/usr/share/gap/lib/alghom.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | #############################################################################
##
#W alghom.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for algebra(-with-one) general mappings.
##
## There are two default representations of such general mappings,
## one by generators and images (see the file `vspchom.gi'),
## the other as (linear) operation homomorphism
##
## 1. methods for algebra general mappings given by images
## 2. methods for operation algebra homomorphisms
## 3. methods for natural homomorphisms from algebras
## 4. methods for isomorphisms to matrix algebras
## 5. methods for isomorphisms to f.p. algebras
##
#############################################################################
##
## 1. methods for algebra general mappings given by images
##
#############################################################################
##
#R IsAlgebraGeneralMappingByImagesDefaultRep
##
## is a default representation of algebra general mappings between two
## algebras $A$ and $B$ where $F$ is equal to the left acting
## domain of $A$ and of $B$.
##
## Algebra generators of $A$ and $B$ images are stored in the attribute
## `MappingGeneratorsImages'.
##
## The general mapping is defined as the closure of the relation that joins
## the $i$-th generator of $A$ and the $i$-th generator of $B$
## w.r.t. linearity and multiplication.
##
## It is handled using the attribute `AsLinearGeneralMappingByImages'.
##
DeclareRepresentation( "IsAlgebraGeneralMappingByImagesDefaultRep",
IsAlgebraGeneralMapping and IsAdditiveElementWithInverse
and IsAttributeStoringRep, [] );
DeclareRepresentation( "IsPolynomialRingDefaultGeneratorMapping",
IsAlgebraGeneralMappingByImagesDefaultRep,[]);
#############################################################################
##
#M AlgebraGeneralMappingByImages( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraGeneralMappingByImages,
"for two FLMLORs and two homogeneous lists",
[ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
function( S, R, gens, imgs )
local map, # general mapping from <S> to <R>, result
filter,
i,basic;
# Handle the case that `gens' is a basis or empty.
# We can form a left module general mapping directly.
if IsBasis( gens ) or IsEmpty( gens ) then
map:= LeftModuleGeneralMappingByImages( S, R, gens, imgs );
SetIsAlgebraGeneralMapping( map, true );
return map;
fi;
# Check the arguments.
if Length( gens ) <> Length( imgs ) then
Error( "<gens> and <imgs> must have the same length" );
elif not IsSubset( S, gens ) then
Error( "<gens> must lie in <S>" );
elif not IsSubset( R, imgs ) then
Error( "<imgs> must lie in <R>" );
elif LeftActingDomain( S ) <> LeftActingDomain( R ) then
Error( "<S> and <R> must have same left acting domain" );
fi;
# type setting
filter:=IsSPGeneralMapping
and IsAlgebraGeneralMapping
and IsAlgebraGeneralMappingByImagesDefaultRep;
#special case: test whether polynomial ring is mapped via 1 and free
#generators
if IsPolynomialRing(S) then
basic:=ForAll(imgs,x->ForAll(imgs,y->x*y=y*x));
for i in [1..Length(gens)] do
if IsOne(gens[i]) then
if not IsOne(imgs[i]) then basic:=false;fi;
elif not gens[i] in IndeterminatesOfPolynomialRing(S) then
basic:=false;
fi;
od;
if basic=true then
filter:=filter and IsPolynomialRingDefaultGeneratorMapping;
fi;
fi;
# Make the general mapping.
map:= Objectify( TypeOfDefaultGeneralMapping( S, R,filter),
rec(
# generators := gens,
# genimages := imgs
) );
SetMappingGeneratorsImages(map,[Immutable(gens),Immutable(imgs)]);
# return the general mapping
return map;
end );
#############################################################################
##
#M AlgebraHomomorphismByImagesNC( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraHomomorphismByImagesNC,
"for two FLMLORs and two homogeneous lists",
[ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
function( S, R, gens, imgs )
local map; # homomorphism from <source> to <range>, result
map:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
SetIsSingleValued( map, true );
SetIsTotal( map, true );
return map;
end );
#############################################################################
##
#M AlgebraWithOneGeneralMappingByImages( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraWithOneGeneralMappingByImages,
"for two FLMLORs and two homogeneous lists",
[ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
function( S, R, gens, imgs )
local map; # homomorphism from <source> to <range>, result
gens:= Concatenation( gens, [ One( S ) ] );
imgs:= Concatenation( imgs, [ One( R ) ] );
map:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
SetRespectsOne( map, true );
return map;
end );
#############################################################################
##
#M AlgebraWithOneHomomorphismByImagesNC( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraWithOneHomomorphismByImagesNC,
"for two FLMLORs and two homogeneous lists",
true,
[ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ], 0,
function( S, R, gens, imgs )
local map; # homomorphism from <source> to <range>, result
gens:= Concatenation( gens, [ One( S ) ] );
imgs:= Concatenation( imgs, [ One( R ) ] );
map:= AlgebraHomomorphismByImagesNC( S, R, gens, imgs );
SetRespectsOne( map, true );
return map;
end );
#############################################################################
##
#F AlgebraHomomorphismByImages( <S>, <R>, <gens>, <imgs> )
##
InstallGlobalFunction( AlgebraHomomorphismByImages,
function( S, R, gens, imgs )
local hom;
hom:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
if IsMapping( hom ) then
return AlgebraHomomorphismByImagesNC( S, R, gens, imgs );
else
return fail;
fi;
end );
#############################################################################
##
#F AlgebraWithOneHomomorphismByImages( <S>, <R>, <gens>, <imgs> )
##
InstallGlobalFunction( AlgebraWithOneHomomorphismByImages,
function( S, R, gens, imgs )
local hom;
hom:= AlgebraWithOneGeneralMappingByImages( S, R, gens, imgs );
if IsMapping( hom ) then
return AlgebraWithOneHomomorphismByImagesNC( S, R, gens, imgs );
else
return fail;
fi;
end );
#############################################################################
##
#M ViewObj( <map> ) . . . . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( ViewObj, "for an algebra g.m.b.i", true,
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
mapi:=MappingGeneratorsImages(map);
View(mapi[1]);
Print(" -> ");
View(mapi[2]);
end );
#############################################################################
##
#M PrintObj( <map> ) . . . . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( PrintObj, "for an algebra-with-one hom. b.i", true,
[ IsMapping and RespectsOne
and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
mapi:=MappingGeneratorsImages(map);
Print( "AlgebraWithOneHomomorphismByImages( ",
Source( map ), ", ", Range( map ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
InstallMethod( PrintObj, "for an algebra hom. b.i.", true,
[ IsMapping
and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
mapi:=MappingGeneratorsImages(map);
Print( "AlgebraHomomorphismByImages( ",
Source( map ), ", ", Range( map ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
InstallMethod( PrintObj, "for an algebra-with-one g.m.b.i", true,
[ IsGeneralMapping and RespectsOne
and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
mapi:=MappingGeneratorsImages(map);
Print( "AlgebraWithOneGeneralMappingByImages( ",
Source( map ), ", ", Range( map ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
InstallMethod( PrintObj, "for an algebra g.m.b.i", true,
[ IsGeneralMapping
and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
mapi:=MappingGeneratorsImages(map);
Print( "AlgebraGeneralMappingByImages( ",
Source( map ), ", ", Range( map ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
#############################################################################
##
#M AsLeftModuleGeneralMappingByImages( <alg_gen_map> )
