This file is indexed.

/usr/share/gap/lib/alghom.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
#############################################################################
##
#W  alghom.gi                   GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for algebra(-with-one) general mappings.
##
##  There are two default representations of such general mappings,
##  one by generators and images (see the file `vspchom.gi'),
##  the other as (linear) operation homomorphism
##
##  1. methods for algebra general mappings given by images
##  2. methods for operation algebra homomorphisms
##  3. methods for natural homomorphisms from algebras
##  4. methods for isomorphisms to matrix algebras
##  5. methods for isomorphisms to f.p. algebras
##


#############################################################################
##
##  1. methods for algebra general mappings given by images
##


#############################################################################
##
#R  IsAlgebraGeneralMappingByImagesDefaultRep
##
##  is a default representation of algebra general mappings between two
##  algebras $A$ and $B$ where $F$ is equal to the left acting
##  domain of $A$ and of $B$.
##
##  Algebra generators of $A$ and $B$ images are stored in the attribute
##  `MappingGeneratorsImages'.
##
##  The general mapping is defined as the closure of the relation that joins
##  the $i$-th generator of $A$ and the $i$-th generator of $B$
##  w.r.t. linearity and multiplication.
##
##  It is handled using the attribute `AsLinearGeneralMappingByImages'.
##
DeclareRepresentation( "IsAlgebraGeneralMappingByImagesDefaultRep",
    IsAlgebraGeneralMapping and IsAdditiveElementWithInverse
    and IsAttributeStoringRep, [] );

DeclareRepresentation( "IsPolynomialRingDefaultGeneratorMapping",
    IsAlgebraGeneralMappingByImagesDefaultRep,[]);


#############################################################################
##
#M  AlgebraGeneralMappingByImages( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraGeneralMappingByImages,
    "for two FLMLORs and two homogeneous lists",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
    function( S, R, gens, imgs )

    local map,        # general mapping from <S> to <R>, result
	  filter,
	  i,basic;

    # Handle the case that `gens' is a basis or empty.
    # We can form a left module general mapping directly.
    if IsBasis( gens ) or IsEmpty( gens ) then

      map:= LeftModuleGeneralMappingByImages( S, R, gens, imgs );
      SetIsAlgebraGeneralMapping( map, true );
      return map;

    fi;

    # Check the arguments.
    if   Length( gens ) <> Length( imgs )  then
      Error( "<gens> and <imgs> must have the same length" );
    elif not IsSubset( S, gens ) then
      Error( "<gens> must lie in <S>" );
    elif not IsSubset( R, imgs ) then
      Error( "<imgs> must lie in <R>" );
    elif LeftActingDomain( S ) <> LeftActingDomain( R ) then
      Error( "<S> and <R> must have same left acting domain" );
    fi;

    # type setting
    filter:=IsSPGeneralMapping
	    and IsAlgebraGeneralMapping
	    and IsAlgebraGeneralMappingByImagesDefaultRep;

    #special case: test whether polynomial ring is mapped via 1 and free
    #generators
    if IsPolynomialRing(S) then
      basic:=ForAll(imgs,x->ForAll(imgs,y->x*y=y*x));
      for i in [1..Length(gens)] do
	if IsOne(gens[i]) then
	  if not IsOne(imgs[i]) then basic:=false;fi;
	elif not gens[i] in IndeterminatesOfPolynomialRing(S) then
	  basic:=false;
	fi;
      od;
      if basic=true then
	filter:=filter and IsPolynomialRingDefaultGeneratorMapping;
      fi;
    fi;

    # Make the general mapping.
    map:= Objectify( TypeOfDefaultGeneralMapping( S, R,filter),
                     rec(
#                          generators := gens,
#                          genimages  := imgs
                         ) );

    SetMappingGeneratorsImages(map,[Immutable(gens),Immutable(imgs)]);
    # return the general mapping
    return map;
    end );


#############################################################################
##
#M  AlgebraHomomorphismByImagesNC( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraHomomorphismByImagesNC,
    "for two FLMLORs and two homogeneous lists",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
    function( S, R, gens, imgs )
    local map;        # homomorphism from <source> to <range>, result
    map:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
    SetIsSingleValued( map, true );
    SetIsTotal( map, true );
    return map;
    end );


#############################################################################
##
#M  AlgebraWithOneGeneralMappingByImages( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraWithOneGeneralMappingByImages,
    "for two FLMLORs and two homogeneous lists",
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ],
    function( S, R, gens, imgs )
    local map;        # homomorphism from <source> to <range>, result
    gens:= Concatenation( gens, [ One( S ) ] );
    imgs:= Concatenation( imgs, [ One( R ) ] );
    map:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
    SetRespectsOne( map, true );
    return map;
    end );


#############################################################################
##
#M  AlgebraWithOneHomomorphismByImagesNC( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( AlgebraWithOneHomomorphismByImagesNC,
    "for two FLMLORs and two homogeneous lists",
    true,
    [ IsFLMLOR, IsFLMLOR, IsHomogeneousList, IsHomogeneousList ], 0,
    function( S, R, gens, imgs )
    local map;        # homomorphism from <source> to <range>, result
    gens:= Concatenation( gens, [ One( S ) ] );
    imgs:= Concatenation( imgs, [ One( R ) ] );
    map:= AlgebraHomomorphismByImagesNC( S, R, gens, imgs );
    SetRespectsOne( map, true );
    return map;
    end );


#############################################################################
##
#F  AlgebraHomomorphismByImages( <S>, <R>, <gens>, <imgs> )
##
InstallGlobalFunction( AlgebraHomomorphismByImages,
    function( S, R, gens, imgs )
    local hom;
    hom:= AlgebraGeneralMappingByImages( S, R, gens, imgs );
    if IsMapping( hom ) then
      return AlgebraHomomorphismByImagesNC( S, R, gens, imgs );
    else
      return fail;
    fi;
end );


#############################################################################
##
#F  AlgebraWithOneHomomorphismByImages( <S>, <R>, <gens>, <imgs> )
##
InstallGlobalFunction( AlgebraWithOneHomomorphismByImages,
    function( S, R, gens, imgs )
    local hom;
    hom:= AlgebraWithOneGeneralMappingByImages( S, R, gens, imgs );
    if IsMapping( hom ) then
      return AlgebraWithOneHomomorphismByImagesNC( S, R, gens, imgs );
    else
      return fail;
    fi;
end );


#############################################################################
##
#M  ViewObj( <map> )  . . . . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( ViewObj, "for an algebra g.m.b.i", true,
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
  mapi:=MappingGeneratorsImages(map);
  View(mapi[1]);
  Print(" -> ");
  View(mapi[2]);
end );


#############################################################################
##
#M  PrintObj( <map> ) . . . . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( PrintObj, "for an algebra-with-one hom. b.i", true,
    [     IsMapping and RespectsOne
      and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
  mapi:=MappingGeneratorsImages(map);
  Print( "AlgebraWithOneHomomorphismByImages( ",
	  Source( map ), ", ", Range( map ), ", ",
	  mapi[1], ", ", mapi[2], " )" );
end );

InstallMethod( PrintObj, "for an algebra hom. b.i.", true,
    [     IsMapping
      and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
  mapi:=MappingGeneratorsImages(map);
  Print( "AlgebraHomomorphismByImages( ",
	  Source( map ), ", ", Range( map ), ", ",
	  mapi[1], ", ", mapi[2], " )" );
end );

