/usr/share/gap/lib/addmagma.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 | #############################################################################
##
#W addmagma.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#M Print( <A> ) . . . . . . . . . . . . . . . . . . print an additive magma
##
InstallMethod( PrintObj,
"for an add. magma",
[ IsAdditiveMagma ],
function( A )
Print( "AdditiveMagma( ... )" );
end );
InstallMethod( PrintObj,
"for an add. magma with generators",
[ IsAdditiveMagma and HasGeneratorsOfAdditiveMagma ],
function( A )
Print( "AdditiveMagma( ", GeneratorsOfAdditiveMagma( A ), " )" );
end );
InstallMethod( PrintObj,
"for an add. magma-with-zero with generators",
[ IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagmaWithZero ],
function( A )
if IsEmpty( GeneratorsOfAdditiveMagmaWithZero( A ) ) then
Print( "AdditiveMagmaWithZero( ", Zero( A ), " )" );
else
Print( "AdditiveMagmaWithZero( ",
GeneratorsOfAdditiveMagmaWithZero( A ), " )" );
fi;
end );
InstallMethod( PrintObj,
"for an add. magma-with-inverses with generators",
[ IsAdditiveGroup and HasGeneratorsOfAdditiveGroup ],
function( A )
if IsEmpty( GeneratorsOfAdditiveGroup( A ) ) then
Print( "AdditiveGroup( ", Zero( A ), " )" );
else
Print( "AdditiveGroup( ",
GeneratorsOfAdditiveGroup( A ), " )" );
fi;
end );
#############################################################################
##
#M ViewObj( <A> ) . . . . . . . . . . . . . . . . . . . view an add. magma
##
InstallMethod( ViewObj,
"for an add. magma",
[ IsAdditiveMagma ],
function( A )
Print( "<additive magma>" );
end );
InstallMethod( ViewObj,
"for an add. magma with generators",
[ IsAdditiveMagma and HasGeneratorsOfAdditiveMagma ],
function( A )
Print( "<additive magma with ",
Length( GeneratorsOfAdditiveMagma( A ) ), " generators>" );
end );
InstallMethod( ViewObj,
"for an add. magma-with-zero with generators",
[ IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagmaWithZero ],
function( A )
if IsEmpty( GeneratorsOfAdditiveMagmaWithZero( A ) ) then
Print( "<trivial additive magma-with-zero>" );
else
Print( "<additive magma-with-zero with ",
Length( GeneratorsOfAdditiveMagmaWithZero( A ) ),
" generators>" );
fi;
end );
InstallMethod( ViewObj,
"for an add. magma-with-inverses with generators",
[ IsAdditiveGroup and HasGeneratorsOfAdditiveGroup ],
function( A )
if IsEmpty( GeneratorsOfAdditiveGroup( A ) ) then
Print( "<trivial additive magma-with-inverses>" );
else
Print( "<additive magma-with-inverses with ",
Length( GeneratorsOfAdditiveGroup( A ) ),
" generators>" );
fi;
end );
#############################################################################
##
#M IsTrivial( <A> ) . . . . . . . test whether an additive magma is trivial
##
InstallImmediateMethod( IsTrivial,
IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagmaWithZero, 0,
function( A )
if IsEmpty( GeneratorsOfAdditiveMagmaWithZero( A ) ) then
return true;
else
TryNextMethod();
fi;
end );
InstallImmediateMethod( IsTrivial,
IsAdditiveGroup
and HasGeneratorsOfAdditiveGroup, 0,
function( A )
if IsEmpty( GeneratorsOfAdditiveGroup( A ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F AdditiveMagma( <gens> )
#F AdditiveMagma( <Fam>, <gens> )
##
InstallGlobalFunction( AdditiveMagma, function( arg )
# list of generators
if Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] ) then
