This file is indexed.

/usr/share/gap/lib/alghom.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#############################################################################
##
#W  alghom.gd                   GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains declarations of operations for algebra(-with-one)
##  homomorphisms.
##
##  <#GAPDoc Label="[1]{alghom}">
##  Algebra homomorphisms are vector space homomorphisms that preserve the
##  multiplication.
##  So the default methods for vector space homomorphisms work,
##  and in fact there is not much use of the fact that source and range are
##  algebras, except that preimages and images are algebras (or even ideals)
##  in certain cases.
##  <#/GAPDoc>
##


#############################################################################
##
#O  AlgebraGeneralMappingByImages( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraGeneralMappingByImages">
##  <ManSection>
##  <Oper Name="AlgebraGeneralMappingByImages" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  is a general mapping from the <M>F</M>-algebra <A>A</A> to the <M>F</M>-algebra <A>B</A>.
##  This general mapping is defined by mapping the entries in the list <A>gens</A>
##  (elements of <A>A</A>) to the entries in the list <A>imgs</A> (elements of <A>B</A>),
##  and taking the <M>F</M>-linear and multiplicative closure.
##  <P/>
##  <A>gens</A> need not generate <A>A</A> as an <M>F</M>-algebra, and if the
##  specification does not define a linear and multiplicative mapping then
##  the result will be multivalued.
##  Hence, in general it is not a mapping.
##  For constructing a linear map that is not
##  necessarily multiplicative, we refer to
##  <Ref Func="LeftModuleHomomorphismByImages"/>.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> B:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
##  gap> f:= AlgebraGeneralMappingByImages( A, B, bA, bB );
##  [ e, i, j, k ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ], 
##    [ [ 0, 0 ], [ 1, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
##  gap> Images( f, bA[1] );
##  <add. coset of <algebra over Rationals, with 16 generators>>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AlgebraGeneralMappingByImages",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#F  AlgebraHomomorphismByImages( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraHomomorphismByImages">
##  <ManSection>
##  <Func Name="AlgebraHomomorphismByImages" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  <Ref Func="AlgebraHomomorphismByImages"/> returns the algebra homomorphism with
##  source <A>A</A> and range <A>B</A> that is defined by mapping the list <A>gens</A> of
##  generators of <A>A</A> to the list <A>imgs</A> of images in <A>B</A>.
##  <P/>
##  If <A>gens</A> does not generate <A>A</A> or if the homomorphism does not exist
##  (i.e., if mapping the generators describes only a multi-valued mapping)
##  then <K>fail</K> is returned.
##  <P/>
##  One can avoid the checks by calling <Ref Oper="AlgebraHomomorphismByImagesNC"/>,
##  and one can construct multi-valued mappings with
##  <Ref Func="AlgebraGeneralMappingByImages"/>.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );
##  gap> A:= AlgebraByStructureConstants( Rationals, T );;
##  gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
##  gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
##  gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
##  gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
##  gap> f:= AlgebraHomomorphismByImages( A, B, bA, bB );
##  [ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
##  gap> Image( f, bA[1]+bA[2] );
##  [ [ 1, 0 ], [ 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AlgebraHomomorphismByImages" );