InstallMethod( PrintObj, "for an algebra-with-one g.m.b.i", true,
    [     IsGeneralMapping and RespectsOne
      and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
  mapi:=MappingGeneratorsImages(map);
  Print( "AlgebraWithOneGeneralMappingByImages( ",
	  Source( map ), ", ", Range( map ), ", ",
	  mapi[1], ", ", mapi[2], " )" );
end );

InstallMethod( PrintObj, "for an algebra g.m.b.i", true,
    [     IsGeneralMapping
      and IsAlgebraGeneralMappingByImagesDefaultRep ], 0,
function( map )
local mapi;
  mapi:=MappingGeneratorsImages(map);
  Print( "AlgebraGeneralMappingByImages( ",
	  Source( map ), ", ", Range( map ), ", ",
	  mapi[1], ", ", mapi[2], " )" );
end );


#############################################################################
##
#M  AsLeftModuleGeneralMappingByImages( <alg_gen_map> )
##
##  If necessary then we compute a basis of the preimage,
##  and images of its basis vectors.
##
##  Note that we must prescribe also the products of basis vectors and
##  their images if <alg_gen_map> is not known to be a mapping.
##
InstallMethod( AsLeftModuleGeneralMappingByImages,
    "for an algebra general mapping by images",
    [     IsAlgebraGeneralMapping
      and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( alg_gen_map )

    local origgenerators,  # list of algebra generators of the preimage
          origgenimages,   # list of images of `origgenerators'
          generators,      # list of left module generators of the preimage
          genimages,       # list of images of `generators'
          A,               # source of the general mapping
          left,            # is it necessary to multiply also from the left?
                           # (not if `A' is associative or a Lie algebra)
          maxdim,          # upper bound on the dimension
          MB,              # mutable basis of the preimage
          dim,             # dimension of the actual left module
          len,             # number of algebra generators
          i, j,            # loop variables
          gen,             # loop over generators
          prod,            #
          result;          #

    A:=MappingGeneratorsImages(alg_gen_map);
    origgenerators := A[1];
    origgenimages  := A[2];

    if IsBasis( origgenerators ) then

      generators := origgenerators;
      genimages  := origgenimages;

    else

      generators := ShallowCopy( origgenerators );
      genimages  := ShallowCopy( origgenimages );

      A:= Source( alg_gen_map );

      left:= not (    ( HasIsAssociative( A ) and IsAssociative( A ) )
                   or ( HasIsLieAlgebra( A ) and IsLieAlgebra( A ) ) );

      if HasDimension( A ) then
        maxdim:= Dimension( A );
      else
        maxdim:= infinity;
      fi;

      # $A_1$
      MB:= MutableBasis( LeftActingDomain( A ), generators,
                                     Zero( A ) );
      dim:= 0;
      len:= Length( origgenerators );

      while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do

        # `MB' is a mutable basis of $A_i$.
        dim:= NrBasisVectors( MB );

        # Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
        for i in [ 1 .. len ] do
          gen:= origgenerators[i];
          for j in [ 1 .. Length( generators ) ] do
            prod:= generators[j] * gen;
            if not IsContainedInSpan( MB, prod ) then
              Add( generators, prod );
              Add( genimages, genimages[j] * origgenimages[i] );
              CloseMutableBasis( MB, prod );
            fi;
          od;
        od;

        if left then

          # Compute $\bigcup_{g \in S} ( A_i g \cup g A_i )$.
          for i in [ 1 .. len ] do
            gen:= origgenerators[i];
            for j in [ 1 .. Length( generators ) ] do
              prod:= gen * generators[j];
              if not IsContainedInSpan( MB, prod ) then
                Add( generators, prod );
                Add( genimages, origgenimages[i] * genimages[j] );
                CloseMutableBasis( MB, prod );
              fi;
            od;
          od;

        fi;

      od;

    fi;

    # If it is not known whether alg_gen_map is single valued, we need to
    # perform some extra work.
    if not (HasIsSingleValued( alg_gen_map ) and IsSingleValued( alg_gen_map )) then
      # TODO: This code below is far from optimal. Indeed, it would suffice to
      # loop over a basis; and we don't need to record all generator / image
      # pairs we obtain below, but rather only those that are not linearly
      # dependent on the already known pairs.
      len := Length( generators );
      for i in [ 1 .. len ] do
        for j in [ 1 .. len ] do
          Add( generators, generators[i] * generators[j] );
          Add( genimages, genimages[i] * genimages[j] );
        od;
      od;
    fi;

    # Construct the left module (general) mapping.
    result := LeftModuleGeneralMappingByImages( A, Range( alg_gen_map ),
               generators, genimages );

    # Transfer properties of alg_gen_map to result (in particular whether this is
    # a homomorphism).
    if HasIsSingleValued( alg_gen_map ) then
      SetIsSingleValued( result, IsSingleValued( alg_gen_map ) );
    fi;
    if HasIsTotal( alg_gen_map ) then
      SetIsTotal( result, IsTotal( alg_gen_map ) );
    fi;

    return result;
    end );


#############################################################################
##
#M  ImagesSource( <map> ) . . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( ImagesSource,
    "for an algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map )
    local asmap;
    if     HasAsLeftModuleGeneralMappingByImages( map ) then
      asmap:= AsLeftModuleGeneralMappingByImages( map );
      if     IsLinearGeneralMappingByImagesDefaultRep( asmap )
         and IsBound( asmap!.basisimage ) then
        return SubFLMLORNC( Range( map ),
                            asmap!.basisimage, "basis" );
      fi;
    fi;
    return SubFLMLORNC( Range( map ), MappingGeneratorsImages(map)[2] );
    end );


#############################################################################
##
#M  PreImagesRange( <map> ) . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( PreImagesRange,
    "for an algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map )
    local asmap;
    if     HasAsLeftModuleGeneralMappingByImages( map ) then
      asmap:= AsLeftModuleGeneralMappingByImages( map );
      if     IsLinearGeneralMappingByImagesDefaultRep( asmap )
         and IsBound( asmap!.basispreimage ) then
        return SubFLMLORNC( Source( map ),
                            asmap!.basispreimage, "basis" );
      fi;
    fi;
    return SubFLMLORNC( Source( map ), MappingGeneratorsImages(map)[1]);
    end );


#############################################################################
##
#M  CoKernelOfAdditiveGeneralMapping( <map> ) . . . . .  for algebra g.m.b.i.
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map )
    local asmap, genimages, coker;

    asmap:= AsLeftModuleGeneralMappingByImages( map );

    if not IsBound( asmap!.corelations ) then
      MakeImagesInfoLinearGeneralMappingByImages( asmap );
    fi;
    genimages:= MappingGeneratorsImages(asmap)[2];
    coker:= SubFLMLORNC( Range( map ),
               List( asmap!.corelations,
                     r -> LinearCombination( genimages, r ) ) );
    SetCoKernelOfAdditiveGeneralMapping( asmap, coker );

    return coker;
    end );


#############################################################################
##
#M  IsSingleValued( <map> ) . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( IsSingleValued,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
function(map)
local S,gi,i,basic;
  S:=Source(map);