return AdditiveMagmaByGenerators( arg[1] );
# family plus list of generators
elif Length( arg ) = 2 and IsFamily( arg[1] ) and IsList( arg[1] ) then
return AdditiveMagmaByGenerators( arg[1], arg[2] );
# generators
elif 0 < Length( arg ) then
return AdditiveMagmaByGenerators( arg );
fi;
# no argument given, error
Error("usage: AdditiveMagma(<gens>), AdditiveMagma(<Fam>,<gens>)");
end );
#############################################################################
##
#F SubadditiveMagma( <M>, <gens> ) add. submagma of <M> generated by <gens>
##
InstallGlobalFunction( SubadditiveMagma, function( M, gens )
if not IsAdditiveMagma( M ) then
Error( "<M> must be an additive magma" );
elif IsEmpty( gens ) then
return SubadditiveMagmaNC( M, gens );
elif not IsHomogeneousList(gens) then
Error( "<gens> must be a homogeneous list of elements" );
elif not IsIdenticalObj( FamilyObj(M), FamilyObj(gens) ) then
Error( "families of <gens> and <M> are different" );
fi;
if not ForAll( gens, x -> x in M ) then
Error( "<gens> must be elements in <M>" );
fi;
return SubadditiveMagmaNC( M, gens );
end );
#############################################################################
##
#F SubadditiveMagmaNC( <M>, <gens> )
##
## Note that `SubadditiveMagmaNC' is allowed to call `Objectify'
## in the case that <gens> is empty.
##
InstallGlobalFunction( SubadditiveMagmaNC, function( M, gens )
local K, S;
if IsEmpty( gens ) then
K:= NewType( FamilyObj(M),
IsAdditiveMagma
and IsTrivial
and IsAttributeStoringRep );
S:= Objectify( K, rec() );
SetGeneratorsOfAdditiveMagma( S, [] );
else
S:= AdditiveMagmaByGenerators(gens);
fi;
SetParent( S, M );
return S;
end );
#############################################################################
##
#F AdditiveMagmaWithZero( <gens> )
#F AdditiveMagmaWithZero( <Fam>, <gens> )
##
InstallGlobalFunction( AdditiveMagmaWithZero, function( arg )
# list of generators
if Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] ) then
return AdditiveMagmaWithZeroByGenerators( arg[1] );
# family plus list of generators
elif Length( arg ) = 2 and IsFamily( arg[1] ) and IsList( arg[1] ) then
return AdditiveMagmaWithZeroByGenerators( arg[1], arg[2] );
# generators
elif 0 < Length( arg ) then
return AdditiveMagmaWithZeroByGenerators( arg );
fi;
# no argument given, error
Error("usage: AdditiveMagmaWithZero(<gens>), ",
"AdditiveMagmaWithZero(<Fam>,<gens>)");
end );
#############################################################################
##
#F SubadditiveMagmaWithZero( <M>, <gens> )
#F . . . add. submagma-with-one of <M> gen. by <gens>
##
InstallGlobalFunction( SubadditiveMagmaWithZero, function( M, gens )
if not IsAdditiveMagmaWithZero( M ) then
Error( "<M> must be an additive magma-with-zero" );
elif IsEmpty( gens ) then
return SubadditiveMagmaWithZeroNC( M, gens );
elif not IsHomogeneousList(gens) then
Error( "<gens> must be a homogeneous list of elements" );
elif not IsIdenticalObj( FamilyObj(M), FamilyObj(gens) ) then
Error( "families of <gens> and <M> are different" );
fi;
if not ForAll( gens, x -> x in M ) then
Error( "<gens> must be elements in <M>" );
fi;
return SubadditiveMagmaWithZeroNC( M, gens );
end );
#############################################################################
##
#F SubadditiveMagmaWithZeroNC( <M>, <gens> )
