This file is indexed.

/usr/share/gap/lib/alglie.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
#############################################################################
##
#W  alglie.gd                   GAP library                     Thomas Breuer
#W                                                        and Willem de Graaf
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of attributes, properties, and
##  operations for Lie algebras.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{alglie}">
##  A Lie algebra <M>L</M> is an algebra such that 
##  <M>x x = 0</M> and <M>x(yz) + y(zx) + z(xy) = 0</M>
##  for all <M>x, y, z \in L</M>.
##  A common way of creating a Lie algebra is by taking an associative
##  algebra together with the commutator as product.
##  Therefore the product of two elements <M>x, y</M> of a Lie algebra
##  is usually denoted by  <M>[x,y]</M>,
##  but in &GAP; this denotes the list of the elements <M>x</M> and <M>y</M>;
##  hence the product of elements is made by the usual <C>*</C>.
##  This gives no problems when dealing with Lie algebras given by a 
##  table of structure constants.
##  However, for matrix Lie algebras the situation is not so easy
##  as <C>*</C> denotes the ordinary (associative) matrix multiplication.
##  In &GAP; this problem is solved by wrapping 
##  elements of a matrix Lie algebra up as <C>LieObject</C>s,
##  and then define  the <C>*</C> for <C>LieObject</C>s to be the commutator
##  (see <Ref Sect="Lie Objects"/>).
##  <#/GAPDoc>
##


#############################################################################
##
#P  IsLieAbelian( <L> )
##
##  <#GAPDoc Label="IsLieAbelian">
##  <ManSection>
##  <Prop Name="IsLieAbelian" Arg='L'/>
##
##  <Description>
##  returns <K>true</K> if <A>L</A> is a Lie algebra such that each 
##  product of elements in <A>L</A> is zero, and <K>false</K> otherwise.
##  <Example><![CDATA[
##  gap>  T:= EmptySCTable( 5, 0, "antisymmetric" );;
##  gap>  L:= LieAlgebraByStructureConstants( Rationals, T );
##  <Lie algebra of dimension 5 over Rationals>
##  gap> IsLieAbelian( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsLieAbelian", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#P  IsLieNilpotent( <L> )
##
##  <#GAPDoc Label="IsLieNilpotent">
##  <ManSection>
##  <Prop Name="IsLieNilpotent" Arg='L'/>
##
##  <Description>
##  A Lie algebra <A>L</A> is defined to be (Lie) <E>nilpotent</E>
##  when its (Lie) lower central series reaches the trivial subalgebra.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 5, 0, "antisymmetric" );;
##  gap> L:= LieAlgebraByStructureConstants( Rationals, T );
##  <Lie algebra of dimension 5 over Rationals>
##  gap> IsLieNilpotent( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsLieNilpotent", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#P  IsRestrictedLieAlgebra( <L> )
##
##  <#GAPDoc Label="IsRestrictedLieAlgebra">
##  <ManSection>
##  <Prop Name="IsRestrictedLieAlgebra" Arg='L'/>
##
##  <Description>
##  Test whether <A>L</A> is restricted.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "W", [2], GF(5));
##  <Lie algebra of dimension 25 over GF(5)>
##  gap> IsRestrictedLieAlgebra( L );
##  false
##  gap> L:= SimpleLieAlgebra( "W", [1], GF(5));
##  <Lie algebra of dimension 5 over GF(5)>
##  gap> IsRestrictedLieAlgebra( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsRestrictedLieAlgebra", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieDerivedSubalgebra( <L> )
##
##  <#GAPDoc Label="LieDerivedSubalgebra">
##  <ManSection>
##  <Attr Name="LieDerivedSubalgebra" Arg='L'/>
##
##  <Description>
##  is the (Lie) derived subalgebra of the Lie algebra <A>L</A>.  
##  <Example><![CDATA[
##  gap>  L:= FullMatrixLieAlgebra( GF( 3 ), 3 );
##  <Lie algebra over GF(3), with 5 generators>
##  gap> LieDerivedSubalgebra( L );
##  <Lie algebra of dimension 8 over GF(3)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieDerivedSubalgebra", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieDerivedSeries( <L> )
##
##  <#GAPDoc Label="LieDerivedSeries">
##  <ManSection>
##  <Attr Name="LieDerivedSeries" Arg='L'/>
##
##  <Description>
##  is the (Lie) derived series of the Lie algebra <A>L</A>.  
##  <Example><![CDATA[
##  gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
##  gap> L:= LieAlgebra( Rationals, mats );;
##  gap> LieDerivedSeries( L );
##  [ <Lie algebra of dimension 3 over Rationals>, 
##    <Lie algebra of dimension 1 over Rationals>, 
##    <Lie algebra of dimension 0 over Rationals> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieDerivedSeries", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#P  IsLieSolvable( <L> )
##
##  <#GAPDoc Label="IsLieSolvable">
##  <ManSection>
##  <Prop Name="IsLieSolvable" Arg='L'/>
##
##  <Description>
##  A Lie algebra <A>L</A> is defined to be (Lie) <E>solvable</E>
##  when its (Lie) derived series reaches the trivial subalgebra.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 5, 0, "antisymmetric" );;
##  gap> L:= LieAlgebraByStructureConstants( Rationals, T );
##  <Lie algebra of dimension 5 over Rationals>
##  gap> IsLieSolvable( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsLieSolvable", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieLowerCentralSeries( <L> )
##
##  <#GAPDoc Label="LieLowerCentralSeries">
##  <ManSection>
##  <Attr Name="LieLowerCentralSeries" Arg='L'/>
##
##  <Description>
##  is the (Lie) lower central series of the Lie algebra <A>L</A>.  
##  <Example><![CDATA[
##  gap> mats:= [ [[ 1, 0 ], [ 0, 0 ]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
##  gap> L:=LieAlgebra( Rationals, mats );;
##  gap> LieLowerCentralSeries( L );
##  [ <Lie algebra of dimension 3 over Rationals>, 
##    <Lie algebra of dimension 1 over Rationals> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieLowerCentralSeries", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieUpperCentralSeries( <L> )
##
##  <#GAPDoc Label="LieUpperCentralSeries">
##  <ManSection>
##  <Attr Name="LieUpperCentralSeries" Arg='L'/>
##
##  <Description>
##  is the (Lie) upper central series of the Lie algebra <A>L</A>.
##  <Example><![CDATA[
##  gap> mats:= [ [[ 1, 0 ], [ 0, 0 ]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
##  gap> L:=LieAlgebra( Rationals, mats );;
##  gap> LieUpperCentralSeries( L );
##  [ <two-sided ideal in <Lie algebra of dimension 3 over Rationals>, 
##        (dimension 1)>, <Lie algebra over Rationals, with 0 generators> 
##   ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieUpperCentralSeries", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieCentre( <L> )
#A  LieCenter( <L> )
##
##  <#GAPDoc Label="LieCentre">
##  <ManSection>
##  <Attr Name="LieCentre" Arg='L'/>
##  <Attr Name="LieCenter" Arg='L'/>
##
##  <Description>
##  The <E>Lie</E> centre of the Lie algebra <A>L</A> is the kernel of the
##  adjoint mapping, that is,
##  the set <M>\{ a \in L : \forall x \in L: a x = 0 \}</M>.
##  <P/>
##  In characteristic <M>2</M> this may differ from the usual centre 
##  (that is the set of all <M>a \in L</M> such that <M>a x = x a</M> 
##  for all <M>x \in L</M>). 
##  Therefore, this operation is named <Ref Attr="LieCentre"/>
##  and not <Ref Attr="Centre"/>. 
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( GF(3), 3 );
##  <Lie algebra over GF(3), with 5 generators>
##  gap> LieCentre( L );
##  <two-sided ideal in <Lie algebra of dimension 9 over GF(3)>, 
##    (dimension 1)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieCentre", IsAlgebra and IsLieAlgebra );