  # rewriting to left modules is not feasible for infinite dimensional
  # domains
  if not IsFiniteDimensional(S) then
    TryNextMethod();
  fi;
  return IsSingleValued( AsLeftModuleGeneralMappingByImages( map ) );
end);

#############################################################################
##
#M  IsSingleValued( <map> ) . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( IsSingleValued,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsPolynomialRingDefaultGeneratorMapping ],0,
    map->true);


#############################################################################
##
#M  KernelOfAdditiveGeneralMapping( <map> ) . . . . . .  for algebra g.m.b.i.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map )
    local asmap, generators, ker;

    asmap:= AsLeftModuleGeneralMappingByImages( map );

    if not IsBound( asmap!.relations ) then
      MakePreImagesInfoLinearGeneralMappingByImages( asmap );
    fi;
    generators:= MappingGeneratorsImages(asmap)[1];
    ker:= SubFLMLORNC( Source( map ),
               List( asmap!.relations,
                     r -> LinearCombination( generators, r ) ) );
    SetKernelOfAdditiveGeneralMapping( asmap, ker );

    if HasIsTotal( map ) and IsTotal( map ) then
      SetIsTwoSidedIdealInParent( ker, true );
    fi;

    return ker;
    end );


#############################################################################
##
#M  IsInjective( <map> )  . . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( IsInjective,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    map -> IsInjective( AsLeftModuleGeneralMappingByImages( map ) ) );


#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( ImagesRepresentative,
    "for algebra g.m.b.i., and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
      IsObject ],
    function( map, elm )
    return ImagesRepresentative( AsLeftModuleGeneralMappingByImages( map ),
                                 elm );
    end );


#############################################################################
##
#M  PreImagesRepresentative( <map>, <elm> ) . . . . . .  for algebra g.m.b.i.
##
InstallMethod( PreImagesRepresentative,
    "for algebra g.m.b.i., and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
      IsObject ],
    function( map, elm )
    return PreImagesRepresentative( AsLeftModuleGeneralMappingByImages(map),
                                    elm );
    end );

InstallMethod( PreImagesRepresentative,
    "for algebra g.m.b.i. knowing inverse, and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep
      and HasInverseGeneralMapping,
      IsObject ],
    function( map, elm )
    return ImagesRepresentative( InverseGeneralMapping(map), elm );
    end );


#############################################################################
##
#M  \*( <c>, <map> )  . . . . . . . . . . . . for scalar and algebra g.m.b.i.
##
InstallMethod( \*,
    "for scalar and algebra g.m.b.i.",
    [ IsMultiplicativeElement,
      IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( scalar, map )
    return scalar * AsLeftModuleGeneralMappingByImages( map );
    end );


#############################################################################
##
#M  AdditiveInverseOp( <map> )  . . . . . . . . . . . .  for algebra g.m.b.i.
##
InstallMethod( AdditiveInverseOp,
    "for algebra g.m.b.i.",
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    map -> AdditiveInverse( AsLeftModuleGeneralMappingByImages( map ) ) );


#############################################################################
##
#M  CompositionMapping2( <map2>, map1> )  for lin. mapping & algebra g.m.b.i.
##
InstallMethod( CompositionMapping2,
    "for left module hom. and algebra g.m.b.i.",
    FamSource1EqFamRange2,
    [ IsLeftModuleHomomorphism,
          IsAlgebraGeneralMapping
      and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map2, map1 )

    # Composition of two algebra homomorphisms is handled by another method.
    if     HasRespectsMultiplication( map2 )
       and HasRespectsMultiplication( map2 ) then
      TryNextMethod();
    fi;

    return CompositionMapping( map2,
                               AsLeftModuleGeneralMappingByImages( map1 ) );
    end );


#############################################################################
##
#M  CompositionMapping2( <map2>, map1> )  for algebra hom. & algebra g.m.b.i.
##
InstallMethod( CompositionMapping2,
    "for left module hom. and algebra g.m.b.i.",
    FamSource1EqFamRange2,
    [ IsAlgebraHomomorphism,
          IsAlgebraGeneralMapping
      and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map2, map1 )
    local comp,        # composition of <map2> and <map1>, result
          gens,
          genimages,
	  mapi1,mapi2;

    mapi1:=MappingGeneratorsImages(map1);
    mapi2:=MappingGeneratorsImages(map2);
    # Compute images for the generators of `map1'.
    if     IsAlgebraGeneralMappingByImagesDefaultRep( map2 )
       and mapi1[2]=mapi2[1] then

      gens      := mapi1[1];
      genimages := mapi2[2];

    else

      gens:= mapi1[1];
      genimages:= List( mapi1[2],
                        v -> ImagesRepresentative( map2, v ) );

    fi;

    # Construct the linear general mapping.
    comp:= AlgebraGeneralMappingByImages(
               Source( map1 ), Range( map2 ), gens, genimages );

    # Maintain info.
    if     HasRespectsOne( map1 ) and HasRespectsOne( map2 )
       and RespectsOne( map1 ) and RespectsOne( map2 ) then
      SetRespectsOne( comp, true );
    fi;
    if     HasAsLeftModuleGeneralMappingByImages( map1 )
       and HasAsLeftModuleGeneralMappingByImages( map2 ) then
      SetAsLeftModuleGeneralMappingByImages( comp,
          CompositionMapping( AsLeftModuleGeneralMappingByImages( map2 ),
                              AsLeftModuleGeneralMappingByImages( map1 ) ) );
    fi;

    # Return the composition.
    return comp;
    end );


#############################################################################
##
#M  \+( <map1>, map2> ) . . . . . . . . . . . . . . . .  for algebra g.m.b.i.
##
##  The sum of an algebra general mapping and a left module general mapping
##  is in general only a left module general mapping.
##  So we delegate to the methods for left module general mappings.
##
InstallOtherMethod( \+,
    "for an algebra g.m.b.i. and general mapping",
    IsIdenticalObj,
    [ IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep,
      IsGeneralMapping ],
    function( map1, map2 )
    return AsLeftModuleGeneralMappingByImages( map1 ) + map2;
    end );

InstallOtherMethod( \+,
    "for general mapping and algebra g.m.b.i.",
    IsIdenticalObj,
    [ IsGeneralMapping,
      IsGeneralMapping and IsAlgebraGeneralMappingByImagesDefaultRep ],
    function( map1, map2 )
    return map1 + AsLeftModuleGeneralMappingByImages( map2 );
    end );


#############################################################################
##
##  2. methods for operation algebra homomorphisms
##


#############################################################################
##
#R  IsOperationAlgebraHomomorphismDefaultRep
##
##  is a default representation of operation homomorphisms to matrix FLMLORs.
##  It assumes that a basis of the operation domain is known.
##  (For operation homomorphisms from f.~p. algebras to matrix algebras,
##  see `IsAlgebraHomomorphismFromFpRep'.)
##
##  Defining components are
##
##  `basis'
##      basis of the domain on that the source acts
##
##  `operation'
##      the function via that the source acts
##
##  Images can be computed by the action, w.r.t. the basis `basisImage'.
##  Preimages can be computed using the components
##
##  `basisImage'
##      basis of the image
##
##  `preimagesBasisImage'
##      list of preimages of the basis vectors of `basisImage'.
##
##  These components are computed as soon as they are needed.
##
##  Note that we cannot use the attribute `AsLinearGeneralMappingByImages'
##  because the source may be infinite dimensional, i.e., we cannot write
##  down the left module general mapping.
##
DeclareRepresentation( "IsOperationAlgebraHomomorphismDefaultRep",
    IsAlgebraHomomorphism and IsAdditiveElementWithInverse
    and IsAttributeStoringRep,
    [ "basis", "operation",
      "basisImage", "preimagesBasisImage" ] );