#############################################################################
##
#O  AlgebraHomomorphismByImagesNC( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraHomomorphismByImagesNC">
##  <ManSection>
##  <Oper Name="AlgebraHomomorphismByImagesNC" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  <Ref Oper="AlgebraHomomorphismByImagesNC"/> is the operation that is called by the
##  function <Ref Func="AlgebraHomomorphismByImages"/>.
##  Its methods may assume that <A>gens</A> generates <A>A</A> and that the mapping of
##  <A>gens</A> to <A>imgs</A> defines an algebra homomorphism.
##  Results are unpredictable if these conditions do not hold.
##  <P/>
##  For creating a possibly multi-valued mapping from <A>A</A> to <A>B</A> that
##  respects addition, multiplication, and scalar multiplication,
##  <Ref Func="AlgebraGeneralMappingByImages"/> can be used.
##  <!-- see the comment in the declaration of <Ref Func="GroupHomomorphismByImagesNC"/>!-->
##  <P/>
##  For the definitions of the algebras <C>A</C> and <C>B</C> in the next example we refer
##  to the previous example.
##  <P/>
##  <Example><![CDATA[
##  gap> f:= AlgebraHomomorphismByImagesNC( A, B, bA, bB );
##  [ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AlgebraHomomorphismByImagesNC",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#O  AlgebraWithOneGeneralMappingByImages( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraWithOneGeneralMappingByImages">
##  <ManSection>
##  <Oper Name="AlgebraWithOneGeneralMappingByImages" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  This function is analogous to <Ref Func="AlgebraGeneralMappingByImages"/>;
##  the only difference being that the identity of <A>A</A> is automatically
##  mapped to the identity of <A>B</A>.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );;
##  gap> B:= FullMatrixAlgebra( Rationals, 2 );;
##  gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
##  gap> f:=AlgebraWithOneGeneralMappingByImages(A,B,bA{[2,3,4]},bB{[1,2,3]});
##  [ i, j, k, e ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ], 
##    [ [ 0, 0 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AlgebraWithOneGeneralMappingByImages",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#F  AlgebraWithOneHomomorphismByImages( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraWithOneHomomorphismByImages">
##  <ManSection>
##  <Func Name="AlgebraWithOneHomomorphismByImages" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  <Ref Func="AlgebraWithOneHomomorphismByImages"/> returns the
##  algebra-with-one homomorphism with source <A>A</A> and range <A>B</A>
##  that is defined by mapping the list <A>gens</A> of generators of <A>A</A>
##  to the list <A>imgs</A> of images in <A>B</A>.
##  <P/>
##  The difference between an algebra homomorphism and an algebra-with-one
##  homomorphism is that in the latter case,
##  it is assumed that the identity of <A>A</A> is mapped to the identity of
##  <A>B</A>,
##  and therefore <A>gens</A> needs to generate <A>A</A> only as an
##  algebra-with-one.
##  <P/>
##  If <A>gens</A> does not generate <A>A</A> or if the homomorphism does not
##  exist
##  (i.e., if mapping the generators describes only a multi-valued mapping)
##  then <K>fail</K> is returned.
##  <P/>
##  One can avoid the checks by calling
##  <Ref Func="AlgebraWithOneHomomorphismByImagesNC"/>,
##  and one can construct multi-valued mappings with
##  <Ref Func="AlgebraWithOneGeneralMappingByImages"/>.
##  <Example><![CDATA[
##  gap> m1:= NullMat( 2, 2 );; m1[1][1]:=1;;
##  gap> m2:= NullMat( 2, 2 );; m2[2][2]:=1;;
##  gap> A:= AlgebraByGenerators( Rationals, [m1,m2] );;
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [1,1] );
##  gap> SetEntrySCTable( T, 2, 2, [1,2] );
##  gap> B:= AlgebraByStructureConstants(Rationals, T);;
##  gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
##  gap> f:= AlgebraWithOneHomomorphismByImages( A, B, bA{[1]}, bB{[1]} );
##  [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AlgebraWithOneHomomorphismByImages" );