DeclareSynonymAttr( "LieCenter", LieCentre );


#############################################################################
##
#A  RightDerivations( <B> )
#A  LeftDerivations( <B> )
#A  Derivations( <B> )
##
##  <#GAPDoc Label="RightDerivations">
##  <ManSection>
##  <Attr Name="RightDerivations" Arg='B'/>
##  <Attr Name="LeftDerivations" Arg='B'/>
##  <Attr Name="Derivations" Arg='B'/>
##
##  <Description>
##  These functions all return the matrix Lie algebra of derivations 
##  of the algebra <M>A</M> with basis <A>B</A>.
##  <P/>
##  <C>RightDerivations( <A>B</A> )</C> returns the algebra of derivations
##  represented by their right action on the algebra <M>A</M>.
##  This means that with respect to the basis <M>B</M> of <M>A</M>,
##  the derivation <M>D</M> is described by the matrix <M>[ d_{{i,j}} ]</M>
##  which means that <M>D</M> maps the <M>i</M>-th basis element <M>b_i</M>
##  to  <M>\sum_{{j = 1}}^n d_{{i,j}} b_j</M>.
##  <P/>
##  <C>LeftDerivations( <A>B</A> )</C> returns the Lie algebra of derivations
##  represented by their left action on the algebra <M>A</M>.
##  So the matrices contained in the algebra output by
##  <C>LeftDerivations( <A>B</A> )</C> are the transposes of the 
##  matrices contained in the output of <C>RightDerivations( <A>B</A> )</C>.
##  <P/>
##  <Ref Attr="Derivations"/> is just a synonym for
##  <Ref Attr="RightDerivations"/>.
##  <Example><![CDATA[
##  gap> A:= OctaveAlgebra( Rationals );
##  <algebra of dimension 8 over Rationals>
##  gap> L:= Derivations( Basis( A ) );
##  <Lie algebra of dimension 14 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RightDerivations", IsBasis );
DeclareAttribute( "LeftDerivations", IsBasis );
DeclareSynonymAttr( "Derivations", RightDerivations );


#############################################################################
##
#A  KillingMatrix( <B> )
##
##  <#GAPDoc Label="KillingMatrix">
##  <ManSection>
##  <Attr Name="KillingMatrix" Arg='B'/>
##
##  <Description>
##  is the matrix of the Killing form <M>\kappa</M> with respect to the basis
##  <A>B</A>, i.e., the matrix <M>( \kappa( b_i, b_j ) )</M>
##  where <M>b_1, b_2, \ldots</M> are the basis vectors of <A>B</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> KillingMatrix( Basis( L ) );
##  [ [ 0, 4, 0 ], [ 4, 0, 0 ], [ 0, 0, 8 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "KillingMatrix", IsBasis );


#############################################################################
##
#A  CartanSubalgebra( <L> )
##
##  <#GAPDoc Label="CartanSubalgebra">
##  <ManSection>
##  <Attr Name="CartanSubalgebra" Arg='L'/>
##
##  <Description>
##  A Cartan subalgebra of a Lie algebra <A>L</A> is defined as a nilpotent
##  subalgebra of <A>L</A> equal to its own Lie normalizer in <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );;
##  gap> CartanSubalgebra( L );
##  <Lie algebra of dimension 2 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CartanSubalgebra",
    IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  PthPowerImages( <B> )
##
##  <#GAPDoc Label="PthPowerImages">
##  <ManSection>
##  <Attr Name="PthPowerImages" Arg='B'/>
##
##  <Description>
##  Here <A>B</A> is a basis of a restricted Lie algebra.
##  This function returns the list of the images of the basis vectors of
##  <A>B</A> under the <M>p</M>-map.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "W", [1], GF(11) );
##  <Lie algebra of dimension 11 over GF(11)>
##  gap> B:= Basis( L );
##  CanonicalBasis( <Lie algebra of dimension 11 over GF(11)> )
##  gap> PthPowerImages( B );
##  [ 0*v.1, v.2, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 
##    0*v.1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PthPowerImages", IsBasis );


#############################################################################
##
#A  NonNilpotentElement( <L> )
##
##  <#GAPDoc Label="NonNilpotentElement">
##  <ManSection>
##  <Attr Name="NonNilpotentElement" Arg='L'/>
##
##  <Description>
##  A non-nilpotent element of a Lie algebra <A>L</A> is an element <M>x</M>
##  such that ad<M>x</M> is not nilpotent.
##  If <A>L</A> is not nilpotent, then by Engel's theorem non-nilpotent
##  elements exist in <A>L</A>.
##  In this case this function returns a non-nilpotent element of <A>L</A>,
##  otherwise (if <A>L</A> is nilpotent) <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );;
##  gap> NonNilpotentElement( L );
##  v.13
##  gap> IsNilpotentElement( L, last );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NonNilpotentElement", IsAlgebra and IsLieAlgebra );

DeclareSynonymAttr( "NonLieNilpotentElement", NonNilpotentElement);