#############################################################################
##
#M  ViewObj( <ophom> )  . . . . . . . . for an operation algebra homomorphism
##
InstallMethod( ViewObj,
    "for an operation algebra homomorphism",
    [ IsOperationAlgebraHomomorphismDefaultRep ],
    function( ophom )
    Print( "<op. hom. ", Source( ophom ), " -> matrices of dim. ",
           Length( BasisVectors( ophom!.basis ) ), ">" );
    end );


#############################################################################
##
#M  PrintObj( <ophom> ) . . . . . . . . for an operation algebra homomorphism
##
InstallMethod( PrintObj,
    "for an operation algebra homomorphism",
    [ IsOperationAlgebraHomomorphismDefaultRep ],
    function( ophom )
    if ophom!.operation = OnRight then
      Print( "OperationAlgebraHomomorphism( ",
             Source( ophom ), ", ", ophom!.basis, " )" );
    else
      Print( "OperationAlgebraHomomorphism( ",
             Source( ophom ), ", ", ophom!.basis, ", ",
             ophom!.operation, " )" );
    fi;
    end );


#############################################################################
##
#F  InducedLinearAction( <basis>, <elm>, <opr> )
##
InstallGlobalFunction( InducedLinearAction, function( basis, elm, opr )
    return List( BasisVectors( basis ),
                 x -> Coefficients( basis, opr( x, elm ) ) );
end );


#############################################################################
##
#M  MakePreImagesInfoOperationAlgebraHomomorphism( <ophom> )
##
InstallMethod( MakePreImagesInfoOperationAlgebraHomomorphism,
    "for an operation algebra homomorphism",
    [ IsOperationAlgebraHomomorphismDefaultRep ],
    function( ophom )

    local A,               # source of the general mapping
          F,               # left acting domain
          origgenerators,  # list of algebra generators of the preimage
          origgenimages,   # list of images of `origgenerators'
          I,               # image of the mapping
          genimages,       # list of left module generators of the image
          preimages,       # list of preimages of `genimages'
          maxdim,          # upper bound on the dimension
          MB,              # mutable basis of the image
          dim,             # dimension of the actual left module
          len,             # number of algebra generators
          i, j,            # loop variables
          gen,             # loop over generators
          prod;            #

    A:= Source( ophom );
    F:= LeftActingDomain( A );
    dim:= Length( BasisVectors( ophom!.basis ) );

    if IsRingWithOne( A ) then
      origgenerators:= GeneratorsOfAlgebraWithOne( A );
      origgenimages:= List( origgenerators,
          a -> InducedLinearAction( ophom!.basis, a, ophom!.operation ) );
      if IsEmpty( origgenimages ) then
        I:= FLMLORWithOneByGenerators( F, origgenimages,
                                       Immutable( NullMat( F, dim, dim ) ) );
      else
        I:= FLMLORWithOneByGenerators( F, origgenimages );
      fi;
    else
      origgenerators:= GeneratorsOfAlgebra( A );
      origgenimages:= List( origgenerators,
          a -> InducedLinearAction( ophom!.basis, a, ophom!.operation ) );
      if IsEmpty( origgenimages ) then
        I:= FLMLORByGenerators( F, origgenimages,
                                   Immutable( NullMat( F, dim, dim ) ) );
      else
        I:= FLMLORByGenerators( F, origgenimages );
      fi;
    fi;

    preimages := [ One( A ) ];
    genimages := [ InducedLinearAction( ophom!.basis, One( A ),
                                        ophom!.operation ) ];
    maxdim:= dim^2;

    # $A_1$
    MB:= MutableBasis( F, genimages, Zero( I ) );
    dim:= 0;
    len:= Length( origgenimages );

    while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do

      # `MB' is a mutable basis of $A_i$.
      dim:= NrBasisVectors( MB );

      # Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
      for i in [ 1 .. len ] do
        gen:= origgenimages[i];
        for j in [ 1 .. Length( genimages ) ] do
          prod:= genimages[j] * gen;
          if not IsContainedInSpan( MB, prod ) then
            Add( genimages, prod );
            Add( preimages, preimages[j] * origgenerators[i] );
            CloseMutableBasis( MB, prod );
          fi;
        od;
      od;

    od;

    # Set the desired components.
    ophom!.basisImage:= BasisNC( I, genimages );
    ophom!.preimagesBasisImage:= Immutable( preimages );
end );


#############################################################################
##
#M  ImagesRepresentative( <ophom>, <elm> )  . . . . . . . . for op. alg. hom.
##
InstallMethod( ImagesRepresentative,
    "for an operation algebra homomorphism, and an element",
    FamSourceEqFamElm,
    [ IsOperationAlgebraHomomorphismDefaultRep, IsRingElement ],
    function( ophom, elm )
    return InducedLinearAction( ophom!.basis, elm, ophom!.operation );
    end );


#############################################################################
##
#M  PreImagesRepresentative( <ophom>, <mat> )
##
PreImagesRepresentativeOperationAlgebraHomomorphism := function( ophom, mat )
    if not IsBound( ophom!.basisImage ) then
      MakePreImagesInfoOperationAlgebraHomomorphism( ophom );
    fi;
    mat:= Coefficients( ophom!.basisImage, mat );
    if mat <> fail then
      mat:= LinearCombination( ophom!.preimagesBasisImage, mat );
    fi;
    return mat;
end;

InstallMethod( PreImagesRepresentative,
    "for an operation algebra homomorphism, and an element",
    FamRangeEqFamElm,
    [ IsOperationAlgebraHomomorphismDefaultRep, IsMatrix ],
    PreImagesRepresentativeOperationAlgebraHomomorphism );


#############################################################################
##
#R  IsAlgebraHomomorphismFromFpRep
##
##  is a representation of operation homomorphisms from f.~p. FLMLORs
##  to matrix FLMLORs.
##  Contrary to `IsOperationAlgebraHomomorphismDefaultRep', no basis of the
##  source is needed, computing images is done via `MappedExpression'.
##
##  Defining components are
##
##  `Agenerators'
##      generators of the f.~p. algebra
##
##  `Agenimages'
##      images of `Agenerators'
##
##  Preimages can be computed using the components
##
##  `basisImage'
##      basis of the image
##
##  `preimagesBasisImage'
##      list of preimages of the basis vectors of `basisImage'.
##
##  (This works analogously to `IsOperationAlgebraHomomorphismDefaultRep'.)
##  These components are computed as soon as they are needed.
##
##  Note that also here, we cannot use the attribute
##  `AsLinearGeneralMappingByImages'.
##
DeclareRepresentation( "IsAlgebraHomomorphismFromFpRep",
    IsAlgebraHomomorphism and IsAdditiveElementWithInverse
    and IsAttributeStoringRep,
    [ "Agenerators", "Agenimages",
      "basisImage", "preimagesBasisImage" ] );


#############################################################################
##
#M  ViewObj( <ophom> )  . . . . . . . . for an algebra homomorphism from f.p.
##
InstallMethod( ViewObj,
    "for an alg. hom. from f. p. algebra",
    [ IsAlgebraHomomorphismFromFpRep ],
    function( ophom )
    Print( "<op. hom. ", Source( ophom ), " -> matrices of dim. ",
           Length( ophom!.Agenimages[1] ), ">" );
    end );


#############################################################################
##
#M  PrintObj( <hom> ) . . . . . . . . . for an algebra homomorphism from f.p.
##
InstallMethod( PrintObj,
    "for an alg. hom. from f. p. algebra",
    [ IsAlgebraHomomorphismFromFpRep ],
    function( hom )
    Print( "AlgebraHomomorphismByImages( ",
           Source( hom ), ", ", Range( hom ), ", ",
           hom!.Agenerators, ", ", hom!.Agenimages, " )" );
    end );
#T this does not admit to recover the homomorphism from the printed data;
#T in fact we have no function to  construct such a homomorphism ...


