This file is indexed.

/usr/share/gap/lib/algfp.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#############################################################################
##
#W  algfp.gd                   GAP library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely presented algebras
##


#############################################################################
##
#C  IsElementOfFpAlgebra
##
DeclareCategory( "IsElementOfFpAlgebra", IsRingElement );


#############################################################################
##
#C  IsElementOfFpAlgebraCollection
##
DeclareCategoryCollections( "IsElementOfFpAlgebra" );


#############################################################################
##
#C  IsElementOfFpAlgebraFamily
##
DeclareCategoryFamily( "IsElementOfFpAlgebra" );


#############################################################################
##
#C  IsSubalgebraFpAlgebra
##
DeclareCategory( "IsSubalgebraFpAlgebra", IsAlgebra );


#############################################################################
##
#M  IsSubalgebraFpAlgebra( <D> )  . for alg. that is coll. of f.p. alg. elms.
##
InstallTrueMethod( IsSubalgebraFpAlgebra,
    IsAlgebra and IsElementOfFpAlgebraCollection );


#############################################################################
##
#P  IsFullFpAlgebra( <A> )
##
##  A f.~p. algebra is given by generators which are arithmetic expressions
##  in terms of a set of generators $X$ of an f.~p. algebra that was
##  constructed as a quotient of a free algebra.
##
##  A *full f.~p. algebra* is a f.~p. algebra that contains $X$.
#T or better postulate ``contains this free algebra''?
##  (So a full f.~p. algebra need *not* contain the whole family of its
##  elements.)
##
DeclareProperty( "IsFullFpAlgebra",
    IsFLMLOR and IsElementOfFpAlgebraCollection );
#T or do we need `IsAlgebraOfFamily', as in the case of f.p. groups?


#############################################################################
##
#O  ElementOfFpAlgebra( <Fam>, <elm> )
##
DeclareOperation( "ElementOfFpAlgebra",
    [ IsElementOfFpAlgebraFamily, IsRingElement ] );


############################################################################
##
#O  MappedExpression( <expr>, <gens1>, <gens2> )
##
##  For an arithmetic expression <expr> in terms of the generators <gens1>,
##  `MappedExpression' returns the corresponding expression in terms of
##  <gens2>.
##
##  Note that it is expected that one can raise elements in <gens2> to the
##  zero-th power.
##
DeclareOperation( "MappedExpression",
    [ IsElementOfFpAlgebra, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#F  FactorFreeAlgebraByRelators( <F>, <rels> )  . . .  factor of free algebra
##
##  is an f.p.~algebra $A$ isomorphic to the factor of the free (associative)
##  algebra(-with-one) <F> by the two-sided ideasl spanned by the relators
##  in the list <rels>.
##
##  If <F> is an algebra-with-one then the generators in the list
##  `GeneratorsOfAlgebraWithOne( $A$ )' correspond to the generators in the
##  list `GeneratorsOfAlgebraWithOne( <F> )'.
##  Otherwise the generators in the list `GeneratorsOfAlgebra( $A$ )'
##  correspond to the generators in the list `GeneratorsOfAlgebra( <F> )'.
##
DeclareGlobalFunction( "FactorFreeAlgebraByRelators" );


#############################################################################
##
#A  FreeGeneratorsOfFpAlgebra( <A> )
##
##  is the list of underlying free generators corresponding to the generators
##  of the finitely presented algebra <A>.
##
DeclareAttribute( "FreeGeneratorsOfFpAlgebra",
    IsSubalgebraFpAlgebra and IsFullFpAlgebra  );


############################################################################
##
#A  RelatorsOfFpAlgebra( <A> )
##
##  is the list of relators of the finitely presented algebra <A>,
##  each relator being an expression in terms of the free generators
##  provided by `FreeGeneratorsOfFpAlgebra( <A> )'.
##
DeclareAttribute( "RelatorsOfFpAlgebra",
    IsSubalgebraFpAlgebra and IsFullFpAlgebra  );


#############################################################################
##
#A  FreeAlgebraOfFpAlgebra( <A> )
##
##  is the underlying free algebra of the finitely presented algebra <A>.
##  This is the algebra generated by the free generators provided by
##  `FreeGeneratorsOfFpAlgebra( <A> )',
##  with coefficient domain `LeftActingDomain( <A> )'.
##
DeclareAttribute( "FreeAlgebraOfFpAlgebra",
    IsSubalgebraFpAlgebra and IsFullFpAlgebra  );