##
## Note that `SubadditiveMagmaWithZeroNC' is allowed to call `Objectify'
## in the case that <gens> is empty.
##
## Furthermore note that a trivial additive magma with zero is automatically
## an additive group.
##
InstallGlobalFunction( SubadditiveMagmaWithZeroNC, function( M, gens )
local K, S;
if IsEmpty( gens ) then
K:= NewType( FamilyObj(M),
IsAdditiveGroup
and IsTrivial
and IsAttributeStoringRep );
S:= Objectify( K, rec() );
SetGeneratorsOfAdditiveGroup( S, [] );
else
S:= AdditiveMagmaWithZeroByGenerators(gens);
fi;
SetParent( S, M );
return S;
end );
#############################################################################
##
#F AdditiveGroup( <gens> )
#F AdditiveGroup( <Fam>, <gens> )
##
InstallGlobalFunction( AdditiveGroup, function( arg )
# list of generators
if Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] ) then
return AdditiveGroupByGenerators( arg[1] );
# family plus list of generators
elif Length( arg ) = 2 and IsFamily( arg[1] ) and IsList( arg[1] ) then
return AdditiveGroupByGenerators( arg[1], arg[2] );
# generators
elif 0 < Length( arg ) then
return AdditiveGroupByGenerators( arg );
fi;
# no argument given, error
Error("usage: AdditiveGroup(<gens>), ",
"AdditiveGroup(<Fam>,<gens>)");
end );
#############################################################################
##
#F SubadditiveGroup( <M>, <gens> ) . . . add. subgroup of <M> gen. by <gens>
##
InstallGlobalFunction( SubadditiveGroup, function( M, gens )
if not IsAdditiveGroup( M ) then
Error( "<M> must be an additive group" );
elif IsEmpty( gens ) then
return SubadditiveGroupNC( M, gens );
elif not IsHomogeneousList(gens) then
Error( "<gens> must be a homogeneous list of elements" );
elif not IsIdenticalObj( FamilyObj(M), FamilyObj(gens) ) then
Error( "families of <gens> and <M> are different" );
fi;
if not ForAll( gens, x -> x in M ) then
Error( "<gens> must be elements in <M>" );
fi;
return SubadditiveGroupNC( M, gens );
end );
#############################################################################
##
#F SubadditiveGroupNC( <M>, <gens> )
##
## Note that `SubadditiveGroupNC' is allowed to call `Objectify'
## in the case that <gens> is empty.
##
InstallGlobalFunction( SubadditiveGroupNC, function( M, gens )
local K, S;
if IsEmpty( gens ) then
K:= NewType( FamilyObj(M),
IsAdditiveGroup
and IsTrivial
and IsAttributeStoringRep );
S:= Objectify( K, rec() );
SetGeneratorsOfAdditiveGroup( S, [] );
else
S:= AdditiveGroupByGenerators(gens);
fi;
SetParent( S, M );
return S;
end );
#############################################################################
##
#M TrivialSubadditiveMagmaWithZero( <M> ) . . . for an add.-magma-with-zero
##
InstallMethod( TrivialSubadditiveMagmaWithZero,
"for add.-magma-with-zero",
[ IsAdditiveMagmaWithZero ],
M -> SubadditiveMagmaWithZeroNC( M, [] ) );
#############################################################################
##
#M AdditiveMagmaByGenerators( <gens> ) . . . . . . . . . . for a collection
##
InstallMethod( AdditiveMagmaByGenerators,
"for collection",
[ IsCollection ],
function( gens )
local M;
M:= Objectify( NewType( FamilyObj( gens ),
IsAdditiveMagma and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveMagma( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M AdditiveMagmaByGenerators( <Fam>, <gens> ) . . . . . for family and list
##
InstallOtherMethod( AdditiveMagmaByGenerators,
"for family and list",
[ IsFamily, IsList ],
function( family, gens )
local M;
if not ( IsEmpty(gens) or IsIdenticalObj( FamilyObj(gens), family ) ) then
Error( "<family> and family of <gens> do not match" );
fi;
M:= Objectify( NewType( family,
IsAdditiveMagma and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveMagma( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M AdditiveMagmaWithZeroByGenerators( <gens> ) . . . . . . for a collection
##
InstallMethod( AdditiveMagmaWithZeroByGenerators,
"for collection",
[ IsCollection ],
function( gens )
local M;
M:= Objectify( NewType( FamilyObj( gens ),