#############################################################################
##
#M  MakePreImagesInfoOperationAlgebraHomomorphism( <ophom> )
##
InstallMethod( MakePreImagesInfoOperationAlgebraHomomorphism,
    "for an alg. hom. from f. p. algebra",
    [ IsAlgebraHomomorphismFromFpRep ],
    function( ophom )

    local A,               # source of the general mapping
          F,               # left acting domain
          I,               # image of the homomorphism
          origgenerators,  # list of algebra generators of the preimage
          origgenimages,   # list of images of `origgenerators'
          genimages,       # list of left module generators of the image
          preimages,       # list of preimages of `genimages'
          maxdim,          # upper bound on the dimension
          MB,              # mutable basis of the image
          dim,             # dimension of the actual left module
          len,             # number of algebra generators
          i, j,            # loop variables
          gen,             # loop over generators
          prod;            #

    A:= Source( ophom );
    F:= LeftActingDomain( A );
    I:= ImagesSource( ophom );

    origgenerators := ophom!.Agenerators;
    origgenimages  := ophom!.Agenimages;

    dim:= Length( origgenimages[1] );
    if dim = 0 then
      ophom!.basisImage:= BasisNC( I, [] );
      ophom!.preimagesBasisImage:= Immutable( [] );
      return;
    fi;

    maxdim:= dim^2;
    preimages := [ One( A ) ];
    genimages := [ One( origgenimages[1] ) ];

    # $A_1$
    MB:= MutableBasis( F, genimages, Zero( I ) );
    dim:= 0;
    len:= Length( origgenimages );

    while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do

      # `MB' is a mutable basis of $A_i$.
      dim:= NrBasisVectors( MB );

      # Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
      for i in [ 1 .. len ] do
        gen:= origgenimages[i];
        for j in [ 1 .. Length( genimages ) ] do
          prod:= genimages[j] * gen;
          if not IsContainedInSpan( MB, prod ) then
            Add( genimages, prod );
            Add( preimages, preimages[j] * origgenerators[i] );
            CloseMutableBasis( MB, prod );
          fi;
        od;
      od;

    od;

    # Set the desired components.
    ophom!.basisImage:= BasisNC( I, genimages );
    ophom!.preimagesBasisImage:= Immutable( preimages );
    end );


#############################################################################
##
#M  ImagesRepresentative( <ophom>, <elm> )  . . . . . . . . for op. alg. hom.
##
InstallMethod( ImagesRepresentative,
    "for an alg. hom. from f. p. algebra, and an element",
    FamSourceEqFamElm,
    [ IsAlgebraHomomorphismFromFpRep, IsRingElement ],
    function( ophom, elm )
    return MappedExpression( elm, ophom!.Agenerators, ophom!.Agenimages );
    end );


#############################################################################
##
#M  PreImagesRepresentative( <ophom>, <mat> )
##
InstallMethod( PreImagesRepresentative,
    "for an alg. hom. from f. p. algebra, and an element",
    FamRangeEqFamElm,
    [ IsAlgebraHomomorphismFromFpRep, IsMatrix ],
    PreImagesRepresentativeOperationAlgebraHomomorphism );


#############################################################################
##
#M  OperationAlgebraHomomorphism( <A>, <basis>, <opr> )
##
InstallMethod( OperationAlgebraHomomorphism,
    "for a FLMLOR, a basis, and a function",
    [ IsFLMLOR, IsBasis, IsFunction ],
    function( A, basis, opr )

    local ophom, image;

    # Make the general mapping.
    ophom:= Objectify( NewType( GeneralMappingsFamily(
                                  ElementsFamily( FamilyObj( A ) ),
                                  CollectionsFamily( FamilyObj(
                                      LeftActingDomain( A ) ) ) ),
                                  IsSPGeneralMapping
                              and IsAlgebraHomomorphism
                              and IsOperationAlgebraHomomorphismDefaultRep ),
                     rec(
                          operation := opr,
                          basis     := basis
                         ) );
    SetSource( ophom, A );

    # Handle the case that the basis is empty.
    if IsEmpty( basis ) then

      image                      := NullAlgebra( LeftActingDomain( A ) );
      ophom!.basisImage          := Basis( image );
      ophom!.preimagesBasisImage := Immutable( [ Zero( A ) ] );

      SetRange( ophom, image );
      SetKernelOfAdditiveGeneralMapping( ophom, A );
      SetIsSurjective( ophom, true );

    fi;

    # Return the operation homomorphism.
    return ophom;
    end );


#############################################################################
##
#M  OperationAlgebraHomomorphism( <A>, <C> )
##
##  Add the default argument `OnRight'.
##
InstallOtherMethod( OperationAlgebraHomomorphism,
    "for a FLMLOR and a collection (add `OnRight' argument)",
    [ IsFLMLOR, IsCollection ],
    function( A, C )
    return OperationAlgebraHomomorphism( A, C, OnRight );
    end );


#############################################################################
##
#M  OperationAlgebraHomomorphism( <A>, <V>, <opr> )
##
##  For a finite dimensional free left module <V> with known generators,
##  we assume that a basis can be computed.
##
InstallOtherMethod( OperationAlgebraHomomorphism,
    "for a FLMLOR, a free left module with known generators, and a function",
    [ IsFLMLOR,
      IsFreeLeftModule and IsFiniteDimensional and HasGeneratorsOfLeftModule,
      IsFunction ],
    function( A, V, opr )
    return OperationAlgebraHomomorphism( A, Basis( V ), opr );
    end );


#############################################################################
##
#M  Range( <ophom> )  . . . . . . . . . .  for operation algebra homomorphism
##
##  An operation algebra homomorphism that does not know its range cannot be
##  forced to be surjective; so we may choose a full matrix FLMLOR.
##
InstallMethod( Range,
    "for operation algebra homomorphism (set full matrix FLMLOR)",
    [ IsOperationAlgebraHomomorphismDefaultRep ],
    ophom -> FullMatrixFLMLOR( LeftActingDomain( Source( ophom ) ),
                               Length( BasisVectors( ophom!.basis ) ) ) );