#############################################################################
##
#P  IsNormalForm( <elm> )
##
DeclareProperty( "IsNormalForm", IsObject );


#############################################################################
##
#A  NiceNormalFormByExtRepFunction( <Fam> )
##
##  `NiceNormalFormByExtRepFunction( <Fam> )' is a function that can be
##  applied to the family <Fam> and the external representation of an element
##  $e$ of <Fam>;
##  This call returns the element of <Fam> that is equal to $e$ and in normal
##  form.
##
##  If the family <Fam> knows a nice normal form for its elements then the
##  elements can be always constructed as normalized elements by
##  `NormalizedObjByExtRep'.
##
##  (Perhaps a normal form that is expensive to compute will not be regarded
##  as a nice normal form.)
##
DeclareAttribute( "NiceNormalFormByExtRepFunction", IsFamily );


#############################################################################
##
#A  NiceAlgebraMonomorphism( <A> )
##
##  <#GAPDoc Label="NiceAlgebraMonomorphism">
##  <ManSection>
##  <Attr Name="NiceAlgebraMonomorphism" Arg='A'/>
##  <Description>
##  If <A>A</A> is an associative algebra with one, returns 
##  an isomorphism from <A>A</A> onto a matrix algebra
##  (see <Ref Attr="IsomorphismMatrixAlgebra"/> for an example).
##  If <A>A</A> is a finitely presented Lie algebra, returns an isomorphism 
##  from <A>A</A> onto a Lie algebra defined by a structure constants table 
##  (see <Ref Sect="Finitely Presented Lie Algebras"/> for an example).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  Let <A> be a subspace or subalgebra of a f.p.~algebra.
##
##  The `NiceAlgebraMonomorphism' value of the algebra stored in
##  the `wholeFamily' component of the elements family of <A>
##  is used to define the `\<' relation of algebra elements.
#T  use it also for a ``nice normal form''! 
##
##  If a f.p.~algebra <A> knows the value of `NiceAlgebraMonomorphism'
##  then it can be handled via the mechanism of nice bases
##  (see~"IsFpAlgebraElementsSpace").
##
##  `NiceAlgebraMonomorphism' is inherited to subalgebras and subspaces.
##  (If one knows that <A> contains the source then one should set
##  `GeneratorsOfLeftModule' for <A>,
##  and also one can set `NiceFreeLeftModule' for <A>  to the module
##  of the basis `basisimages'.)
##
DeclareAttribute( "NiceAlgebraMonomorphism", IsSubalgebraFpAlgebra );

InstallSubsetMaintenance( NiceAlgebraMonomorphism,
    IsFreeLeftModule and HasNiceAlgebraMonomorphism, IsFreeLeftModule );


#############################################################################
##
#F  IsFpAlgebraElementsSpace( <V> )
##
##  If an $F$-vector space <V> is in the filter `IsFpAlgebraElementsSpace'
##  then this expresses that <V> consists of elements in a f.p.~algebra,
##  and that <V> is handled via the mechanism of nice bases (see~"...")
##  in the following way.
##  Let $f$ be the `NiceAlgebraMonomorphism' value for <V>
##  (see~"NiceAlgebraMonomorphism").
##  The `NiceVector' value of $v \in <V>$ is defined as
##  $`ImagesRepresentative'( f, v )$;
##  the `NiceFreeLeftModuleInfo' value of <V> is irrelevant.
##
##  So it is assumed that methods for computing the `NiceAlgebraMonomorphism'
##  value are known.
##
DeclareHandlingByNiceBasis( "IsFpAlgebraElementsSpace",
    "for free left modules of f.p. algebra elements" );


#############################################################################
##
#F  FpAlgebraByGeneralizedCartanMatrix( <F>, <A> )
##
##  is a finitely presented associative algebra over the field <F>,
##  defined by the generalized Cartan matrix <A>.
##
DeclareGlobalFunction( "FpAlgebraByGeneralizedCartanMatrix" );


#############################################################################
##
#E