IsAdditiveMagmaWithZero and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveMagmaWithZero( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M AdditiveMagmaWithZeroByGenerators( <Fam>, <gens> ) . for family and list
##
InstallOtherMethod( AdditiveMagmaWithZeroByGenerators,
"for family and list",
[ IsFamily, IsList ],
function( family, gens )
local M;
if not ( IsEmpty(gens) or IsIdenticalObj( FamilyObj(gens), family ) ) then
Error( "<family> and family of <gens> do not match" );
fi;
M:= Objectify( NewType( family,
IsAdditiveMagmaWithZero and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveMagmaWithZero( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M AdditiveGroupByGenerators( <gens> ) . . . . for a collection
##
InstallMethod( AdditiveGroupByGenerators,
"for collection",
[ IsCollection ],
function( gens )
local M;
M:= Objectify( NewType( FamilyObj( gens ),
IsAdditiveGroup and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveGroup( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M AdditiveGroupByGenerators(<Fam>,<gens>) . for family and list
##
InstallOtherMethod( AdditiveGroupByGenerators,
"for family and list",
[ IsFamily, IsList ],
function( family, gens )
local M;
if not ( IsEmpty(gens) or IsIdenticalObj( FamilyObj(gens), family ) ) then
Error( "<family> and family of <gens> do not match" );
fi;
M:= Objectify( NewType( family,
IsAdditiveGroup and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfAdditiveGroup( M, AsList( gens ) );
return M;
end );
#############################################################################
##
#M GeneratorsOfAdditiveMagma( <A> )
#M GeneratorsOfAdditiveMagmaWithZero( <A> )
#M GeneratorsOfAdditiveGroup( <A> )
##
## If nothing special is known about the additive magma <A> we have
## no chance to get the required generators.
##
## If we know `GeneratorsOfAdditiveMagma',
## they are also `GeneratorsOfAdditiveMagmaWithZero'.
## If we know `GeneratorsOfAdditiveMagmaWithZero',
## they are also `GeneratorsOfAdditiveGroup'.
##
InstallImmediateMethod( GeneratorsOfAdditiveMagmaWithZero,
IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagma
and IsAttributeStoringRep, 0,
A -> GeneratorsOfAdditiveMagma( A ) );
InstallImmediateMethod( GeneratorsOfAdditiveGroup,
IsAdditiveGroup and HasGeneratorsOfAdditiveMagmaWithZero
and IsAttributeStoringRep, 0,
A -> GeneratorsOfAdditiveMagmaWithZero( A ) );
InstallMethod( GeneratorsOfAdditiveMagma,
[ IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagmaWithZero ],
A -> Concatenation( GeneratorsOfAdditiveMagmaWithZero( A ),
[ Zero( A ) ] ) );
InstallMethod( GeneratorsOfAdditiveMagma,
[ IsAdditiveGroup and HasGeneratorsOfAdditiveGroup ],
A -> Concatenation( GeneratorsOfAdditiveGroup( A ),
[ Zero( A ) ],
List( GeneratorsOfAdditiveGroup( A ),
AdditiveInverse ) ) );
InstallMethod( GeneratorsOfAdditiveMagmaWithZero,
[ IsAdditiveGroup and HasGeneratorsOfAdditiveGroup ],
A -> Concatenation( GeneratorsOfAdditiveGroup( A ),
List( GeneratorsOfAdditiveGroup( A ),
AdditiveInverse ) ) );
#############################################################################
##
#M Representative( <A> ) . . . . . . . . . one element of an additive magma
##
InstallMethod( Representative,
"for additive magma with known generators",
[ IsAdditiveMagma and HasGeneratorsOfAdditiveMagma ],
RepresentativeFromGenerators( GeneratorsOfAdditiveMagma ) );
InstallMethod( Representative,
"for additive-magma-with-zero with known generators",
[ IsAdditiveMagmaWithZero and HasGeneratorsOfAdditiveMagmaWithZero ],
RepresentativeFromGenerators( GeneratorsOfAdditiveMagmaWithZero ) );
InstallMethod( Representative,
"for additive-magma-with-inverses with known generators",
[ IsAdditiveGroup and HasGeneratorsOfAdditiveGroup ],
RepresentativeFromGenerators( GeneratorsOfAdditiveGroup ) );
InstallMethod( Representative,
"for additive-magma-with-zero with known zero",
[ IsAdditiveMagmaWithZero and HasZero ], SUM_FLAGS,
Zero );
InstallMethod( Representative,
"for additive-magma-with-zero with stored parent",
[ IsAdditiveMagmaWithZero and HasParentAttr ],
function( A )
if not IsIdenticalObj( A, Parent( A ) ) then
return Zero( Representative( Parent( A ) ) );