#############################################################################
##
#M  KernelOfAdditiveGeneralMapping( <ophom> ) . .  for operation algebra hom.
##
##  For a finite dimensional acting algebra, we compute a basis of the kernel
##  by solving a linear equation system.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
    "for operation algebra hom. with fin. dim. source",
    [ IsMapping and IsOperationAlgebraHomomorphismDefaultRep ],
    function( ophom )
    local A,         # source of the homomorphism
          BA,        # basis of `A'
          BV,        # basis of the module
          opr,       # operation of `A' on the vectors
          nullsp;    # coefficients vectors of a basis of the kernel

    A:= Source( ophom );

    if IsTrivial( A ) then
      return A;
    elif not IsFiniteDimensional( A ) then
      TryNextMethod();
    fi;

    BA:= Basis( A );
    BV:= ophom!.basis;
    opr:= ophom!.operation;

    nullsp:= NullspaceMat( List( BA,
                 a -> Concatenation( List( BV,
                          v -> Coefficients( BV, opr( v, a ) ) ) ) ) );
    nullsp:= SubFLMLORNC( A,
                 List( nullsp, v -> LinearCombination( BA, v ) ), "basis" );
    SetIsTwoSidedIdealInParent( nullsp, true );

    return nullsp;
    end );


#############################################################################
##
#M  RepresentativeLinearOperation( <A>, <v>, <w>, <opr> )
##
##  Let <A> be a finite dimensional algebra over the ring $R$,
##  <v> and <w> either elements in <A> or tuples of elements in <A>,
##  and <opr> equal to `OnRight' or `OnTuples', respectively.
##  We compute an element of <A> that maps <v> to <w>.
##
##  We compute the coefficients $a_i$ in the equation system
##  $\sum_{i=1}^n a_i <opr>( <v>, b_i ) = <w>$,
##  where $(b_1, b_2, \ldots, b_n)$ is a basis of <A>.
##
##  For a tuple $(v_1, \ldots, v_k)$ of vectors we simply replace $v b_i$ by
##  the concatenation of the $v_j b_i$ for all $j$, and replace $w$ by the
##  concatenation $(w_1, \ldots, w_k)$, and solve this system.
##
##  (There are also methods for matrix algebras acting on row vectors via
##  `OnRight' or `OnTuples'.)
##
InstallMethod( RepresentativeLinearOperation,
    "for a FLMLOR, two elements in it, and `OnRight'",
    IsCollsElmsElmsX,
    [ IsFLMLOR, IsVector, IsVector, IsFunction ],
    function( A, v, w, opr )

    local B, vectors, a;

    if not ( v in A and w in A and opr = OnRight ) then
      TryNextMethod();
    fi;

    if IsTrivial( A ) then
      if IsZero( w ) then
        return Zero( A );
      else
        return fail;
      fi;
    fi;

    B:= Basis( A );
    vectors:= BasisVectors( B );

    # Compute the matrix of the equation system,
    # the coefficient vector $a$, \ldots
    a:= SolutionMat( List( vectors, x -> Coefficients( B, v * x ) ),
                     Coefficients( B, w ) );
    if a = fail then
      return fail;
    fi;

    # \ldots and the representative.
    return LinearCombination( B, a );
    end );


InstallOtherMethod( RepresentativeLinearOperation,
    "for a FLMLOR, two tuples of elements in it, and `OnTuples'",
    IsFamFamFamX,
    [ IsFLMLOR, IsHomogeneousList, IsHomogeneousList, IsFunction ],
    function( A, vs, ws, opr )

    local B, vectors, a;

    if not (     Length( vs ) = Length( ws )
             and IsSubset( A, vs ) and IsSubset( A, ws )
             and opr = OnTuples ) then
      TryNextMethod();
    fi;

    if IsTrivial( A ) then
      if ForAll( ws, IsZero ) then
        return Zero( A );
      else
        return fail;
      fi;
    fi;

    B:= Basis( A );
    vectors:= BasisVectors( B );

    # Compute the matrix of the equation system,
    # the coefficient vector $a$, \ldots
    a:= SolutionMat( List( vectors,
                           x -> Concatenation( List( vs,
                                    v -> Coefficients( B, v * x ) ) ) ),
                     Concatenation( List( ws,
                                    w -> Coefficients( B, w ) ) ) );
    if a = fail then
      return fail;
    fi;

    # \ldots and the representative.
    return LinearCombination( B, a );
    end );


#############################################################################
##
##  3. methods for natural homomorphisms from algebras
##
#M  NaturalHomomorphismByIdeal( <A>, <I> )  . . . . . map onto factor algebra
##
##  <#GAPDoc Label="NaturalHomomorphismByIdeal_algebras">
##  <ManSection>
##  <Meth Name="NaturalHomomorphismByIdeal" Arg='A, I'
##   Label="for an algebra and an ideal"/>
##
##  <Description>
##  For an algebra <A>A</A> and an ideal <A>I</A> in <A>A</A>,
##  the return value of <Ref Func="NaturalHomomorphismByIdeal"/>
##  is a homomorphism of algebras, in particular the range of this mapping
##  is also an algebra.
##  <P/>
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
##  gap> C:= LieCentre( L );
##  <two-sided ideal in <Lie algebra of dimension 9 over Rationals>, 
##    (dimension 1)>
##  gap> hom:= NaturalHomomorphismByIdeal( L, C );
##  <linear mapping by matrix, <Lie algebra of dimension 
##  9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>
##  gap> ImagesSource( hom );
##  <Lie algebra of dimension 8 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#M  NaturalHomomorphismByIdeal( <A>, <triv> ) . . . . . . onto trivial FLMLOR
##
##  Return the identity mapping.
##
InstallMethod( NaturalHomomorphismByIdeal,
    "for FLMLOR and trivial FLMLOR",
    IsIdenticalObj,
    [ IsFLMLOR, IsFLMLOR and IsTrivial ], SUM_FLAGS,
    function( A, I )
    return IdentityMapping( A );
    end );


#############################################################################
##
#M  NaturalHomomorphismByIdeal( <A>, <I> )  . . . . for two fin. dim. FLMLORs
##
##  We return a left module m.b.m. from <A> onto the factor `<A>/<I>'.
##  The image is a s.c. algebra if <I> is nontrivial,
##  and otherwise the identity mapping of <A>.
##
InstallMethod( NaturalHomomorphismByIdeal,
    "for two finite dimensional FLMLORs",
    IsIdenticalObj,
    [ IsFLMLOR, IsFLMLOR ],
    function( A, I )

    local F,         # left acting domain of `A'
          zero,      # zero of `F'
          Ivectors,  # basis vectors of a basis of `I'
          mb,        # mutable basis of `I'
          compl,     # basis vectors of a complement of `I' in `A'
          gen,       # loop over a basis of `A'
          B,         # basis of `A', through `I'
          k,         # length of `Ivectors'
          n,         # length of `compl'
          T,         # s.c. table of a basis of the image
          i, j,      # loop variables
          coeff,     # coefficients of a product
          pos,       # relevant positions
          img,       # image of the homomorphism
          canbas,    # canonical basis of the image
          Bimgs,     # images of the vactors of `B' under the hom.
          nathom;    # the homomorphism, result

    # Check that the FLMLORs are finite dimensional.
    if not IsFiniteDimensional( A ) or not IsFiniteDimensional( I ) then
      TryNextMethod();
    fi;

    # If `A' is equal to `I', return a zero mapping.
    if not IsIdeal( A, I ) then
      Error( "<I> must be an ideal in <A>" );
    elif Dimension( A ) = Dimension( I ) then
      return ZeroMapping( A, NullAlgebra( LeftActingDomain( A ) ) );
    fi;