##
## If necessary then we compute a basis of the preimage,
## and images of its basis vectors.
##
## Note that we must prescribe also the products of basis vectors and
## their images if <alg_gen_map> is not known to be a mapping.
##
InstallMethod( AsLeftModuleGeneralMappingByImages,
"for an algebra general mapping by images",
[ IsAlgebraGeneralMapping
and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( alg_gen_map )
local origgenerators, # list of algebra generators of the preimage
origgenimages, # list of images of `origgenerators'
generators, # list of left module generators of the preimage
genimages, # list of images of `generators'
A, # source of the general mapping
left, # is it necessary to multiply also from the left?
# (not if `A' is associative or a Lie algebra)
maxdim, # upper bound on the dimension
MB, # mutable basis of the preimage
dim, # dimension of the actual left module
len, # number of algebra generators
i, j, # loop variables
gen, # loop over generators
prod, #
result; #
A:=MappingGeneratorsImages(alg_gen_map);
origgenerators := A[1];
origgenimages := A[2];
if IsBasis( origgenerators ) then
generators := origgenerators;
genimages := origgenimages;
else
generators := ShallowCopy( origgenerators );
genimages := ShallowCopy( origgenimages );
A:= Source( alg_gen_map );
left:= not ( ( HasIsAssociative( A ) and IsAssociative( A ) )
or ( HasIsLieAlgebra( A ) and IsLieAlgebra( A ) ) );
if HasDimension( A ) then
maxdim:= Dimension( A );
else
maxdim:= infinity;
fi;
# $A_1$
MB:= MutableBasis( LeftActingDomain( A ), generators,
Zero( A ) );
dim:= 0;
len:= Length( origgenerators );
while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do
# `MB' is a mutable basis of $A_i$.
dim:= NrBasisVectors( MB );
# Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
for i in [ 1 .. len ] do
gen:= origgenerators[i];
for j in [ 1 .. Length( generators ) ] do
prod:= generators[j] * gen;
if not IsContainedInSpan( MB, prod ) then
Add( generators, prod );
Add( genimages, genimages[j] * origgenimages[i] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
if left then
# Compute $\bigcup_{g \in S} ( A_i g \cup g A_i )$.
for i in [ 1 .. len ] do
gen:= origgenerators[i];
for j in [ 1 .. Length( generators ) ] do
prod:= gen * generators[j];
if not IsContainedInSpan( MB, prod ) then
Add( generators, prod );
Add( genimages, origgenimages[i] * genimages[j] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
fi;
od;
fi;
# If it is not known whether alg_gen_map is single valued, we need to
# perform some extra work.
if not (HasIsSingleValued( alg_gen_map ) and IsSingleValued( alg_gen_map )) then
# TODO: This code below is far from optimal. Indeed, it would suffice to
# loop over a basis; and we don't need to record all generator / image
# pairs we obtain below, but rather only those that are not linearly
# dependent on the already known pairs.
len := Length( generators );
for i in [ 1 .. len ] do
for j in [ 1 .. len ] do
Add( generators, generators[i] * generators[j] );
Add( genimages, genimages[i] * genimages[j] );
od;
od;
fi;
# Construct the left module (general) mapping.
result := LeftModuleGeneralMappingByImages( A, Range( alg_gen_map ),
generators, genimages );
# Transfer properties of alg_gen_map to result (in particular whether this is
# a homomorphism).
if HasIsSingleValued( alg_gen_map ) then
SetIsSingleValued( result, IsSingleValued( alg_gen_map ) );
fi;
if HasIsTotal( alg_gen_map ) then
SetIsTotal( result, IsTotal( alg_gen_map ) );
fi;
return result;
end );
#############################################################################
##
#M ImagesSource( <map> ) . . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( ImagesSource,
"for an algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map )
local asmap;
if HasAsLeftModuleGeneralMappingByImages( map ) then
asmap:= AsLeftModuleGeneralMappingByImages( map );
if IsLinearGeneralMappingByImagesDefaultRep( asmap )
and IsBound( asmap!.basisimage ) then
return SubFLMLORNC( Range( map ),
asmap!.basisimage, "basis" );
fi;
fi;
return SubFLMLORNC( Range( map ), MappingGeneratorsImages(map)[2] );
end );
#############################################################################
##
#M PreImagesRange( <map> ) . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( PreImagesRange,
"for an algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map )
local asmap;
if HasAsLeftModuleGeneralMappingByImages( map ) then
asmap:= AsLeftModuleGeneralMappingByImages( map );
if IsLinearGeneralMappingByImagesDefaultRep( asmap )
and IsBound( asmap!.basispreimage ) then
return SubFLMLORNC( Source( map ),
asmap!.basispreimage, "basis" );
fi;
fi;
return SubFLMLORNC( Source( map ), MappingGeneratorsImages(map)[1]);
end );
#############################################################################
##
#M CoKernelOfAdditiveGeneralMapping( <map> ) . . . . . for algebra g.m.b.i.
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map )
local asmap, genimages, coker;
asmap:= AsLeftModuleGeneralMappingByImages( map );
if not IsBound( asmap!.corelations ) then
MakeImagesInfoLinearGeneralMappingByImages( asmap );
fi;
genimages:= MappingGeneratorsImages(asmap)[2];
coker:= SubFLMLORNC( Range( map ),
List( asmap!.corelations,
r -> LinearCombination( genimages, r ) ) );
SetCoKernelOfAdditiveGeneralMapping( asmap, coker );
return coker;
end );
#############################################################################
##
#M IsSingleValued( <map> ) . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( IsSingleValued,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function(map)
local S,gi,i,basic;
S:=Source(map);
# rewriting to left modules is not feasible for infinite dimensional
# domains
if not IsFiniteDimensional(S) then
TryNextMethod();
fi;
return IsSingleValued( AsLeftModuleGeneralMappingByImages( map ) );
end);
#############################################################################
##
#M IsSingleValued( <map> ) . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( IsSingleValued,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsPolynomialRingDefaultGeneratorMapping ],0,
map->true);
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <map> ) . . . . . . for algebra g.m.b.i.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map )
local asmap, generators, ker;
asmap:= AsLeftModuleGeneralMappingByImages( map );
if not IsBound( asmap!.relations ) then
MakePreImagesInfoLinearGeneralMappingByImages( asmap );
fi;
generators:= MappingGeneratorsImages(asmap)[1];
ker:= SubFLMLORNC( Source( map ),
List( asmap!.relations,
r -> LinearCombination( generators, r ) ) );
SetKernelOfAdditiveGeneralMapping( asmap, ker );
if HasIsTotal( map ) and IsTotal( map ) then
SetIsTwoSidedIdealInParent( ker, true );
fi;
return ker;
end );
#############################################################################
##
#M IsInjective( <map> ) . . . . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( IsInjective,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
map -> IsInjective( AsLeftModuleGeneralMappingByImages( map ) ) );
#############################################################################
##
#M ImagesRepresentative( <map>, <elm> ) . . . . . . . for algebra g.m.b.i.