#############################################################################
##
#A  AdjointAssociativeAlgebra( <L>, <K> )
##
##  <#GAPDoc Label="AdjointAssociativeAlgebra">
##  <ManSection>
##  <Attr Name="AdjointAssociativeAlgebra" Arg='L, K'/>
##
##  <Description>
##  is the associative matrix algebra (with 1) generated by the matrices of
##  the adjoint representation of the subalgebra <A>K</A> on the Lie
##  algebra <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> AdjointAssociativeAlgebra( L, L );
##  <algebra of dimension 9 over Rationals>
##  gap> AdjointAssociativeAlgebra( L, CartanSubalgebra( L ) );
##  <algebra of dimension 3 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AdjointAssociativeAlgebra",
    [ IsAlgebra and IsLieAlgebra, IsAlgebra and IsLieAlgebra ] );


#############################################################################
##
#A  LieNilRadical( <L> )
##
##  <#GAPDoc Label="LieNilRadical">
##  <ManSection>
##  <Attr Name="LieNilRadical" Arg='L'/>
##
##  <Description>
##  This function calculates the (Lie) nil radical of the Lie algebra
##  <A>L</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
##  gap> L:= LieAlgebra( Rationals, mats );;
##  gap> LieNilRadical( L );
##  <two-sided ideal in <Lie algebra of dimension 3 over Rationals>, 
##    (dimension 2)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieNilRadical", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  LieSolvableRadical( <L> )
##
##  <#GAPDoc Label="LieSolvableRadical">
##  <ManSection>
##  <Attr Name="LieSolvableRadical" Arg='L'/>
##
##  <Description>
##  Returns the (Lie) solvable radical of the Lie algebra <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( Rationals, 3 );;
##  gap> LieSolvableRadical( L );
##  <two-sided ideal in <Lie algebra of dimension 9 over Rationals>, 
##    (dimension 1)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LieSolvableRadical", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#A  SemiSimpleType( <L> )
##
##  <#GAPDoc Label="SemiSimpleType">
##  <ManSection>
##  <Attr Name="SemiSimpleType" Arg='L'/>
##
##  <Description>
##  Let <A>L</A> be a semisimple Lie algebra, i.e., a direct sum of simple
##  Lie algebras.
##  Then <Ref Attr="SemiSimpleType"/> returns the type of <A>L</A>, i.e.,
##  a string containing the types of the simple summands of <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "E", 8, Rationals );;
##  gap> b:= BasisVectors( Basis( L ) );;
##  gap> K:= LieCentralizer(L, Subalgebra(L, [ b[61]+b[79]+b[101]+b[102] ]));
##  <Lie algebra of dimension 102 over Rationals>
##  gap> lev:= LeviMalcevDecomposition(K);;
##  gap> SemiSimpleType( lev[1] );
##  "B3 A1"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SemiSimpleType", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#O  LieCentralizer( <L>, <S> )
##
##  <#GAPDoc Label="LieCentralizer">
##  <ManSection>
##  <Oper Name="LieCentralizer" Arg='L, S'/>
##
##  <Description>
##  is the annihilator of <A>S</A> in the Lie algebra <A>L</A>, that is,
##  the set <M>\{ a \in L : \forall s \in S: a*s = 0 \}</M>.
##  Here <A>S</A> may be a subspace or a subalgebra of <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );
##  <Lie algebra of dimension 14 over Rationals>
##  gap> b:= BasisVectors( Basis( L ) );;
##  gap> LieCentralizer( L, Subalgebra( L, [ b[1], b[2] ] ) );
##  <Lie algebra of dimension 1 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LieCentralizer",
    [ IsAlgebra and IsLieAlgebra, IsVectorSpace ] );


#############################################################################
##
#A  LieCentralizerInParent( <S> )
##
##  <ManSection>
##  <Attr Name="LieCentralizerInParent" Arg='S'/>
##
##  <Description>
##  is the Lie centralizer of the vector space <A>S</A>
##  in its parent Lie algebra <M>L</M>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "LieCentralizerInParent", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#O  LieNormalizer( <L>, <U> )
##
##  <#GAPDoc Label="LieNormalizer">
##  <ManSection>
##  <Oper Name="LieNormalizer" Arg='L, U'/>
##
##  <Description>
##  is the normalizer of the subspace <A>U</A> in the Lie algebra <A>L</A>,
##  that is, the set <M>N_L(U) = \{ x \in L : [x,U] \subset U \}</M>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );
##  <Lie algebra of dimension 14 over Rationals>
##  gap> b:= BasisVectors( Basis( L ) );;
##  gap> LieNormalizer( L, Subalgebra( L, [ b[1], b[2] ] ) );
##  <Lie algebra of dimension 8 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LieNormalizer",
    [ IsAlgebra and IsLieAlgebra, IsVectorSpace ] );


#############################################################################
##
#A  LieNormalizerInParent( <S> )
##
##  <ManSection>
##  <Attr Name="LieNormalizerInParent" Arg='S'/>
##
##  <Description>
##  is the Lie normalizer of the vector space <A>S</A>
##  in its parent Lie algebra <M>L</M>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "LieNormalizerInParent", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#O  AdjointMatrix( <B>, <x> )
##
##  <#GAPDoc Label="AdjointMatrix">
##  <ManSection>
##  <Oper Name="AdjointMatrix" Arg='B, x'/>
##
##  <Description>
##  is the matrix of the adjoint representation of the element <A>x</A>
##  w.r.t. the basis <A>B</A>.
##  The adjoint map is the left multiplication by <A>x</A>.
##  The <M>i</M>-th column of the resulting matrix represents the image of
##  the <M>i</M>-th basis vector of <A>B</A> under left multiplication by
##  <A>x</A>. 
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> AdjointMatrix( Basis( L ), Basis( L )[1] );
##  [ [ 0, 0, -2 ], [ 0, 0, 0 ], [ 0, 1, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AdjointMatrix", [ IsBasis, IsRingElement ] );


#############################################################################
##
#O  KappaPerp( <L>, <U> )
##
##  <#GAPDoc Label="KappaPerp">
##  <ManSection>
##  <Oper Name="KappaPerp" Arg='L, U'/>
##
##  <Description>
##  is the orthogonal complement of the subspace <A>U</A> of the Lie algebra
##  <A>L</A> with respect to the Killing form <M>\kappa</M>, that is,
##  the set <M>U^{{\perp}} = \{ x \in L; \kappa( x, y ) = 0 \hbox{ for all } 
##  y \in L \}</M>.
##  <P/>
##  <M>U^{{\perp}}</M> is a subspace of <A>L</A>, and if <A>U</A> is an ideal
##  of <A>L</A> then <M>U^{{\perp}}</M> is a subalgebra of <A>L</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> b:= BasisVectors( Basis( L ) );;
##  gap> V:= VectorSpace( Rationals, [b[1],b[2]] );;
##  gap> KappaPerp( L, V );
##  <vector space of dimension 1 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "KappaPerp",
    [ IsAlgebra and IsLieAlgebra, IsVectorSpace ] );