#############################################################################
##
#O  AlgebraWithOneHomomorphismByImagesNC( <A>, <B>, <gens>, <imgs> )
##
##  <#GAPDoc Label="AlgebraWithOneHomomorphismByImagesNC">
##  <ManSection>
##  <Oper Name="AlgebraWithOneHomomorphismByImagesNC" Arg='A, B, gens, imgs'/>
##
##  <Description>
##  <Ref Func="AlgebraWithOneHomomorphismByImagesNC"/> is the operation that
##  is called by the function
##  <Ref Func="AlgebraWithOneHomomorphismByImages"/>.
##  Its methods may assume that <A>gens</A> generates <A>A</A> and that the
##  mapping of <A>gens</A> to <A>imgs</A> defines an algebra-with-one
##  homomorphism.
##  Results are unpredictable if these conditions do not hold.
##  <P/>
##  For creating a possibly multi-valued mapping from <A>A</A> to <A>B</A>
##  that respects addition, multiplication, identity, and scalar
##  multiplication,
##  <Ref Func="AlgebraWithOneGeneralMappingByImages"/> can be used.
##  <P/>
##  <!-- see the comment in the declaration of <C>GroupHomomorphismByImagesNC</C>!-->
##  <Example><![CDATA[
##  gap> m1:= NullMat( 2, 2 );; m1[1][1]:=1;;
##  gap> m2:= NullMat( 2, 2 );; m2[2][2]:=1;;
##  gap> A:= AlgebraByGenerators( Rationals, [m1,m2] );;
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [1,1] );
##  gap> SetEntrySCTable( T, 2, 2, [1,2] );
##  gap> B:= AlgebraByStructureConstants( Rationals, T);;
##  gap> bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;
##  gap> f:= AlgebraWithOneHomomorphismByImagesNC( A, B, bA{[1]}, bB{[1]} );
##  [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AlgebraWithOneHomomorphismByImagesNC",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#O  OperationAlgebraHomomorphism( <A>, <B>[, <opr>] )
#O  OperationAlgebraHomomorphism( <A>, <V>[, <opr>] )
##
##  <#GAPDoc Label="OperationAlgebraHomomorphism">
##  <ManSection>
##  <Oper Name="OperationAlgebraHomomorphism" Arg='A, B[, opr]'
##   Label="action w.r.t. a basis of the module"/>
##  <Oper Name="OperationAlgebraHomomorphism" Arg='A, V[, opr]'
##   Label="action on a free left module"/>
##
##  <Description>
##  <Ref Func="OperationAlgebraHomomorphism" Label="action w.r.t. a basis of the module"/>
##  returns an algebra homomorphism from the <M>F</M>-algebra <A>A</A> into
##  a matrix algebra over <M>F</M> that describes the <M>F</M>-linear action
##  of <A>A</A> on the basis <A>B</A> of a free left module
##  respectively on the free left module <A>V</A>
##  (in which case some basis of <A>V</A> is chosen),
##  via the operation <A>opr</A>.
##  <P/>
##  The homomorphism need not be surjective.
##  The default value for <A>opr</A> is <Ref Func="OnRight"/>.
##  <P/>
##  If <A>A</A> is an algebra-with-one then the operation homomorphism is an
##  algebra-with-one homomorphism because the identity of <A>A</A> must act
##  as the identity.
##  <P/>
##  <!--  (Of course this holds especially if <A>D</A> is in the kernel of the action.)-->
##  <Example><![CDATA[
##  gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
##  gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
##  gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
##  gap> V:= FullRowSpace( Rationals, 2 );
##  ( Rationals^2 )
##  gap> f:=OperationAlgebraHomomorphism( B, Basis( V ), OnRight );
##  <op. hom. Algebra( Rationals, 
##  [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] 
##   ] ) -> matrices of dim. 2>
##  gap> Image( f, m1 );
##  [ [ 1, 0 ], [ 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "OperationAlgebraHomomorphism",
    [ IsFLMLOR, IsBasis, IsFunction ] );


#############################################################################
##
#F  InducedLinearAction( <basis>, <elm>, <opr> )
##
##  <ManSection>
##  <Func Name="InducedLinearAction" Arg='basis, elm, opr'/>
##
##  <Description>
##  returns the matrix that describe the linear action of the ring element
##  <A>elm</A> via <A>opr</A> on the free left module with basis <A>basis</A>,
##  with respect to this basis.
##  <!-- (Should this replace <C>LinearOperation</C>?)-->
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InducedLinearAction" );


#############################################################################
##
#O  MakePreImagesInfoOperationAlgebraHomomorphism( <ophom> )
##
##  <ManSection>
##  <Oper Name="MakePreImagesInfoOperationAlgebraHomomorphism" Arg='ophom'/>
##
##  <Description>
##  Provide the information for computing preimages, that is, set up
##  the components <C>basisImage</C>, <C>preimagesBasisImage</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "MakePreImagesInfoOperationAlgebraHomomorphism",
    [ IsAlgebraGeneralMapping ] );


#############################################################################
##
#A  IsomorphismFpAlgebra( <A> )
##
##  <#GAPDoc Label="IsomorphismFpAlgebra">
##  <ManSection>
##  <Attr Name="IsomorphismFpAlgebra" Arg='A'/>
##
##  <Description>
##  isomorphism from the algebra <A>A</A> onto a finitely presented algebra.
##  Currently this is only implemented for associative algebras with one.
##  <Example><![CDATA[
##  gap> A:= QuaternionAlgebra( Rationals );
##  <algebra-with-one of dimension 4 over Rationals>
##  gap> f:= IsomorphismFpAlgebra( A );
##  [ e, i, j, k, e ] -> [ [(1)*x.1], [(1)*x.2], [(1)*x.3], [(1)*x.4], 
##    [(1)*<identity ...>] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismFpFLMLOR", IsFLMLOR );