##
InstallMethod( ImagesRepresentative,
"for algebra g.m.b.i., and element",
FamSourceEqFamElm,
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
IsObject ],
function( map, elm )
return ImagesRepresentative( AsLeftModuleGeneralMappingByImages( map ),
elm );
end );
#############################################################################
##
#M PreImagesRepresentative( <map>, <elm> ) . . . . . . for algebra g.m.b.i.
##
InstallMethod( PreImagesRepresentative,
"for algebra g.m.b.i., and element",
FamRangeEqFamElm,
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
IsObject ],
function( map, elm )
return PreImagesRepresentative( AsLeftModuleGeneralMappingByImages(map),
elm );
end );
InstallMethod( PreImagesRepresentative,
"for algebra g.m.b.i. knowing inverse, and element",
FamRangeEqFamElm,
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep
and HasInverseGeneralMapping,
IsObject ],
function( map, elm )
return ImagesRepresentative( InverseGeneralMapping(map), elm );
end );
#############################################################################
##
#M \*( <c>, <map> ) . . . . . . . . . . . . for scalar and algebra g.m.b.i.
##
InstallMethod( \*,
"for scalar and algebra g.m.b.i.",
[ IsMultiplicativeElement,
IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( scalar, map )
return scalar * AsLeftModuleGeneralMappingByImages( map );
end );
#############################################################################
##
#M AdditiveInverseOp( <map> ) . . . . . . . . . . . . for algebra g.m.b.i.
##
InstallMethod( AdditiveInverseOp,
"for algebra g.m.b.i.",
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
map -> AdditiveInverse( AsLeftModuleGeneralMappingByImages( map ) ) );
#############################################################################
##
#M CompositionMapping2( <map2>, map1> ) for lin. mapping & algebra g.m.b.i.
##
InstallMethod( CompositionMapping2,
"for left module hom. and algebra g.m.b.i.",
FamSource1EqFamRange2,
[ IsLeftModuleHomomorphism,
IsAlgebraGeneralMapping
and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map2, map1 )
# Composition of two algebra homomorphisms is handled by another method.
if HasRespectsMultiplication( map2 )
and HasRespectsMultiplication( map2 ) then
TryNextMethod();
fi;
return CompositionMapping( map2,
AsLeftModuleGeneralMappingByImages( map1 ) );
end );
#############################################################################
##
#M CompositionMapping2( <map2>, map1> ) for algebra hom. & algebra g.m.b.i.
##
InstallMethod( CompositionMapping2,
"for left module hom. and algebra g.m.b.i.",
FamSource1EqFamRange2,
[ IsAlgebraHomomorphism,
IsAlgebraGeneralMapping
and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map2, map1 )
local comp, # composition of <map2> and <map1>, result
gens,
genimages,
mapi1,mapi2;
mapi1:=MappingGeneratorsImages(map1);
mapi2:=MappingGeneratorsImages(map2);
# Compute images for the generators of `map1'.
if IsAlgebraGeneralMappingByImagesDefaultRep( map2 )
and mapi1[2]=mapi2[1] then
gens := mapi1[1];
genimages := mapi2[2];
else
gens:= mapi1[1];
genimages:= List( mapi1[2],
v -> ImagesRepresentative( map2, v ) );
fi;
# Construct the linear general mapping.
comp:= AlgebraGeneralMappingByImages(
Source( map1 ), Range( map2 ), gens, genimages );
# Maintain info.
if HasRespectsOne( map1 ) and HasRespectsOne( map2 )
and RespectsOne( map1 ) and RespectsOne( map2 ) then
SetRespectsOne( comp, true );
fi;
if HasAsLeftModuleGeneralMappingByImages( map1 )
and HasAsLeftModuleGeneralMappingByImages( map2 ) then
SetAsLeftModuleGeneralMappingByImages( comp,
CompositionMapping( AsLeftModuleGeneralMappingByImages( map2 ),
AsLeftModuleGeneralMappingByImages( map1 ) ) );
fi;
# Return the composition.
return comp;
end );
#############################################################################
##
#M \+( <map1>, map2> ) . . . . . . . . . . . . . . . . for algebra g.m.b.i.
##
## The sum of an algebra general mapping and a left module general mapping
## is in general only a left module general mapping.
## So we delegate to the methods for left module general mappings.
##
InstallOtherMethod( \+,
"for an algebra g.m.b.i. and general mapping",
IsIdenticalObj,
[ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
IsGeneralMapping ],
function( map1, map2 )
return AsLeftModuleGeneralMappingByImages( map1 ) + map2;
end );
InstallOtherMethod( \+,
"for general mapping and algebra g.m.b.i.",
IsIdenticalObj,
[ IsGeneralMapping,
IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function( map1, map2 )
return map1 + AsLeftModuleGeneralMappingByImages( map2 );
end );