#############################################################################
##
#O  PowerSi( <one>, <i> )
#A  PowerS( <L> )
##
##  <ManSection>
##  <Oper Name="PowerSi" Arg='one, i'/>
##  <Attr Name="PowerS" Arg='L'/>
##
##  <Description>
##  <A>one</A> is the identity in a field <M>F</M> of characteristic <M>p</M>.
##  The <M>p</M>-th power map of a restricted Lie algebra over <M>F</M>
##  satisfies the following relation.
##  <M>(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y)</M>
##  where <M>i s_i(x,y)</M> is the coefficient of <M>T^{i-1}</M> in the polynomial
##  <M>( ad (Tx+y) )^{p-1} (x)</M> (see Jacobson, p. 187f.).
##  From this it follows that
##  <M>i s_i(x,y) = \sum [ \ldots [[[x,y],a_1],a_2]\ldots, a_{p-2}]</M> where
##  <M>a_j</M> is <M>x</M> or <M>y</M> where the sum is taken over all words
##  <M>w = a_1 \cdots a_n</M> such that <M>w</M> contains <M>i-1</M> <M>x</M>'s and <M>p-2-i+1</M>
##  <M>y</M>'s.
##  <P/>
##  <C>PowerSi</C> returns the function <M>s_i</M>, which only depends on <M>p</M> and
##  <M>i</M> and not on the Lie algebra or on <M>F</M>.
##  <P/>
##  <C>PowerS</C> returns the list <M>[ s_1, \ldots, s_{p-1} ]</M> of all s-functions
##  as computed by <C>PowerSi</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PowerSi" );

DeclareAttribute( "PowerS", IsAlgebra and IsLieAlgebra );


#############################################################################
##
#O  PthPowerImage( <B>, <x> )
##
##  <#GAPDoc Label="PthPowerImage">
##  <ManSection>
##  <Oper Name="PthPowerImage" Arg='B, x' Label="for basis and element" />
##  <Oper Name="PthPowerImage" Arg='x'    Label="for element" />
##  <Oper Name="PthPowerImage" Arg='x, n' Label="for element and integer" />
##
##  <Description>
##  This function computes the image of an element <A>x</A> of a restricted 
##  Lie algebra under its <M>p</M>-map.
##  <P/>
##  In the first form, a basis of the Lie algebra is provided; this basis 
##  stores the <M>p</M>th powers of its elements. It is the traditional 
##  form, provided for backwards compatibility.
##  <P/> 
##  In its second form, only the element <A>x</A> is provided. It is the only
##  form for elements of Lie algebras with no predetermined basis, such as 
##  those constructed by <Ref Attr="LieObject"/>.
##  <P/> 
##  In its third form, an extra non-negative integer <A>n</A> is specified; 
##  the <M>p</M>-mapping is iterated <A>n</A> times on the element <A>x</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "W", [1], GF(11) );;
##  gap> B:= Basis( L );;
##  gap> x:= B[1]+B[11];
##  v.1+v.11
##  gap> PthPowerImage( B, x );
##  v.1+v.11
##  gap> PthPowerImage( x, 2 );
##  v.1+v.11
##  gap> f := FreeAssociativeAlgebra(GF(2),"x","y");
##  <algebra over GF(2), with 2 generators>
##  gap> x := LieObject(f.1);; y := LieObject(f.2);;
##  gap> x*y; x^2; PthPowerImage(x);
##  LieObject( (Z(2)^0)*x*y+(Z(2)^0)*y*x )
##  LieObject( <zero> of ... )
##  LieObject( (Z(2)^0)*x^2 )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PthPowerImage", [ IsBasis, IsRingElement ] );
DeclareOperation( "PthPowerImage", [ IsJacobianElement ] );
DeclareOperation( "PthPowerImage", [ IsJacobianElement, IsInt ] );

#############################################################################
##
#O  PClosureSubalgebra( <A> )
##
##  <#GAPDoc Label="PClosureSubalgebra">
##  <ManSection>
##  <Oper Name="PClosureSubalgebra" Arg='A'/>
##
##  <Description>
##  This function computes the smallest restricted Lie algebra that contains
##  <A>A</A>.
##  <Example><![CDATA[
##  gap> L := JenningsLieAlgebra(SmallGroup(4,1)); # group C_4
##  <Lie algebra of dimension 2 over GF(2)>
##  gap> L0 := Subalgebra(L,GeneratorsOfAlgebra(L){[1]});
##  <Lie algebra over GF(2), with 1 generators>
##  gap> Dimension(L0);
##  1
##  gap> PClosureSubalgebra(L0); last=L;
##  <vector space of dimension 2 over GF(2)>
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("PClosureSubalgebra", [IsLieAlgebra and IsJacobianElementCollection]);

#############################################################################
##
#O  FindSl2( <L>, <x> )
##
##  <#GAPDoc Label="FindSl2">
##  <ManSection>
##  <Oper Name="FindSl2" Arg='L, x'/>
##
##  <Description>
##  This function tries to find a subalgebra <M>S</M> of the Lie algebra 
##  <A>L</A> with <M>S</M> isomorphic to <M>sl_2</M> and such that the 
##  nilpotent element <A>x</A> of <A>L</A> is contained in <M>S</M>.
##  If such an algebra exists then it is returned,
##  otherwise <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );;
##  gap> b:= BasisVectors( Basis( L ) );;
##  gap> IsNilpotentElement( L, b[1] );
##  true
##  gap> FindSl2( L, b[1] );
##  <Lie algebra of dimension 3 over Rationals>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FindSl2" );


############################################################################
##
#C  IsRootSystem( <obj> )
##
##  <#GAPDoc Label="IsRootSystem">
##  <ManSection>
##  <Filt Name="IsRootSystem" Arg='obj' Type='Category'/>
##
##  <Description>
##  Category of root systems.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsRootSystem", IsObject );