    # If `I' is trivial, return the identity mapping.
    if IsTrivial( I ) then
      return IdentityMapping( A );
    fi;

    # If the left acting domains are different, adjust them.
    F:= LeftActingDomain( A );
    if F <> LeftActingDomain( I ) then
      F:= Intersection2( A, LeftActingDomain( I ) );
      A:= AsFLMLOR( F, A );
      I:= AsFLMLOR( F, I );
    fi;

    # Compute a basis of `A' through a basis of `I'.
    Ivectors:= BasisVectors( Basis( I ) );
    mb:= MutableBasis( F, Ivectors );
    compl:= [];
    for gen in BasisVectors( Basis( A ) ) do
      if not IsContainedInSpan( mb, gen ) then
        Add( compl, gen );
        CloseMutableBasis( mb, gen );
      fi;
    od;
    B:= BasisNC( A, Concatenation( Ivectors, compl ) );

    # Compute the structure constants of the quotient algebra.
    zero:= Zero( F );
    k:= Length( Ivectors );
    n:= Length( compl );
    if   HasIsCommutative( A ) and IsCommutative( A ) then
      T:= EmptySCTable( n, Zero( F ), "symmetric" );
    elif HasIsAnticommutative( A ) and IsAnticommutative( A ) then
      T:= EmptySCTable( n, Zero( F ), "antisymmetric" );
    else
      T:= EmptySCTable( n, Zero( F ) );
    fi;
    for i in [ 1 .. n ] do
      for j in [ 1 .. n ] do
        coeff:= Coefficients( B, compl[i] * compl[j] ){ [ k+1 .. k+n ] };
        pos:= Filtered( [ 1 .. n ], i -> coeff[i] <> zero );
        if not IsEmpty( pos ) then
          T[i][j]:= Immutable( [ pos, coeff{ pos } ] );
        fi;
      od;
    od;
#T use (anti)symm. here!!!

    # Compute the linear mapping by images.
    img:= AlgebraByStructureConstants( F, T );
    canbas:= CanonicalBasis( img );
    zero:= zero * [ 1 .. n ];
    Bimgs:= Concatenation( List( [ 1 .. k ], v -> zero ),
                           Immutable( IdentityMat( n, F ) ) );

    nathom:= LeftModuleHomomorphismByMatrix( B, Bimgs, canbas );
#T take a special representation for nat. hom.s,
#T (just compute coefficients, and then choose a subset ...)
    SetIsAlgebraWithOneHomomorphism( nathom, true );
    SetIsInjective( nathom, false );
    SetIsSurjective( nathom, true );

    # Enter the preimages info.
    nathom!.basisimage:= canbas;
    nathom!.preimagesbasisimage:= Immutable( compl );
#T relations are not needed if the kernel is known ?

    SetKernelOfAdditiveGeneralMapping( nathom, I );

    # Run the implications for the factor.
    UseFactorRelation( A, I, img );

    return nathom;
    end );


#############################################################################
##
##  4. methods for isomorphisms to matrix algebras
##


#############################################################################
##
#M  IsomorphismMatrixFLMLOR( <A> )  . . . . . . for a fin. dim. assoc. FLMLOR
##
##  A FLMLOR with a multiplicative neutral element acts faithfully on itself
##  via right multiplication.
##  So we get for an $n$ dimensional algebra a representation with matrices
##  of dimension $n \times n$.
##
InstallMethod( IsomorphismMatrixFLMLOR,
    "for a finite dimensional associative FLMLOR with identity",
    [ IsFLMLOR ],
    function( A )

    local B,     # basis of `A'
          F,     # left acting domain of `A'
          I,     # image of the isomorphism
          map,   # isomorphism, result
          gens,  # algebra generators of `A'
          imgs,  # images of `gens' under the action from the right
          dim;   # dimension of `A'

    if    IsSubalgebraFpAlgebra( A )   # avoid to call `IsFiniteDimensional'
                                       # in this case
       or not IsFiniteDimensional( A )
       or not IsAssociative( A )
       or MultiplicativeNeutralElement( A ) = fail then
      TryNextMethod();
    fi;

    B:= Basis( A );
    F:= LeftActingDomain( A );

    if IsEmpty( B ) then

      # Handle the case that `A' is trivial.
      I:= NullAlgebra( F );
      map:= LeftModuleHomomorphismByImagesNC( A, I, B, Basis( I ) );
      SetRespectsMultiplication( map, true );

    else

      if IsRingWithOne( A ) then
        gens:= GeneratorsOfAlgebraWithOne( A );
      else
        gens:= GeneratorsOfAlgebra( A );
      fi;
      imgs:= List( gens, a -> InducedLinearAction( B, a, OnRight ) );
      if IsEmpty( imgs ) then
        dim:= Dimension( A );
        imgs[1]:= Immutable( NullMat( F, dim, dim ) );
      fi;
      I:= FLMLORByGenerators( F, imgs );
      UseIsomorphismRelation( A, I );

      # Make an operation algebra homomorphism.
      map:= Objectify( NewType( GeneralMappingsFamily(
                                    ElementsFamily( FamilyObj( A ) ),
                                    ElementsFamily( FamilyObj( imgs ) ) ),
                                  IsSPGeneralMapping
                              and IsAlgebraHomomorphism
                              and IsOperationAlgebraHomomorphismDefaultRep ),
                       rec(
                            operation := OnRight,
                            basis     := B
                           ) );
      SetSource( map, A );
      SetRange( map, I );

    fi;

    SetIsSurjective( map, true );
    SetIsInjective( map, true );

    return map;
    end );


#############################################################################
##
##  5. methods for isomorphisms to f.p. algebras
##


#############################################################################
##
#M  IsomorphismFpFLMLOR( <A> )  . . . . . . . . for a fin. dim. assoc. FLMLOR
##
##  Construct the free (associative) algebra $F$ on generators of <A>,
##  and factor out the two-sided ideal $I$ spanned by the structure relators
##  w.r.t. a basis of <A>.
##  Then clearly the kernel of the homomorphism from $F$ to <A> contains $I$,
##  on the other hand any expression in the kernel can be reduced to a sum
##  of generators modulo the structure relators of <A>, and this must be
##  trivial since the images of generators were assumed to be linearly
##  independent.
##
##  We write down all relations to reduce words of length two to
##  linear combinations of the generators.
##  So it makes no difference whether the f.p. algebra is constructed
##  from a free algebra or from a free associative algebra.
##  But if <A> knows to be associative then we take a free associative
##  algebra.
##
InstallMethod( IsomorphismFpFLMLOR,
    "for a finite dimensional FLMLOR-with-one",
    [ IsFLMLORWithOne ],
    function( A )

    local Agens,           # list of algebra generators of `A'
          F,               # free (associative) algebra
          Fgens,           # list of images of `Agens'
          generators,      # list of left module generators of the preimage
          genimages,       # list of images of `generators'
          left,            # is it necessary to multiply also from the left?
          maxdim,          # upper bound on the dimension
          MB,              # mutable basis of the preimage
          dim,             # dimension of the actual left module
          len,             # number of algebra generators
          i, j,            # loop variables
          gen,             # loop over generators
          prod,            #
          rels,            # relators list
          rel,             # one relator
          coeff,           # coefficients of product of basis vectors
          k,               # loop over `coeff'
          B,               # basis of `A'
          Fp,              # f.p. algebra
          Fam,             # elements family of the family of `Fp'
          map;             # the isomorphism, result

    if not IsFiniteDimensional( A ) then
      TryNextMethod();
    fi;