#############################################################################
##
## 2. methods for operation algebra homomorphisms
##
#############################################################################
##
#R IsOperationAlgebraHomomorphismDefaultRep
##
## is a default representation of operation homomorphisms to matrix FLMLORs.
## It assumes that a basis of the operation domain is known.
## (For operation homomorphisms from f.~p. algebras to matrix algebras,
## see `IsAlgebraHomomorphismFromFpRep'.)
##
## Defining components are
##
## `basis'
## basis of the domain on that the source acts
##
## `operation'
## the function via that the source acts
##
## Images can be computed by the action, w.r.t. the basis `basisImage'.
## Preimages can be computed using the components
##
## `basisImage'
## basis of the image
##
## `preimagesBasisImage'
## list of preimages of the basis vectors of `basisImage'.
##
## These components are computed as soon as they are needed.
##
## Note that we cannot use the attribute `AsLinearGeneralMappingByImages'
## because the source may be infinite dimensional, i.e., we cannot write
## down the left module general mapping.
##
DeclareRepresentation( "IsOperationAlgebraHomomorphismDefaultRep",
IsAlgebraHomomorphism and IsAdditiveElementWithInverse
and IsAttributeStoringRep,
[ "basis", "operation",
"basisImage", "preimagesBasisImage" ] );
#############################################################################
##
#M ViewObj( <ophom> ) . . . . . . . . for an operation algebra homomorphism
##
InstallMethod( ViewObj,
"for an operation algebra homomorphism",
[ IsOperationAlgebraHomomorphismDefaultRep ],
function( ophom )
Print( "<op. hom. ", Source( ophom ), " -> matrices of dim. ",
Length( BasisVectors( ophom!.basis ) ), ">" );
end );
#############################################################################
##
#M PrintObj( <ophom> ) . . . . . . . . for an operation algebra homomorphism
##
InstallMethod( PrintObj,
"for an operation algebra homomorphism",
[ IsOperationAlgebraHomomorphismDefaultRep ],
function( ophom )
if ophom!.operation = OnRight then
Print( "OperationAlgebraHomomorphism( ",
Source( ophom ), ", ", ophom!.basis, " )" );
else
Print( "OperationAlgebraHomomorphism( ",
Source( ophom ), ", ", ophom!.basis, ", ",
ophom!.operation, " )" );
fi;
end );
#############################################################################
##
#F InducedLinearAction( <basis>, <elm>, <opr> )
##
InstallGlobalFunction( InducedLinearAction, function( basis, elm, opr )
return List( BasisVectors( basis ),
x -> Coefficients( basis, opr( x, elm ) ) );
end );
#############################################################################
##
#M MakePreImagesInfoOperationAlgebraHomomorphism( <ophom> )
##
InstallMethod( MakePreImagesInfoOperationAlgebraHomomorphism,
"for an operation algebra homomorphism",
[ IsOperationAlgebraHomomorphismDefaultRep ],
function( ophom )
local A, # source of the general mapping
F, # left acting domain
origgenerators, # list of algebra generators of the preimage
origgenimages, # list of images of `origgenerators'
I, # image of the mapping
genimages, # list of left module generators of the image
preimages, # list of preimages of `genimages'
maxdim, # upper bound on the dimension
MB, # mutable basis of the image
dim, # dimension of the actual left module
len, # number of algebra generators
i, j, # loop variables
gen, # loop over generators
prod; #
A:= Source( ophom );
F:= LeftActingDomain( A );
dim:= Length( BasisVectors( ophom!.basis ) );
if IsRingWithOne( A ) then
origgenerators:= GeneratorsOfAlgebraWithOne( A );
origgenimages:= List( origgenerators,
a -> InducedLinearAction( ophom!.basis, a, ophom!.operation ) );
if IsEmpty( origgenimages ) then
I:= FLMLORWithOneByGenerators( F, origgenimages,
Immutable( NullMat( F, dim, dim ) ) );
else
I:= FLMLORWithOneByGenerators( F, origgenimages );
fi;
else
origgenerators:= GeneratorsOfAlgebra( A );
origgenimages:= List( origgenerators,
a -> InducedLinearAction( ophom!.basis, a, ophom!.operation ) );
if IsEmpty( origgenimages ) then
I:= FLMLORByGenerators( F, origgenimages,
Immutable( NullMat( F, dim, dim ) ) );
else
I:= FLMLORByGenerators( F, origgenimages );
fi;
fi;
preimages := [ One( A ) ];
genimages := [ InducedLinearAction( ophom!.basis, One( A ),
ophom!.operation ) ];
maxdim:= dim^2;
# $A_1$
MB:= MutableBasis( F, genimages, Zero( I ) );
dim:= 0;
len:= Length( origgenimages );
while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do
# `MB' is a mutable basis of $A_i$.
dim:= NrBasisVectors( MB );
# Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
for i in [ 1 .. len ] do
gen:= origgenimages[i];
for j in [ 1 .. Length( genimages ) ] do
prod:= genimages[j] * gen;
if not IsContainedInSpan( MB, prod ) then
Add( genimages, prod );
Add( preimages, preimages[j] * origgenerators[i] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
od;
# Set the desired components.
ophom!.basisImage:= BasisNC( I, genimages );
ophom!.preimagesBasisImage:= Immutable( preimages );
end );
#############################################################################
##
#M ImagesRepresentative( <ophom>, <elm> ) . . . . . . . . for op. alg. hom.
##
InstallMethod( ImagesRepresentative,
"for an operation algebra homomorphism, and an element",
FamSourceEqFamElm,
[ IsOperationAlgebraHomomorphismDefaultRep, IsRingElement ],
function( ophom, elm )
return InducedLinearAction( ophom!.basis, elm, ophom!.operation );
end );
#############################################################################
##
#M PreImagesRepresentative( <ophom>, <mat> )
##
PreImagesRepresentativeOperationAlgebraHomomorphism := function( ophom, mat )
if not IsBound( ophom!.basisImage ) then
MakePreImagesInfoOperationAlgebraHomomorphism( ophom );
fi;
mat:= Coefficients( ophom!.basisImage, mat );
if mat <> fail then
mat:= LinearCombination( ophom!.preimagesBasisImage, mat );
fi;
return mat;
end;
InstallMethod( PreImagesRepresentative,
"for an operation algebra homomorphism, and an element",
FamRangeEqFamElm,
[ IsOperationAlgebraHomomorphismDefaultRep, IsMatrix ],
PreImagesRepresentativeOperationAlgebraHomomorphism );
#############################################################################
##
#R IsAlgebraHomomorphismFromFpRep
##
## is a representation of operation homomorphisms from f.~p. FLMLORs
## to matrix FLMLORs.
## Contrary to `IsOperationAlgebraHomomorphismDefaultRep', no basis of the
## source is needed, computing images is done via `MappedExpression'.
##
## Defining components are
##
## `Agenerators'
## generators of the f.~p. algebra
##
## `Agenimages'
## images of `Agenerators'
##
## Preimages can be computed using the components
##
## `basisImage'
## basis of the image
##
## `preimagesBasisImage'
## list of preimages of the basis vectors of `basisImage'.
##
## (This works analogously to `IsOperationAlgebraHomomorphismDefaultRep'.)
## These components are computed as soon as they are needed.
##
## Note that also here, we cannot use the attribute
## `AsLinearGeneralMappingByImages'.
##
DeclareRepresentation( "IsAlgebraHomomorphismFromFpRep",
IsAlgebraHomomorphism and IsAdditiveElementWithInverse
and IsAttributeStoringRep,
[ "Agenerators", "Agenimages",
"basisImage", "preimagesBasisImage" ] );
#############################################################################
##
#M ViewObj( <ophom> ) . . . . . . . . for an algebra homomorphism from f.p.