############################################################################
##
#C  IsRootSystemFromLieAlgebra( <obj> )
##
##  <#GAPDoc Label="IsRootSystemFromLieAlgebra">
##  <ManSection>
##  <Filt Name="IsRootSystemFromLieAlgebra" Arg='obj' Type='Category'/>
##
##  <Description>
##  Category of root systems that come from (semisimple) Lie algebras. 
##  They often have special attributes such as 
##  <Ref Func="UnderlyingLieAlgebra"/>, 
##  <Ref Attr="PositiveRootVectors"/>,
##  <Ref Attr="NegativeRootVectors"/>, 
##  <Ref Attr="CanonicalGenerators"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsRootSystemFromLieAlgebra", IsRootSystem );


##############################################################################
##
#A  UnderlyingLieAlgebra( <R> )
##
##  <#GAPDoc Label="UnderlyingLieAlgebra">
##  <ManSection>
##  <Attr Name="UnderlyingLieAlgebra" Arg='R'/>
##
##  <Description>
##  For a root system <A>R</A> coming from a semisimple Lie algebra <C>L</C>,
##  returns the Lie algebra <C>L</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingLieAlgebra", IsRootSystemFromLieAlgebra );


##############################################################################
##
#A  RootSystem( <L> )
##
##  <#GAPDoc Label="RootSystem">
##  <ManSection>
##  <Attr Name="RootSystem" Arg='L'/>
##
##  <Description>
##  <Ref Attr="RootSystem"/> calculates the root system of the semisimple 
##  Lie algebra <A>L</A> with a split Cartan subalgebra.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );
##  <Lie algebra of dimension 14 over Rationals>
##  gap> R:= RootSystem( L );
##  <root system of rank 2>
##  gap> IsRootSystem( R );
##  true
##  gap> IsRootSystemFromLieAlgebra( R );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RootSystem", IsAlgebra and IsLieAlgebra );


############################################################################
##
#A  PositiveRoots( <R> )
##
##  <#GAPDoc Label="PositiveRoots">
##  <ManSection>
##  <Attr Name="PositiveRoots" Arg='R'/>
##
##  <Description>
##  The list of positive roots of the root system <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PositiveRoots", IsRootSystem );


############################################################################
##
#A  NegativeRoots( <R> )
##
##  <#GAPDoc Label="NegativeRoots">
##  <ManSection>
##  <Attr Name="NegativeRoots" Arg='R'/>
##
##  <Description>
##  The list of negative roots of the root system <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NegativeRoots", IsRootSystem );


############################################################################
##
#A  PositiveRootVectors( <R> )
##
##  <#GAPDoc Label="PositiveRootVectors">
##  <ManSection>
##  <Attr Name="PositiveRootVectors" Arg='R'/>
##
##  <Description>
##  A list of positive root vectors of the root system <A>R</A> that comes
##  from a Lie algebra <C>L</C>. This is a list in bijection with the list
##  <C>PositiveRoots( L )</C> (see&nbsp;<Ref Attr="PositiveRoots"/>). The 
##  root vector is a non-zero element of the root space (in <C>L</C>) of 
##  the corresponding root.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PositiveRootVectors", IsRootSystemFromLieAlgebra );


############################################################################
##
#A  NegativeRootVectors( <R> )
##
##  <#GAPDoc Label="NegativeRootVectors">
##  <ManSection>
##  <Attr Name="NegativeRootVectors" Arg='R'/>
##
##  <Description>
##  A list of negative root vectors of the root system <A>R</A> that comes
##  from a Lie algebra <C>L</C>. This is a list in bijection with the list
##  <C>NegativeRoots( L )</C> (see&nbsp;<Ref Attr="NegativeRoots"/>). The 
##  root vector is a non-zero element of the root space (in <C>L</C>) of 
##  the corresponding root.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NegativeRootVectors", IsRootSystemFromLieAlgebra );


############################################################################
##
#A  SimpleSystem( <R> )
##
##  <#GAPDoc Label="SimpleSystem">
##  <ManSection>
##  <Attr Name="SimpleSystem" Arg='R'/>
##
##  <Description>
##  A list of simple roots of the root system <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SimpleSystem", IsRootSystem );


############################################################################
##
#A  CartanMatrix( <R> )
##
##  <#GAPDoc Label="CartanMatrix">
##  <ManSection>
##  <Attr Name="CartanMatrix" Arg='R'/>
##
##  <Description>
##  The Cartan matrix of the root system <A>R</A>, relative to the simple 
##  roots in <C>SimpleSystem( <A>R</A> )</C> (see&nbsp;<Ref Attr="SimpleSystem"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CartanMatrix", IsRootSystem );


############################################################################
##
#A  BilinearFormMat( <R> )
##
##  <#GAPDoc Label="BilinearFormMat">
##  <ManSection>
##  <Attr Name="BilinearFormMat" Arg='R'/>
##
##  <Description>
##  The matrix of the bilinear form of the root system <A>R</A>.
##  If we denote this matrix by <M>B</M>, then we have
##  <M>B(i,j) = (\alpha_i, \alpha_j)</M>,
##  where the <M>\alpha_i</M> are the simple roots of <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BilinearFormMat", IsRootSystem );


############################################################################
##
#A  CanonicalGenerators( <R> )
##
##  <#GAPDoc Label="CanonicalGenerators">
##  <ManSection>
##  <Attr Name="CanonicalGenerators" Arg='R'/>
##
##  <Description>
##  Here <A>R</A> must be a root system coming from a semisimple Lie algebra
##  <C>L</C>.
##  This function returns <M>3l</M> generators of <A>L</A>,
##  <M>x_1, \ldots, x_l, y_1, \ldots, y_l, h_1, \ldots, h_l</M>,
##  where <M>x_i</M> lies in the root space corresponding to the 
##  <M>i</M>-th simple root of the root system of <A>L</A>,
##  <M>y_i</M> lies in the root space corresponding to <M>-</M> the
##  <M>i</M>-th simple root,
##  and the <M>h_i</M> are elements of the Cartan subalgebra.
##  These elements satisfy the relations
##  <M>h_i * h_j = 0</M>,
##  <M>x_i * y_j = \delta_{ij} h_i</M>,
##  <M>h_j * x_i = c_{ij} x_i</M>,
##  <M>h_j * y_i = -c_{ij} y_i</M>,
##  where <M>c_{ij}</M> is the entry of the Cartan matrix on position
##  <M>ij</M>.
##  <P/>
##  Also if <M>a</M> is a root of the root system <A>R</A>
##  (so <M>a</M> is a list of numbers),
##  then we have the relation <M>h_i * x = a[i] x</M>,
##  where <M>x</M> is a root vector corresponding to <M>a</M>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );;
##  gap> R:= RootSystem( L );;
##  gap> UnderlyingLieAlgebra( R );
##  <Lie algebra of dimension 14 over Rationals>
##  gap> PositiveRoots( R );
##  [ [ 2, -1 ], [ -3, 2 ], [ -1, 1 ], [ 1, 0 ], [ 3, -1 ], [ 0, 1 ] ]
##  gap> x:= PositiveRootVectors( R );
##  [ v.1, v.2, v.3, v.4, v.5, v.6 ]
##  gap> g:=CanonicalGenerators( R );
##  [ [ v.1, v.2 ], [ v.7, v.8 ], [ v.13, v.14 ] ]
##  gap> g[3][1]*x[1];
##  (2)*v.1
##  gap> g[3][2]*x[1];
##  (-1)*v.1
##  gap> # i.e., x[1] is the root vector belonging to the root [ 2, -1 ]
##  gap> BilinearFormMat( R );
##  [ [ 1/12, -1/8 ], [ -1/8, 1/4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CanonicalGenerators", IsRootSystemFromLieAlgebra );