DeclareSynonymAttr( "IsomorphismFpAlgebra", IsomorphismFpFLMLOR );


#############################################################################
##
#A  IsomorphismMatrixAlgebra( <A> )
##
##  <#GAPDoc Label="IsomorphismMatrixAlgebra">
##  <ManSection>
##  <Attr Name="IsomorphismMatrixAlgebra" Arg='A'/>
##
##  <Description>
##  isomorphism from the algebra <A>A</A> onto a matrix algebra.
##  Currently this is only implemented for associative algebras with one.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 2, 0 );;
##  gap> SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );
##  gap> A:= AlgebraByStructureConstants( Rationals, T );;
##  gap> A:= AsAlgebraWithOne( Rationals, A );;
##  gap> f:=IsomorphismMatrixAlgebra( A );
##  <op. hom. AlgebraWithOne( Rationals, ... ) -> matrices of dim. 2>
##  gap> Image( f, BasisVectors( Basis( A ) )[1] );
##  [ [ 1, 0 ], [ 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismMatrixFLMLOR", IsFLMLOR );

DeclareSynonymAttr( "IsomorphismMatrixAlgebra", IsomorphismMatrixFLMLOR );


#############################################################################
##
#A  IsomorphismSCAlgebra( <B> )
#A  IsomorphismSCAlgebra( <A> )
##
##  <#GAPDoc Label="IsomorphismSCAlgebra">
##  <ManSection>
##  <Attr Name="IsomorphismSCAlgebra" Arg='B' Label="w.r.t. a given basis"/>
##  <Attr Name="IsomorphismSCAlgebra" Arg='A' Label="for an algebra"/>
##
##  <Description>
##  For a basis <A>B</A> of an algebra <M>A</M>, say,
##  <Ref Func="IsomorphismSCAlgebra" Label="w.r.t. a given basis"/> returns
##  an algebra isomorphism from <M>A</M> to an algebra <M>S</M> given by
##  structure constants
##  (see&nbsp;<Ref Sect="Constructing Algebras by Structure Constants"/>),
##  such that the canonical basis of <M>S</M> is the image of <A>B</A>.
##  <P/>
##  For an algebra <A>A</A>,
##  <Ref Func="IsomorphismSCAlgebra" Label="for an algebra"/> chooses
##  a basis of <A>A</A> and returns the
##  <Ref Func="IsomorphismSCAlgebra" Label="w.r.t. a given basis"/>
##  value for that basis.
##  <P/>
##  <Example><![CDATA[
##  gap> IsomorphismSCAlgebra( GF(8) );
##  CanonicalBasis( GF(2^3) ) -> CanonicalBasis( <algebra of dimension 
##  3 over GF(2)> )
##  gap> IsomorphismSCAlgebra( GF(2)^[2,2] );
##  CanonicalBasis( ( GF(2)^
##  [ 2, 2 ] ) ) -> CanonicalBasis( <algebra of dimension 4 over GF(2)> )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismSCFLMLOR", IsBasis );
DeclareAttribute( "IsomorphismSCFLMLOR", IsFLMLOR );

DeclareSynonymAttr( "IsomorphismSCAlgebra", IsomorphismSCFLMLOR );


#############################################################################
##
#O  RepresentativeLinearOperation( <A>, <v>, <w>, <opr> )
##
##  <#GAPDoc Label="RepresentativeLinearOperation">
##  <ManSection>
##  <Oper Name="RepresentativeLinearOperation" Arg='A, v, w, opr'/>
##
##  <Description>
##  is an element of the algebra <A>A</A> that maps the vector <A>v</A>
##  to the vector <A>w</A> under the linear operation described by the function
##  <A>opr</A>. If no such element exists then <K>fail</K> is returned.
##  <P/>
##  <!-- Would it be desirable to put this under <C>RepresentativeOperation</C>?-->
##  <!-- (look at the code before you agree ...)-->
##  <Example><![CDATA[
##  gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
##  gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
##  gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;
##  gap> RepresentativeLinearOperation( B, [1,0], [1,0], OnRight );
##  [ [ 1, 0 ], [ 0, 0 ] ]
##  gap> RepresentativeLinearOperation( B, [1,0], [0,1], OnRight );
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RepresentativeLinearOperation",
    [ IsFLMLOR, IsVector, IsVector, IsFunction ] );


#############################################################################
##
#E