fi;
TryNextMethod();
end );
#############################################################################
##
#M AdditiveNeutralElement( <A> ) . . . . . . . . . zero of an additive magma
##
InstallMethod( AdditiveNeutralElement,
[ IsAdditiveMagma ],
function( M )
local m;
if IsFinite( M ) then
for m in M do
if ForAll( M, n -> n + m = n ) then
return m;
fi;
od;
return fail;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Zero( <A> ) . . . . . . . . . . . . . . . . . . zero of an additive magma
##
InstallOtherMethod( Zero,
"for additive magma",
[ IsAdditiveMagma ],
function( A )
local zero;
zero:= Zero( Representative( A ) );
if zero <> fail and zero in A then
return zero;
else
return fail;
fi;
end );
InstallOtherMethod( Zero,
"for additive magma with zero (look at family)",
[ IsAdditiveMagmaWithZero ], SUM_FLAGS,
function( A )
A:= ElementsFamily( FamilyObj( A ) );
if HasZero( A ) then
return Zero( A );
else
TryNextMethod();
fi;
end );
#T immediate?
InstallOtherMethod( Zero,
"for an add. magma-with-zero with parent (ask the parent)",
[ IsAdditiveMagmaWithZero and HasParent ],
function( A )
if not IsIdenticalObj( A, Parent( A ) ) then
return Zero( Parent( A ) );
fi;
TryNextMethod();
end );
#T really ask the parent for such information?
InstallOtherMethod( Zero,
"for additive magma with zero",
[ IsAdditiveMagmaWithZero ],
A -> Zero( Representative( A ) ) );
#############################################################################
##
#M Characteristic(<obj>)
##
InstallMethod( Characteristic,
"delegate to family (magma)",
[ IsAdditiveMagmaWithZero ],
function( el )
return Characteristic( FamilyObj(el) );
end );
#############################################################################
##
#M Enumerator( <A> ) . . . . enumerator of trivial additive magma with zero
##
EnumeratorOfTrivialAdditiveMagmaWithZero := A -> Immutable( [ Zero( A ) ] );
InstallMethod( Enumerator,
"for trivial add. magma-with-zero",
[ IsAdditiveMagmaWithZero and IsTrivial ],
EnumeratorOfTrivialAdditiveMagmaWithZero );
#############################################################################
##
#F ClosureAdditiveMagmaDefault( <A>, <elm> ) closure of add. magma with elm
##
BindGlobal( "ClosureAdditiveMagmaDefault", function( A, elm )
local C, # closure `\< <a>, <obj> \>', result
gens, # generators of <A>
gen, # generator of <A> or <C>
Celements, # intermediate list of elements
len; # current number of elements
gens:= GeneratorsOfAdditiveMagma( A );
# try to avoid adding an element to a add. magma that already contains it
if elm in gens
or ( HasAsSSortedList( A ) and elm in AsSSortedList( A ) )
then
return A;
fi;
# make the closure add. magma
gens:= Concatenation( gens, [ elm ] );
C:= AdditiveMagmaByGenerators( gens );
UseSubsetRelation( C, A );
# if the elements of <A> are known then extend this list
# (multiply each element from the left and right with the new
# generator, and then multiply with all elements until the
# list becomes stable)
if HasAsSSortedList( A ) then
Celements := ShallowCopy( AsSSortedList( A ) );
AddSet( Celements, elm );
UniteSet( Celements, Celements + elm );
UniteSet( Celements, elm + Celements );
repeat
len:= Length( Celements );
for gen in Celements do
UniteSet( Celements, Celements + gen );
UniteSet( Celements, gen + Celements );
od;
until len = Length( Celements );
SetAsSSortedList( C, AsSSortedList( Celements ) );
SetIsFinite( C, true );
SetSize( C, Length( Celements ) );
fi;
# return the closure
return C;
end );
#############################################################################
##
#M Enumerator( <A> ) . . . . . . . . . set of the elements of an add. magma
##
BindGlobal( "EnumeratorOfAdditiveMagma", function( A )
local gens, # add. magma generators of <A>
H, # subadd. magma of the first generators of <A>
gen; # generator of <A>
# handle the case of an empty add. magma
gens:= GeneratorsOfAdditiveMagma( A );
if IsEmpty( gens ) then
return [];
fi;
# start with the empty add. magma and its element list
H:= SubadditiveMagma( A, [] );
SetAsSSortedList( H, Immutable( [ ] ) );