##############################################################################
##
#A  ChevalleyBasis( <L> )
##
##  <#GAPDoc Label="ChevalleyBasis">
##  <ManSection>
##  <Attr Name="ChevalleyBasis" Arg='L'/>
##
##  <Description>
##  Here <A>L</A> must be a semisimple Lie algebra with a split Cartan 
##  subalgebra. Then <C>ChevalleyBasis(<A>L</A>)</C> returns a list 
##  consisting of three sublists.
##  Together these sublists form a Chevalley basis of <A>L</A>. The first
##  list contains the positive root vectors, the second list contains the
##  negative root vectors, and the third list the Cartan elements of the
##  Chevalley basis.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "G", 2, Rationals );
##  <Lie algebra of dimension 14 over Rationals>
##  gap> ChevalleyBasis( L );
##  [ [ v.1, v.2, v.3, v.4, v.5, v.6 ], 
##    [ v.7, v.8, v.9, v.10, v.11, v.12 ], [ v.13, v.14 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ChevalleyBasis", IsLieAlgebra );


##############################################################################
##
#F  SimpleLieAlgebra( <type>, <n>, <F> )
##
##  <#GAPDoc Label="SimpleLieAlgebra">
##  <ManSection>
##  <Func Name="SimpleLieAlgebra" Arg='type, n, F'/>
##
##  <Description>
##  This function constructs the simple Lie algebra of type given by the
##  string <A>type</A> and rank <A>n</A> over the field <A>F</A>. The string
##  <A>type</A> must be one of <C>"A"</C>, <C>"B"</C>, <C>"C"</C>, <C>"D"</C>, 
##  <C>"E"</C>, <C>"F"</C>, <C>"G"</C>, <C>"H"</C>, <C>"K"</C>, <C>"S"</C>, 
##  <C>"W"</C> or <C>"M"</C>. For the types <C>A</C> to <C>G</C>, <A>n</A> 
##  must be a positive integer. The last five types only exist over fields of 
##  characteristic <M>p>0</M>. If the type is <C>H</C>, then <A>n</A> must be 
##  a list of positive integers of even length.
##  If the type is <C>K</C>, then <A>n</A> must be a list of positive 
##  integers of odd length.
##  For the types <C>S</C> and <C>W</C>, <A>n</A> must be a list of positive 
##  integers of any length. 
##  If the type is <C>M</C>, then the Melikyan algebra is constructed.
##  In this case <A>n</A> must be a list of two positive integers.
##  This Lie algebra only exists over fields of characteristic <M>5</M>.
##  This Lie algebra is <M>&ZZ; \times &ZZ;</M> graded;
##  and the grading can be accessed via the attribute <C>Grading(L)</C>
##  (see&nbsp;<Ref Attr="Grading"/>).
##  In some cases the Lie algebra returned by this function is not simple.
##  Examples are the Lie algebras of type <M>A_n</M> over a field
##  of characteristic <M>p>0</M> where <M>p</M> divides <M>n+1</M>,
##  and the Lie algebras of type <M>K_n</M> where <M>n</M> is a list of
##  length 1.
##  <P/>
##  If <A>type</A> is one of <C>A</C>, <C>B</C>, <C>C</C>, <C>D</C>, 
##  <C>E</C>, <C>F</C>, <C>G</C>, and <A>F</A> is a field of characteristic 
##  zero, then the basis of the returned Lie algebra is a Chevalley basis. 
##  <P/>
##  <Example><![CDATA[
##  gap> SimpleLieAlgebra( "E", 6, Rationals );
##  <Lie algebra of dimension 78 over Rationals>
##  gap> SimpleLieAlgebra( "A", 6, GF(5) );
##  <Lie algebra of dimension 48 over GF(5)>
##  gap> SimpleLieAlgebra( "W", [1,2], GF(5) );
##  <Lie algebra of dimension 250 over GF(5)>
##  gap> SimpleLieAlgebra( "H", [1,2], GF(5) );
##  <Lie algebra of dimension 123 over GF(5)>
##  gap> L:= SimpleLieAlgebra( "M", [1,1], GF(5) );
##  <Lie algebra of dimension 125 over GF(5)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SimpleLieAlgebra" );


#############################################################################
##
#F  DescriptionOfNormalizedUEAElement( <T>, <listofpairs> )
##
##  <ManSection>
##  <Func Name="DescriptionOfNormalizedUEAElement" Arg='T, listofpairs'/>
##
##  <Description>
##  <A>T</A> is the structure constants table of a finite dim. Lie algebra <M>L</M>.
##  <P/>
##  <A>listofpairs</A> is a list of the form
##  <M>[ l_1, c_1, l_2, c_2, \ldots, l_n, c_n ]</M>
##  where the <M>c_i</M> are coefficients and the <M>l_i</M> encode monomials
##  <M>x_{i_1}^{e_1} x_{i_2}^{e_2} \cdots x_{i_m}^{e_m}</M> as lists
##  <M>[ i_1, e_1, i_2, e_2, \ldots, i_m, e_m ]</M>.
##  (All <M>e_k</M> are nonzero.)
##  Here the generator <M>x_k</M> of the universal enveloping algebra corresponds
##  to the <M>k</M>-th basis vector of <M>L</M>.
##  <P/>
##  <C>DescriptionOfNormalizedUEAElement</C> applies successively the rewriting
##  rules of the universal enveloping algebra of <M>L</M> such that the final
##  value descibes the same element as <A>listofpairs</A>, each monomial is
##  normalized, and the monomials are ordered lexicographically.
##  This list is the return value.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "DescriptionOfNormalizedUEAElement" );