    Agens:= GeneratorsOfAlgebraWithOne( A );

    if HasIsAssociative( A ) and IsAssociative( A ) then
      F:= FreeAssociativeAlgebraWithOne( LeftActingDomain( A ),
              Length( Agens ) );
      left:= false;
    else
      F:= FreeAlgebraWithOne( LeftActingDomain( A ), Length( Agens ) );
      left:= true;
    fi;

    Fgens:= GeneratorsOfAlgebraWithOne( F );

    generators := ShallowCopy( Agens );
    genimages  := ShallowCopy( Fgens );

    if HasDimension( A ) then
      maxdim:= Dimension( A );
    else
      maxdim:= infinity;
    fi;

    # $A_1$
    MB:= MutableBasis( LeftActingDomain( A ), generators,
                                   Zero( A ) );
    dim:= 0;
    len:= Length( Agens );

    while dim < NrBasisVectors( MB ) and NrBasisVectors( MB ) < maxdim do

      # `MB' is a mutable basis of $A_i$.
      dim:= NrBasisVectors( MB );

      # Compute $\bigcup_{g \in S} ( A_i g \cup A_i g )$.
      for i in [ 1 .. len ] do
        gen:= Agens[i];
        for j in [ 1 .. Length( generators ) ] do
          prod:= generators[j] * gen;
          if not IsContainedInSpan( MB, prod ) then
            Add( generators, prod );
            Add( genimages, genimages[j] * Fgens[i] );
            CloseMutableBasis( MB, prod );
          fi;
        od;
      od;

      if left then

        # Compute $\bigcup_{g \in S} ( A_i g \cup g A_i )$.
        for i in [ 1 .. len ] do
          gen:= Agens[i];
          for j in [ 1 .. Length( generators ) ] do
            prod:= gen * generators[j];
            if not IsContainedInSpan( MB, prod ) then
              Add( generators, prod );
              Add( genimages, Fgens[i] * genimages[j] );
              CloseMutableBasis( MB, prod );
            fi;
          od;
        od;

      fi;

    od;

    B:= BasisNC( A, generators );
    dim:= Length( generators );

    # Construct the relators given by the multiplication table.
    rels:= [];
    for i in [ 1 .. dim ] do
      for j in [ 1 .. dim ] do
        coeff:= Coefficients( B, generators[i] * generators[j] );
        rel:= genimages[i] * genimages[j];
        for k in [ 1 .. dim ] do
          rel:= rel - coeff[k] * genimages[k];
        od;
        if not IsZero( rel ) then
          Add( rels, rel );
        fi;
      od;
    od;

    # Remove duplicate relators.
    rels:= Set( rels );

    # Construct the f.p. algebra.
    Fp:= FactorFreeAlgebraByRelators( F, rels );
    Fam:= ElementsFamily( FamilyObj( Fp ) );

    # Set useful information.
    UseIsomorphismRelation( A, Fp );

    # Map the elements of the free algebra into the f.p. algebra.
    Fgens:= List( Fgens, a -> ElementOfFpAlgebra( Fam, a ) );
    genimages:= List( genimages, a -> ElementOfFpAlgebra( Fam, a ) );

    # Set the info to compute with a basis of the f.p. algebra.
    SetNiceAlgebraMonomorphism( Fp,
        Objectify( NewType( GeneralMappingsFamily(
                              ElementsFamily( FamilyObj( Fp ) ),
                              ElementsFamily( FamilyObj( A ) ) ),
                                IsSPGeneralMapping
                            and IsAlgebraHomomorphism
                            and IsAlgebraHomomorphismFromFpRep ),
           rec( Agenerators         := Fgens,
                Agenimages          := Agens,
                basisImage          := B,
                preimagesBasisImage := genimages ) ) );

    # We know left module generators of the f.p. algebra,
    # and we know the isomorphic nice free left module.
    # (Note that in general, `NiceAlgebraMonomorphism' is valid also for
    # subalgebras.)
    SetGeneratorsOfLeftModule( Fp, genimages );
    SetNiceFreeLeftModule( Fp, UnderlyingLeftModule( B ) );

    # Construct the isomorphism.
    map:= AlgebraWithOneHomomorphismByImagesNC( A, Fp, B, genimages );
    SetIsSurjective( map, true );
    SetIsInjective( map, true );

    # Return the isomorphism.
    return map;
    end );
#T special representation to improve computing preimages?
#T (the element in the nice module is first computed, then decomposed
#T and composed again; one can avoid the last two steps)


#############################################################################
##
#M  IsomorphismFpFLMLOR( <A> )  . . . . . . . . . . . . . . . for f.p. FLMLOR
##
##  Return the identity mapping.
##
InstallMethod( IsomorphismFpFLMLOR,
    "for f.p. FLMLOR (return the identity mapping)",
    [ IsSubalgebraFpAlgebra ], SUM_FLAGS,
    IdentityMapping );


#############################################################################
##
#M  IsomorphismSCFLMLOR( <A> )  . . . . . . . . . . . . . . . .  for a FLMLOR
##
InstallMethod( IsomorphismSCFLMLOR,
    "for a finite dimensional FLMLOR (delegate to the method for a basis)",
    [ IsFLMLOR ],
    A -> IsomorphismSCFLMLOR( Basis( A ) ) );


#############################################################################
##
#M  IsomorphismSCFLMLOR( <B> )  . . . . . . . . . . . for a basis of a FLMLOR
##
InstallMethod( IsomorphismSCFLMLOR,
    "for a basis (of a finite dimensional FLMLOR)",
    [ IsBasis ],
    function( B )

    local A,               # underlying FLMLOR of `B'
          T,               # structure constants table w.r.t. `B'
          I,               # s.c. FLMLOR, image of the isomorphism
          map;             # isomorphism from `A' to `I', result

    A:= UnderlyingLeftModule( B );
    if not IsFLMLOR( A ) then
      Error( "<A> must be a FLMLOR" );
    fi;

    # Construct the image.
    T:= StructureConstantsTable( B );
    I:= AlgebraByStructureConstants( LeftActingDomain( A ), T );
    UseIsomorphismRelation( A, I );

    # Construct the isomorphism.
    map:= LeftModuleHomomorphismByImagesNC( A, I, B, CanonicalBasis( I ) );
    SetIsBijective( map, true );
    SetIsAlgebraHomomorphism( map, true );
    if IsFLMLORWithOne( A ) then
      SetRespectsOne( map, true );
    fi;

    # Return the result.
    return map;
    end );


#############################################################################
##
#M  IsomorphismSCFLMLOR( <A> )  . . . . . . . . . . . . . . . for s.c. FLMLOR
##
##  Return the identity mapping.
##
InstallMethod( IsomorphismSCFLMLOR,
    "for s.c. FLMLOR (return the identity mapping)",
    [ IsFLMLOR and IsSCAlgebraObjCollection ], SUM_FLAGS,
    IdentityMapping );


#############################################################################
##
#E