##
InstallMethod( ViewObj,
"for an alg. hom. from f. p. algebra",
[ IsAlgebraHomomorphismFromFpRep ],
function( ophom )
Print( "<op. hom. ", Source( ophom ), " -> matrices of dim. ",
Length( ophom!.Agenimages[1] ), ">" );
end );
#############################################################################
##
#M PrintObj( <hom> ) . . . . . . . . . for an algebra homomorphism from f.p.
##
InstallMethod( PrintObj,
"for an alg. hom. from f. p. algebra",
[ IsAlgebraHomomorphismFromFpRep ],
function( hom )
Print( "AlgebraHomomorphismByImages( ",
Source( hom ), ", ", Range( hom ), ", ",
hom!.Agenerators, ", ", hom!.Agenimages, " )" );
end );
#T this does not admit to recover the homomorphism from the printed data;
#T in fact we have no function to construct such a homomorphism ...
#############################################################################
##
#M MakePreImagesInfoOperationAlgebraHomomorphism( <ophom> )
##
InstallMethod( MakePreImagesInfoOperationAlgebraHomomorphism,
"for an alg. hom. from f. p. algebra",
[ IsAlgebraHomomorphismFromFpRep ],
function( ophom )
local A, # source of the general mapping
F, # left acting domain
I, # image of the homomorphism
origgenerators, # list of algebra generators of the preimage
origgenimages, # list of images of `origgenerators'
genimages, # list of left module generators of the image
preimages, # list of preimages of `genimages'
maxdim, # upper bound on the dimension
MB, # mutable basis of the image
dim, # dimension of the actual left module
len, # number of algebra generators
i, j, # loop variables
gen, # loop over generators
prod; #
A:= Source( ophom );
F:= LeftActingDomain( A );
I:= ImagesSource( ophom );
origgenerators := ophom!.Agenerators;
origgenimages := ophom!.Agenimages;
dim:= Length( origgenimages[1] );
if dim = 0 then
ophom!.basisImage:= BasisNC( I, [] );
ophom!.preimagesBasisImage:= Immutable( [] );
return;
fi;
maxdim:= dim^2;
preimages := [ One( A ) ];
genimages := [ One( origgenimages[1] ) ];
# $A_1$
MB:= MutableBasis( F, genimages, Zero( I ) );
dim:= 0;
len:= Length( origgenimages );
while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do
# `MB' is a mutable basis of $A_i$.
dim:= NrBasisVectors( MB );
# Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
for i in [ 1 .. len ] do
gen:= origgenimages[i];
for j in [ 1 .. Length( genimages ) ] do
prod:= genimages[j] * gen;
if not IsContainedInSpan( MB, prod ) then
Add( genimages, prod );
Add( preimages, preimages[j] * origgenerators[i] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
od;
# Set the desired components.
ophom!.basisImage:= BasisNC( I, genimages );
ophom!.preimagesBasisImage:= Immutable( preimages );
end );
#############################################################################
##
#M ImagesRepresentative( <ophom>, <elm> ) . . . . . . . . for op. alg. hom.
##
InstallMethod( ImagesRepresentative,
"for an alg. hom. from f. p. algebra, and an element",
FamSourceEqFamElm,
[ IsAlgebraHomomorphismFromFpRep, IsRingElement ],
function( ophom, elm )
return MappedExpression( elm, ophom!.Agenerators, ophom!.Agenimages );
end );
#############################################################################
##
#M PreImagesRepresentative( <ophom>, <mat> )
##
InstallMethod( PreImagesRepresentative,
"for an alg. hom. from f. p. algebra, and an element",
FamRangeEqFamElm,
[ IsAlgebraHomomorphismFromFpRep, IsMatrix ],
PreImagesRepresentativeOperationAlgebraHomomorphism );
#############################################################################
##
#M OperationAlgebraHomomorphism( <A>, <basis>, <opr> )
##
InstallMethod( OperationAlgebraHomomorphism,
"for a FLMLOR, a basis, and a function",
[ IsFLMLOR, IsBasis, IsFunction ],
function( A, basis, opr )
local ophom, image;
# Make the general mapping.
ophom:= Objectify( NewType( GeneralMappingsFamily(
ElementsFamily( FamilyObj( A ) ),
CollectionsFamily( FamilyObj(
LeftActingDomain( A ) ) ) ),
IsSPGeneralMapping
and IsAlgebraHomomorphism
and IsOperationAlgebraHomomorphismDefaultRep ),
rec(
operation := opr,
basis := basis
) );
SetSource( ophom, A );
# Handle the case that the basis is empty.
if IsEmpty( basis ) then
image := NullAlgebra( LeftActingDomain( A ) );
ophom!.basisImage := Basis( image );
ophom!.preimagesBasisImage := Immutable( [ Zero( A ) ] );
SetRange( ophom, image );
SetKernelOfAdditiveGeneralMapping( ophom, A );
SetIsSurjective( ophom, true );
fi;
# Return the operation homomorphism.
return ophom;
end );
#############################################################################
##
#M OperationAlgebraHomomorphism( <A>, <C> )
##
## Add the default argument `OnRight'.
##
InstallOtherMethod( OperationAlgebraHomomorphism,
"for a FLMLOR and a collection (add `OnRight' argument)",
[ IsFLMLOR, IsCollection ],
function( A, C )
return OperationAlgebraHomomorphism( A, C, OnRight );
end );
#############################################################################
##
#M OperationAlgebraHomomorphism( <A>, <V>, <opr> )
##
## For a finite dimensional free left module <V> with known generators,
## we assume that a basis can be computed.
##
InstallOtherMethod( OperationAlgebraHomomorphism,
"for a FLMLOR, a free left module with known generators, and a function",
[ IsFLMLOR,
IsFreeLeftModule and IsFiniteDimensional and HasGeneratorsOfLeftModule,
IsFunction ],
function( A, V, opr )
return OperationAlgebraHomomorphism( A, Basis( V ), opr );
end );
#############################################################################
##
#M Range( <ophom> ) . . . . . . . . . . for operation algebra homomorphism
##
## An operation algebra homomorphism that does not know its range cannot be
## forced to be surjective; so we may choose a full matrix FLMLOR.
##
InstallMethod( Range,
"for operation algebra homomorphism (set full matrix FLMLOR)",
[ IsOperationAlgebraHomomorphismDefaultRep ],
ophom -> FullMatrixFLMLOR( LeftActingDomain( Source( ophom ) ),
Length( BasisVectors( ophom!.basis ) ) ) );
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <ophom> ) . . for operation algebra hom.