#############################################################################
##
#A  UniversalEnvelopingAlgebra( <L>[, <B>] )  . . . . . . . for a Lie algebra
##
##  <#GAPDoc Label="UniversalEnvelopingAlgebra">
##  <ManSection>
##  <Attr Name="UniversalEnvelopingAlgebra" Arg='L[, B]'/>
##
##  <Description>
##  Returns the universal enveloping algebra of the Lie algebra <A>L</A>.
##  The elements of this algebra are written on a Poincare-Birkhoff-Witt
##  basis.
##  <P/>
##  If a second argument <A>B</A> is given, it must be a basis of <A>L</A>,
##  and an isomorphic copy of the universal enveloping algebra
##  is returned, generated by the images (in the universal enveloping
##  algebra) of the elements of <A>B</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> UL:= UniversalEnvelopingAlgebra( L );
##  <algebra-with-one of dimension infinity over Rationals>
##  gap> g:= GeneratorsOfAlgebraWithOne( UL );
##  [ [(1)*x.1], [(1)*x.2], [(1)*x.3] ]
##  gap> g[3]^2*g[2]^2*g[1]^2;
##  [(-4)*x.1*x.2*x.3^3+(1)*x.1^2*x.2^2*x.3^2+(2)*x.3^3+(2)*x.3^4]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute(
    "UniversalEnvelopingAlgebra",
    IsLieAlgebra );


#############################################################################
##
#F  FreeLieAlgebra( <R>, <rank>[, <name>] )
#F  FreeLieAlgebra( <R>, <name1>, <name2>, ... )
##
##  <#GAPDoc Label="FreeLieAlgebra">
##  <ManSection>
##  <Func Name="FreeLieAlgebra" Arg='R, rank[, name]'
##   Label="for ring, rank (and name)"/>
##  <Func Name="FreeLieAlgebra" Arg='R, name1, name2, ...'
##   Label="for ring and several names"/>
##
##  <Description>
##  Returns a free Lie algebra of rank <A>rank</A> over the ring <A>R</A>. 
##  <C>FreeLieAlgebra( <A>R</A>, <A>name1</A>, <A>name2</A>,...)</C> returns
##  a free Lie algebra over <A>R</A> with generators named <A>name1</A>,
##  <A>name2</A>, and so on.
##  The elements of a free Lie algebra are written on the Hall-Lyndon
##  basis.
##  <Example><![CDATA[
##  gap> L:= FreeLieAlgebra( Rationals, "x", "y", "z" );
##  <Lie algebra over Rationals, with 3 generators>
##  gap> g:= GeneratorsOfAlgebra( L );; x:= g[1];; y:=g[2];; z:= g[3];;
##  gap> z*(y*(x*(z*y)));
##  (-1)*((x*(y*z))*(y*z))+(-1)*((x*((y*z)*z))*y)+(-1)*(((x*z)*(y*z))*y)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeLieAlgebra" );


#############################################################################
##
#C  IsFamilyElementOfFreeLieAlgebra( <Fam> )
##
##  <ManSection>
##  <Filt Name="IsFamilyElementOfFreeLieAlgebra" Arg='Fam' Type='Category'/>
##
##  <Description>
##  We need this for the normalization method, which takes a family as first
##  argument.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsFamilyElementOfFreeLieAlgebra",
    IsElementOfMagmaRingModuloRelationsFamily );


#############################################################################
##
#C  IsFptoSCAMorphism( <map> )  
##
##  <ManSection>
##  <Filt Name="IsFptoSCAMorphism" Arg='map' Type='Category'/>
##
##  <Description>
##  A morphism from a finitely presented algebra to an isomorphic
##  structure constants algebra. Needs a special method for image
##  because the default method tries to compute a basis of the source.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsFptoSCAMorphism", IsAlgebraGeneralMapping and IsTotal and 
                                      IsSingleValued );

##############################################################################
##
#F  FpLieAlgebraByCartanMatrix( <C> )
##
##  <#GAPDoc Label="FpLieAlgebraByCartanMatrix">
##  <ManSection>
##  <Func Name="FpLieAlgebraByCartanMatrix" Arg='C'/>
##
##  <Description>
##  Here <A>C</A> must be a Cartan matrix. The function returns the 
##  finitely-presented Lie algebra over the field of rational numbers 
##  defined by this Cartan matrix. By Serre's theorem, this Lie algebra is a 
##  semisimple Lie algebra, and its root system has Cartan matrix <A>C</A>.
##  <Example><![CDATA[
##  gap> C:= [ [ 2, -1 ], [ -3, 2 ] ];;
##  gap> K:= FpLieAlgebraByCartanMatrix( C );
##  <Lie algebra over Rationals, with 6 generators>
##  gap> h:= NiceAlgebraMonomorphism( K );
##  [ [(1)*x1], [(1)*x2], [(1)*x3], [(1)*x4], [(1)*x5], [(1)*x6] ] -> 
##  [ v.1, v.2, v.3, v.4, v.5, v.6 ]
##  gap> SemiSimpleType( Range( h ) );
##  "G2"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FpLieAlgebraByCartanMatrix" );


#############################################################################
##
#F  FpLieAlgebraEnumeration( <FpL> )
#F  FpLieAlgebraEnumeration( <FpL>, <max>, <weights>, <ishom> )
##
##  <ManSection>
##  <Func Name="FpLieAlgebraEnumeration" Arg='FpL'/>
##  <Func Name="FpLieAlgebraEnumeration" Arg='FpL, max, weights, ishom'/>
##
##  <Description>
##  When called with one argument, which is a finitely presented Lie 
##  algebra, this function computes a homomorphism to an sc algebra.
##  More arguments can be used to compute nilpotent quotients (see comments
##  to this function in the file alglie.gi).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "FpLieAlgebraEnumeration" );