# Add the generators one after the other.
# We use a function that maintains the elements list for the closure.
for gen in gens do
H:= ClosureAdditiveMagmaDefault( H, gen );
od;
# return the list of elements
Assert( 2, HasAsSSortedList( H ) );
return AsSSortedList( H );
end );
InstallMethod( Enumerator,
"generic method for an add. magma",
[ IsAdditiveMagma and IsAttributeStoringRep ],
EnumeratorOfAdditiveMagma );
#############################################################################
##
#M IsSubset( <M>, <N> ) . . . . . . . . . . . . . . for two additive magmas
##
InstallMethod( IsSubset,
"for two additive magmas",
IsIdenticalObj,
[ IsAdditiveMagma, IsAdditiveMagma ],
function( M, N )
return IsSubset( M, GeneratorsOfAdditiveMagma( N ) );
end );
#############################################################################
##
#M IsSubset( <M>, <N> ) . . . . . . . . . for two additive magmas with zero
##
InstallMethod( IsSubset,
"for two additive magmas with zero",
IsIdenticalObj,
[ IsAdditiveMagmaWithZero, IsAdditiveMagmaWithZero ],
function( M, N )
return IsSubset( M, GeneratorsOfAdditiveMagmaWithZero( N ) );
end );
#############################################################################
##
#M IsSubset( <M>, <N> ) . . . . . . . for two additive magmas with inverses
##
InstallMethod( IsSubset,
"for two additive magmas with inverses",
IsIdenticalObj,
[ IsAdditiveGroup, IsAdditiveGroup ],
function( M, N )
return IsSubset( M, GeneratorsOfAdditiveGroup( N ) );
end );
#############################################################################
##
#M ClosureAdditiveGroup( <A>, <a> ) . . . . . . for add. group and element
##
InstallMethod( ClosureAdditiveGroup,
"for add. group and element",
IsCollsElms,
[ IsAdditiveGroup, IsAdditiveElement ],
function( A, a )
# if possible test if the element lies in the add. group already
if a in GeneratorsOfAdditiveGroup( A ) or
( HasAsList( A ) and a in AsList( A ) ) then
return A;
fi;
# Otherwise make a new add. group.
return AdditiveGroupByGenerators(
Concatenation( GeneratorsOfAdditiveGroup( A ), [ a ] ) );
end );
#############################################################################
##
#M ClosureAdditiveGroup( <A>, <B> ) . . . . . . . . . . for two add. groups
##
InstallOtherMethod( ClosureAdditiveGroup,
"for two add. groups",
IsIdenticalObj,
[ IsAdditiveGroup, IsAdditiveGroup ],
function( A, B )
local C, b;
C:= A;
for b in GeneratorsOfAdditiveGroup( B ) do
C:= ClosureAdditiveGroup( C, b );
od;
return C;
end );
#############################################################################
##
#E
|