMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.CentMat</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>matrix centralising all generators which is computed as a byproduct of <code class="func">SMTX.AbsoluteIrreducibilityTest</code> (<a href="chap69.html#X7E692DC97AFB661E"><span class="RefLink">69.12-8</span></a>).</p>
<p><a id="X7D199DB6804F5D8F" name="X7D199DB6804F5D8F"></a></p>
<h5>69.13-9 SMTX.CentMatMinPoly</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SMTX.CentMatMinPoly</code>( <var class="Arg">module</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>minimal polynomial of <code class="func">SMTX.CentMat</code> (<a href="chap69.html#X78A6B95686671067"><span class="RefLink">69.13-8</span></a>).</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap68.html">[Previous Chapter]</a> <a href="chap70.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|