#############################################################################
##
#F  NilpotentQuotientOfFpLieAlgebra( <FpL>, <max>[, <weights>] )
##
##  <#GAPDoc Label="NilpotentQuotientOfFpLieAlgebra">
##  <ManSection>
##  <Func Name="NilpotentQuotientOfFpLieAlgebra" Arg='FpL, max[, weights]'/>
##
##  <Description>
##
##  Here <A>FpL</A> is a finitely presented Lie algebra.
##  Let <M>K</M> be the quotient of <A>FpL</A> by the <A>max</A>+1-th term
##  of its lower central series.
##  This function calculates a surjective homomorphism from <A>FpL</A>
##  onto <M>K</M>.
##  When called with the third argument <A>weights</A>,
##  the <M>k</M>-th generator of <A>FpL</A> gets assigned the <M>k</M>-th
##  element of the list <A>weights</A>.
##  In that case a quotient is calculated of <A>FpL</A>
##  by the ideal generated by all elements of weight <A>max</A>+1.
##  If the list <A>weights</A> only consists of <M>1</M>'s
##  then the two calls are equivalent.
##  The default value of <A>weights</A> is a list (of length equal to the
##  number of generators of <A>FpL</A>) consisting of <M>1</M>'s.
##  <P/>
##  If the relators of <A>FpL</A> are homogeneous,
##  then the resulting  algebra is naturally graded. 
##  <Example><![CDATA[
##  gap> L:= FreeLieAlgebra( Rationals, "x", "y" );;
##  gap> g:= GeneratorsOfAlgebra(L);; x:= g[1]; y:= g[2];
##  (1)*x
##  (1)*y
##  gap> rr:=[ ((y*x)*x)*x-6*(y*x)*y, 
##  >          3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y ];
##  [ (-1)*(x*(x*(x*y)))+(6)*((x*y)*y), 
##    (-3)*(x*(x*(x*(x*(x*y)))))+(20)*(x*(x*((x*y)*y)))+(
##      -20)*((x*(x*y))*(x*y)) ]
##  gap> K:= L/rr;
##  <Lie algebra over Rationals, with 2 generators>
##  gap> h:=NilpotentQuotientOfFpLieAlgebra(K, 50, [1,2] );
##  [ [(1)*x], [(1)*y] ] -> [ v.1, v.2 ]
##  gap> L:= Range( h );
##  <Lie algebra of dimension 50 over Rationals>
##  gap> Grading( L );
##  rec( hom_components := function( d ) ... end, max_degree := 50, 
##    min_degree := 1, source := Integers )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NilpotentQuotientOfFpLieAlgebra" );


##############################################################################
##
#A  JenningsLieAlgebra( <G> )
##
##  <#GAPDoc Label="JenningsLieAlgebra">
##  <ManSection>
##  <Attr Name="JenningsLieAlgebra" Arg='G'/>
##
##  <Description>
##  Let <A>G</A> be a nontrivial <M>p</M>-group,
##  and let <M><A>G</A> = G_1 \supset G_2 \supset \cdots \supset G_m = 1</M>
##  be its Jennings series (see&nbsp;<Ref Func="JenningsSeries"/>).
##  Then the quotients <M>G_i / G_{{i+1}}</M> are elementary abelian
##  <M>p</M>-groups,
##  i.e., they can be viewed as vector spaces over <C>GF</C><M>(p)</M>.
##  Now the Jennings-Lie algebra <M>L</M> of <A>G</A> is the direct sum
##  of those vector spaces.
##  The Lie bracket on <M>L</M> is induced by the commutator in <A>G</A>. 
##  Furthermore, the map <M>g \mapsto g^p</M> in <A>G</A> induces a
##  <M>p</M>-map in <M>L</M> making <M>L</M> into a restricted Lie algebra.
##  In the canonical basis of <M>L</M> this <M>p</M>-map is added as an
##  attribute.
##  A Lie algebra created by <Ref Attr="JenningsLieAlgebra"/> is naturally
##  graded. The attribute <Ref Attr="Grading"/> is set.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "JenningsLieAlgebra", IsGroup );


###########################################################################
##
#A  PCentralLieAlgebra( <G> )
##
##  <#GAPDoc Label="PCentralLieAlgebra">
##  <ManSection>
##  <Attr Name="PCentralLieAlgebra" Arg='G'/>
##
##  <Description>
##  Here <A>G</A> is a nontrivial <M>p</M>-group.
##  <C>PCentralLieAlgebra( <A>G</A> )</C> does the same as 
##  <Ref Attr="JenningsLieAlgebra"/> except that the
##  <M>p</M>-central series is used instead of the Jennings series
##  (see&nbsp;<Ref Func="PCentralSeries"/>). This function also returns 
##  a graded Lie algebra. However, it is not necessarily restricted.
##  <Example><![CDATA[
##  gap> G:= SmallGroup( 3^6, 123 );
##  <pc group of size 729 with 6 generators>
##  gap> L:= JenningsLieAlgebra( G );
##  <Lie algebra of dimension 6 over GF(3)>
##  gap> HasPthPowerImages( Basis( L ) );
##  true
##  gap> PthPowerImages( Basis( L ) );
##  [ v.6, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1 ]
##  gap> g:= Grading( L );
##  rec( hom_components := function( d ) ... end, max_degree := 3, 
##    min_degree := 1, source := Integers )
##  gap> List( [1,2,3], g.hom_components );
##  [ <vector space over GF(3), with 3 generators>, 
##    <vector space over GF(3), with 2 generators>, 
##    <vector space over GF(3), with 1 generators> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PCentralLieAlgebra", IsGroup );

#############################################################################
##
#A  NaturalHomomorphismOfLieAlgebraFromNilpotentGroup( <L> )
##
##  <#GAPDoc Label="NaturalHomomorphismOfLieAlgebraFromNilpotentGroup">
##  <ManSection>
##  <Attr Name="NaturalHomomorphismOfLieAlgebraFromNilpotentGroup" Arg='L'/>
##
##  <Description>
##  This is an attribute of Lie algebras created by 
##  <Ref Attr="JenningsLieAlgebra"/> or <Ref Attr="PCentralLieAlgebra"/>. 
##  Then <A>L</A> is the direct sum of quotients of successive terms of the 
##  Jennings, or <M>p</M>-central series of a <M>p</M>-group G. Let <C>Gi</C> 
##  be the <M>i</M>-th term in this series, and let
##  <C>f = NaturalHomomorphismOfLieAlgebraFromNilpotentGroup( <A>L</A> )</C>,
##  then for <C>g</C> in <C>Gi</C>, <C>f( <A>g</A>, <A>i</A> )</C> returns the 
##  element of <A>L</A> (lying in the <M>i</M>-th homogeneous component) 
##  corresponding to <C>g</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NaturalHomomorphismOfLieAlgebraFromNilpotentGroup",
    IsAlgebra and IsLieAlgebra );


#############################################################################
##
#E