##
## For a finite dimensional acting algebra, we compute a basis of the kernel
## by solving a linear equation system.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"for operation algebra hom. with fin. dim. source",
[ IsMapping and IsOperationAlgebraHomomorphismDefaultRep ],
function( ophom )
local A, # source of the homomorphism
BA, # basis of `A'
BV, # basis of the module
opr, # operation of `A' on the vectors
nullsp; # coefficients vectors of a basis of the kernel
A:= Source( ophom );
if IsTrivial( A ) then
return A;
elif not IsFiniteDimensional( A ) then
TryNextMethod();
fi;
BA:= Basis( A );
BV:= ophom!.basis;
opr:= ophom!.operation;
nullsp:= NullspaceMat( List( BA,
a -> Concatenation( List( BV,
v -> Coefficients( BV, opr( v, a ) ) ) ) ) );
nullsp:= SubFLMLORNC( A,
List( nullsp, v -> LinearCombination( BA, v ) ), "basis" );
SetIsTwoSidedIdealInParent( nullsp, true );
return nullsp;
end );
#############################################################################
##
#M RepresentativeLinearOperation( <A>, <v>, <w>, <opr> )
##
## Let <A> be a finite dimensional algebra over the ring $R$,
## <v> and <w> either elements in <A> or tuples of elements in <A>,
## and <opr> equal to `OnRight' or `OnTuples', respectively.
## We compute an element of <A> that maps <v> to <w>.
##
## We compute the coefficients $a_i$ in the equation system
## $\sum_{i=1}^n a_i <opr>( <v>, b_i ) = <w>$,
## where $(b_1, b_2, \ldots, b_n)$ is a basis of <A>.
##
## For a tuple $(v_1, \ldots, v_k)$ of vectors we simply replace $v b_i$ by
## the concatenation of the $v_j b_i$ for all $j$, and replace $w$ by the
## concatenation $(w_1, \ldots, w_k)$, and solve this system.
##
## (There are also methods for matrix algebras acting on row vectors via
## `OnRight' or `OnTuples'.)
##
InstallMethod( RepresentativeLinearOperation,
"for a FLMLOR, two elements in it, and `OnRight'",
IsCollsElmsElmsX,
[ IsFLMLOR, IsVector, IsVector, IsFunction ],
function( A, v, w, opr )
local B, vectors, a;
if not ( v in A and w in A and opr = OnRight ) then
TryNextMethod();
fi;
if IsTrivial( A ) then
if IsZero( w ) then
return Zero( A );
else
return fail;
fi;
fi;
B:= Basis( A );
vectors:= BasisVectors( B );
# Compute the matrix of the equation system,
# the coefficient vector $a$, \ldots
a:= SolutionMat( List( vectors, x -> Coefficients( B, v * x ) ),
Coefficients( B, w ) );
if a = fail then
return fail;
fi;
# \ldots and the representative.
return LinearCombination( B, a );
end );
InstallOtherMethod( RepresentativeLinearOperation,
"for a FLMLOR, two tuples of elements in it, and `OnTuples'",
IsFamFamFamX,
[ IsFLMLOR, IsHomogeneousList, IsHomogeneousList, IsFunction ],
function( A, vs, ws, opr )
local B, vectors, a;
if not ( Length( vs ) = Length( ws )
and IsSubset( A, vs ) and IsSubset( A, ws )
and opr = OnTuples ) then
TryNextMethod();
fi;
if IsTrivial( A ) then
if ForAll( ws, IsZero ) then
return Zero( A );
else
return fail;
fi;
fi;
B:= Basis( A );
vectors:= BasisVectors( B );
# Compute the matrix of the equation system,
# the coefficient vector $a$, \ldots
a:= SolutionMat( List( vectors,
x -> Concatenation( List( vs,
v -> Coefficients( B, v * x ) ) ) ),
Concatenation( List( ws,
w -> Coefficients( B, w ) ) ) );
if a = fail then
return fail;
fi;
# \ldots and the representative.
return LinearCombination( B, a );
end );
#############################################################################
##
## 3. methods for natural homomorphisms from algebras
##
#M NaturalHomomorphismByIdeal( <A>, <I> ) . . . . . map onto factor algebra
##
## <#GAPDoc Label="NaturalHomomorphismByIdeal_algebras">
## <ManSection>
## <Meth Name="NaturalHomomorphismByIdeal" Arg='A, I'
## Label="for an algebra and an ideal"/>
##
## <Description>
## For an algebra <A>A</A> and an ideal <A>I</A> in <A>A</A>,
## the return value of <Ref Func="NaturalHomomorphismByIdeal"/>
## is a homomorphism of algebras, in particular the range of this mapping
## is also an algebra.
## <P/>
## <Example><![CDATA[
## gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
## gap> C:= LieCentre( L );
## <two-sided ideal in <Lie algebra of dimension 9 over Rationals>,
## (dimension 1)>
## gap> hom:= NaturalHomomorphismByIdeal( L, C );
## <linear mapping by matrix, <Lie algebra of dimension
## 9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>
## gap> ImagesSource( hom );
## <Lie algebra of dimension 8 over Rationals>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#M NaturalHomomorphismByIdeal( <A>, <triv> ) . . . . . . onto trivial FLMLOR
##
## Return the identity mapping.
##
InstallMethod( NaturalHomomorphismByIdeal,
"for FLMLOR and trivial FLMLOR",
IsIdenticalObj,
[ IsFLMLOR, IsFLMLOR and IsTrivial ], SUM_FLAGS,
function( A, I )
return IdentityMapping( A );
end );
#############################################################################
##
#M NaturalHomomorphismByIdeal( <A>, <I> ) . . . . for two fin. dim. FLMLORs
##
## We return a left module m.b.m. from <A> onto the factor `<A>/<I>'.
## The image is a s.c. algebra if <I> is nontrivial,
## and otherwise the identity mapping of <A>.
##
InstallMethod( NaturalHomomorphismByIdeal,
"for two finite dimensional FLMLORs",
IsIdenticalObj,
[ IsFLMLOR, IsFLMLOR ],
function( A, I )
local F, # left acting domain of `A'
zero, # zero of `F'
Ivectors, # basis vectors of a basis of `I'
mb, # mutable basis of `I'
compl, # basis vectors of a complement of `I' in `A'
gen, # loop over a basis of `A'
B, # basis of `A', through `I'
k, # length of `Ivectors'
n, # length of `compl'
T, # s.c. table of a basis of the image
i, j, # loop variables
coeff, # coefficients of a product
pos, # relevant positions
img, # image of the homomorphism
canbas, # canonical basis of the image
Bimgs, # images of the vactors of `B' under the hom.
nathom; # the homomorphism, result
# Check that the FLMLORs are finite dimensional.
if not IsFiniteDimensional( A ) or not IsFiniteDimensional( I ) then
TryNextMethod();
fi;
# If `A' is equal to `I', return a zero mapping.
if not IsIdeal( A, I ) then
Error( "<I> must be an ideal in <A>" );
elif Dimension( A ) = Dimension( I ) then
return ZeroMapping( A, NullAlgebra( LeftActingDomain( A ) ) );
fi;
# If `I' is trivial, return the identity mapping.
if IsTrivial( I ) then
return IdentityMapping( A );
fi;
# If the left acting domains are different, adjust them.
F:= LeftActingDomain( A );
if F <> LeftActingDomain( I ) then
F:= Intersection2( A, LeftActingDomain( I ) );
A:= AsFLMLOR( F, A );
I:= AsFLMLOR( F, I );
fi;
# Compute a basis of `A' through a basis of `I'.
Ivectors:= BasisVectors( Basis( I ) );
mb:= MutableBasis( F, Ivectors );
compl:= [];
for gen in BasisVectors( Basis( A ) ) do
if not IsContainedInSpan( mb, gen ) then
Add( compl, gen );
CloseMutableBasis( mb, gen );
fi;
od;
B:= BasisNC( A, Concatenation( Ivectors, compl ) );
# Compute the structure constants of the quotient algebra.
zero:= Zero( F );
k:= Length( Ivectors );
n:= Length( compl );
if HasIsCommutative( A ) and IsCommutative( A ) then
T:= EmptySCTable( n, Zero( F ), "symmetric" );
elif HasIsAnticommutative( A ) and IsAnticommutative( A ) then
T:= EmptySCTable( n, Zero( F ), "antisymmetric" );
else
T:= EmptySCTable( n, Zero( F ) );
fi;
for i in [ 1 .. n ] do
for j in [ 1 .. n ] do
coeff:= Coefficients( B, compl[i] * compl[j] ){ [ k+1 .. k+n ] };
pos:= Filtered( [ 1 .. n ], i -> coeff[i] <> zero );
if not IsEmpty( pos ) then
T[i][j]:= Immutable( [ pos, coeff{ pos } ] );
fi;
od;
od;
#T use (anti)symm. here!!!
# Compute the linear mapping by images.
img:= AlgebraByStructureConstants( F, T );
canbas:= CanonicalBasis( img );
zero:= zero * [ 1 .. n ];
Bimgs:= Concatenation( List( [ 1 .. k ], v -> zero ),
Immutable( IdentityMat( n, F ) ) );
nathom:= LeftModuleHomomorphismByMatrix( B, Bimgs, canbas );
#T take a special representation for nat. hom.s,
#T (just compute coefficients, and then choose a subset ...)
SetIsAlgebraWithOneHomomorphism( nathom, true );
SetIsInjective( nathom, false );
SetIsSurjective( nathom, true );
# Enter the preimages info.
nathom!.basisimage:= canbas;
nathom!.preimagesbasisimage:= Immutable( compl );
#T relations are not needed if the kernel is known ?
SetKernelOfAdditiveGeneralMapping( nathom, I );
# Run the implications for the factor.
UseFactorRelation( A, I, img );
return nathom;
end );
#############################################################################
##
## 4. methods for isomorphisms to matrix algebras
##
#############################################################################
##
#M IsomorphismMatrixFLMLOR( <A> ) . . . . . . for a fin. dim. assoc. FLMLOR
##
## A FLMLOR with a multiplicative neutral element acts faithfully on itself
## via right multiplication.
## So we get for an $n$ dimensional algebra a representation with matrices
## of dimension $n \times n$.
##
InstallMethod( IsomorphismMatrixFLMLOR,
"for a finite dimensional associative FLMLOR with identity",
[ IsFLMLOR ],
function( A )
local B, # basis of `A'
F, # left acting domain of `A'
I, # image of the isomorphism
map, # isomorphism, result
gens, # algebra generators of `A'
imgs, # images of `gens' under the action from the right
dim; # dimension of `A'
if IsSubalgebraFpAlgebra( A ) # avoid to call `IsFiniteDimensional'
# in this case
or not IsFiniteDimensional( A )
or not IsAssociative( A )
or MultiplicativeNeutralElement( A ) = fail then
TryNextMethod();
fi;
B:= Basis( A );
F:= LeftActingDomain( A );
if IsEmpty( B ) then
# Handle the case that `A' is trivial.
I:= NullAlgebra( F );
map:= LeftModuleHomomorphismByImagesNC( A, I, B, Basis( I ) );
SetRespectsMultiplication( map, true );
else
if IsRingWithOne( A ) then
gens:= GeneratorsOfAlgebraWithOne( A );
else
gens:= GeneratorsOfAlgebra( A );
fi;
imgs:= List( gens, a -> InducedLinearAction( B, a, OnRight ) );
if IsEmpty( imgs ) then
dim:= Dimension( A );
imgs[1]:= Immutable( NullMat( F, dim, dim ) );
fi;
I:= FLMLORByGenerators( F, imgs );
UseIsomorphismRelation( A, I );
# Make an operation algebra homomorphism.
map:= Objectify( NewType( GeneralMappingsFamily(
ElementsFamily( FamilyObj( A ) ),
ElementsFamily( FamilyObj( imgs ) ) ),
IsSPGeneralMapping
and IsAlgebraHomomorphism
and IsOperationAlgebraHomomorphismDefaultRep ),
rec(
operation := OnRight,
basis := B
) );
SetSource( map, A );
SetRange( map, I );
fi;
SetIsSurjective( map, true );
SetIsInjective( map, true );
return map;
end );
#############################################################################
##
## 5. methods for isomorphisms to f.p. algebras
##
#############################################################################
##
#M IsomorphismFpFLMLOR( <A> ) . . . . . . . . for a fin. dim. assoc. FLMLOR
##
## Construct the free (associative) algebra $F$ on generators of <A>,
## and factor out the two-sided ideal $I$ spanned by the structure relators
## w.r.t. a basis of <A>.
## Then clearly the kernel of the homomorphism from $F$ to <A> contains $I$,
## on the other hand any expression in the kernel can be reduced to a sum
## of generators modulo the structure relators of <A>, and this must be
## trivial since the images of generators were assumed to be linearly
## independent.
##
## We write down all relations to reduce words of length two to
## linear combinations of the generators.
## So it makes no difference whether the f.p. algebra is constructed
## from a free algebra or from a free associative algebra.
## But if <A> knows to be associative then we take a free associative
## algebra.
##
InstallMethod( IsomorphismFpFLMLOR,
"for a finite dimensional FLMLOR-with-one",
[ IsFLMLORWithOne ],
function( A )
local Agens, # list of algebra generators of `A'
F, # free (associative) algebra
Fgens, # list of images of `Agens'
generators, # list of left module generators of the preimage
genimages, # list of images of `generators'
left, # is it necessary to multiply also from the left?
maxdim, # upper bound on the dimension
MB, # mutable basis of the preimage
dim, # dimension of the actual left module
len, # number of algebra generators
i, j, # loop variables
gen, # loop over generators
prod, #
rels, # relators list
rel, # one relator
coeff, # coefficients of product of basis vectors
k, # loop over `coeff'
B, # basis of `A'
Fp, # f.p. algebra
Fam, # elements family of the family of `Fp'
map; # the isomorphism, result
if not IsFiniteDimensional( A ) then
TryNextMethod();
fi;
Agens:= GeneratorsOfAlgebraWithOne( A );
if HasIsAssociative( A ) and IsAssociative( A ) then
F:= FreeAssociativeAlgebraWithOne( LeftActingDomain( A ),
Length( Agens ) );
left:= false;
else
F:= FreeAlgebraWithOne( LeftActingDomain( A ), Length( Agens ) );
left:= true;
fi;
Fgens:= GeneratorsOfAlgebraWithOne( F );
generators := ShallowCopy( Agens );
genimages := ShallowCopy( Fgens );
if HasDimension( A ) then
maxdim:= Dimension( A );
else
maxdim:= infinity;
fi;
# $A_1$
MB:= MutableBasis( LeftActingDomain( A ), generators,
Zero( A ) );
dim:= 0;
len:= Length( Agens );
while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do
# `MB' is a mutable basis of $A_i$.
dim:= NrBasisVectors( MB );
# Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
for i in [ 1 .. len ] do
gen:= Agens[i];
for j in [ 1 .. Length( generators ) ] do
prod:= generators[j] * gen;
if not IsContainedInSpan( MB, prod ) then
Add( generators, prod );
Add( genimages, genimages[j] * Fgens[i] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
if left then
# Compute $\bigcup_{g \in S} ( A_i g \cup g A_i )$.
for i in [ 1 .. len ] do
gen:= Agens[i];
for j in [ 1 .. Length( generators ) ] do
prod:= gen * generators[j];
if not IsContainedInSpan( MB, prod ) then
Add( generators, prod );
Add( genimages, Fgens[i] * genimages[j] );
CloseMutableBasis( MB, prod );
fi;
od;
od;
fi;
od;
B:= BasisNC( A, generators );
dim:= Length( generators );
# Construct the relators given by the multiplication table.
rels:= [];
for i in [ 1 .. dim ] do
for j in [ 1 .. dim ] do
coeff:= Coefficients( B, generators[i] * generators[j] );
rel:= genimages[i] * genimages[j];
for k in [ 1 .. dim ] do
rel:= rel - coeff[k] * genimages[k];
od;
if not IsZero( rel ) then
Add( rels, rel );
fi;
od;
od;
# Remove duplicate relators.
rels:= Set( rels );
# Construct the f.p. algebra.
Fp:= FactorFreeAlgebraByRelators( F, rels );
Fam:= ElementsFamily( FamilyObj( Fp ) );
# Set useful information.
UseIsomorphismRelation( A, Fp );
# Map the elements of the free algebra into the f.p. algebra.
Fgens:= List( Fgens, a -> ElementOfFpAlgebra( Fam, a ) );
genimages:= List( genimages, a -> ElementOfFpAlgebra( Fam, a ) );
# Set the info to compute with a basis of the f.p. algebra.
SetNiceAlgebraMonomorphism( Fp,
Objectify( NewType( GeneralMappingsFamily(
ElementsFamily( FamilyObj( Fp ) ),
ElementsFamily( FamilyObj( A ) ) ),
IsSPGeneralMapping
and IsAlgebraHomomorphism
and IsAlgebraHomomorphismFromFpRep ),
rec( Agenerators := Fgens,
Agenimages := Agens,
basisImage := B,
preimagesBasisImage := genimages ) ) );
# We know left module generators of the f.p. algebra,
# and we know the isomorphic nice free left module.
# (Note that in general, `NiceAlgebraMonomorphism' is valid also for
# subalgebras.)
SetGeneratorsOfLeftModule( Fp, genimages );
SetNiceFreeLeftModule( Fp, UnderlyingLeftModule( B ) );
# Construct the isomorphism.
map:= AlgebraWithOneHomomorphismByImagesNC( A, Fp, B, genimages );
SetIsSurjective( map, true );
SetIsInjective( map, true );
# Return the isomorphism.
return map;
end );
#T special representation to improve computing preimages?
#T (the element in the nice module is first computed, then decomposed
#T and composed again; one can avoid the last two steps)
#############################################################################
##
#M IsomorphismFpFLMLOR( <A> ) . . . . . . . . . . . . . . . for f.p. FLMLOR
##
## Return the identity mapping.
##
InstallMethod( IsomorphismFpFLMLOR,
"for f.p. FLMLOR (return the identity mapping)",
[ IsSubalgebraFpAlgebra ], SUM_FLAGS,
IdentityMapping );
#############################################################################
##
#M IsomorphismSCFLMLOR( <A> ) . . . . . . . . . . . . . . . . for a FLMLOR
##
InstallMethod( IsomorphismSCFLMLOR,
"for a finite dimensional FLMLOR (delegate to the method for a basis)",
[ IsFLMLOR ],
A -> IsomorphismSCFLMLOR( Basis( A ) ) );
#############################################################################
##
#M IsomorphismSCFLMLOR( <B> ) . . . . . . . . . . . for a basis of a FLMLOR
##
InstallMethod( IsomorphismSCFLMLOR,
"for a basis (of a finite dimensional FLMLOR)",
[ IsBasis ],
function( B )
local A, # underlying FLMLOR of `B'
T, # structure constants table w.r.t. `B'
I, # s.c. FLMLOR, image of the isomorphism
map; # isomorphism from `A' to `I', result
A:= UnderlyingLeftModule( B );
if not IsFLMLOR( A ) then
Error( "<A> must be a FLMLOR" );
fi;
# Construct the image.
T:= StructureConstantsTable( B );
I:= AlgebraByStructureConstants( LeftActingDomain( A ), T );
UseIsomorphismRelation( A, I );
# Construct the isomorphism.
map:= LeftModuleHomomorphismByImagesNC( A, I, B, CanonicalBasis( I ) );
SetIsBijective( map, true );
SetIsAlgebraHomomorphism( map, true );
if IsFLMLORWithOne( A ) then
SetRespectsOne( map, true );
fi;
# Return the result.
return map;
end );
#############################################################################
##
#M IsomorphismSCFLMLOR( <A> ) . . . . . . . . . . . . . . . for s.c. FLMLOR
##
## Return the identity mapping.
##
InstallMethod( IsomorphismSCFLMLOR,
"for s.c. FLMLOR (return the identity mapping)",
[ IsFLMLOR and IsSCAlgebraObjCollection ], SUM_FLAGS,
IdentityMapping );
#############################################################################
##
#E
|